JPS5837255B2 - Method and apparatus for homogenizing and fining glass - Google Patents

Method and apparatus for homogenizing and fining glass

Info

Publication number
JPS5837255B2
JPS5837255B2 JP50098167A JP9816775A JPS5837255B2 JP S5837255 B2 JPS5837255 B2 JP S5837255B2 JP 50098167 A JP50098167 A JP 50098167A JP 9816775 A JP9816775 A JP 9816775A JP S5837255 B2 JPS5837255 B2 JP S5837255B2
Authority
JP
Japan
Prior art keywords
glass
gas
furnace
molten
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50098167A
Other languages
Japanese (ja)
Other versions
JPS5145113A (en
Inventor
マルク ピエール フヌイエ ジヤン
エドモン シユバリエ フランソワ
マトヌレール ルネ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie de Saint Gobain SA
Original Assignee
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie de Saint Gobain SA filed Critical Compagnie de Saint Gobain SA
Publication of JPS5145113A publication Critical patent/JPS5145113A/ja
Publication of JPS5837255B2 publication Critical patent/JPS5837255B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/14Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in revolving cylindrical furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/023Preheating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/12Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/173Apparatus for changing the composition of the molten glass in glass furnaces, e.g. for colouring the molten glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/004Refining agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Abstract

1514317 Homogenizing or refining glass SAINT-GOBAIN INDUSTRIES 11 Aug 1975 [14 Aug 1974] 33381/75 Heading C1M Molten glass is homogenized and/or refined by heating the glass so that its viscosity is not more than 1000 poises, foaming the molten glass to a volume at least 1À5 times its original volume, and maintaining the viscosity at not more than 1000 poises until the foam collapses. Preferably the glass is foamed by a gas-generating agent (e.g. Na 2 SO 4 ), the molten glass being heated at at least 20‹C. per minute. The foaming may be aided by ultrasonic vibrations. Preferably, solid vitrifiable material in granular or agglomerated form is passed to inclined duct 14 via furnace 13, in each of which the material is melted by burners 20 and 21. Gases from burners 20. 21 pre-heat the solid material in heat exchanger 23. Furnace 13 and duct 14 are cooled through tubes 17. The molten material formed is passed to channel 1 formed of Pt-Rh alloy, and surrounded by alumina insulation material 12. 12a. The molten material is heated, by Pt-Rh electrode 2 (which may be water-cooled) and by Pt-Rh immersed resistance electrode 10, at at least 20‹C./minute so that the molten glass is foamed and collapses before being delivered through tube 6. In a preferred embodiment granules are heated to 1300‹C. in 6 minutes, from 1300‹C. to 1500‹C. at 30‹C./minute, and held at 1500‹C. for about 10 minutes. In an alternative embodiment (Figures 3 and 4, not shown) the channel is supplied with molybdenum electrodes.

Description

【発明の詳細な説明】 本発明は、溶融ガラス材料の清澄および/または均質化
、詳しくは溶融ガラス材料を迅速かつ融通性ある方法に
よってガラス工業の要求を満足する品質を有する溶融ガ
ラスを得ることpこ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the fining and/or homogenization of molten glass materials, specifically to obtaining molten glass having a quality that satisfies the requirements of the glass industry by a rapid and flexible method. This is related to p.

例えば、これにより、ガラス化すべき材料からガラス或
形品材料として適した精製溶融ガラスを製造するのにか
かる時間を1時間合をこまで減じ得る。
For example, this can reduce the time required to produce purified molten glass suitable as glass shaped article material from the material to be vitrified to as little as an hour.

ガラスの均質化およひ清澄、特に工業的に用いられるガ
ラスの製造速度一これには通常24時間ないしそれ以上
かかる一を制限する一般に主な要因である非溶融物質や
気泡の除去を促進することが望ましい。
Facilitates the homogenization and fining of glass, especially the removal of non-melting materials and air bubbles, which are generally the main factor limiting the production speed of industrially used glasses, which usually takes 24 hours or more. This is desirable.

本発明は、ガラスをその粘度がioooポイズを越えな
いような温度にもたらしかつガラス中に存在する少なく
とも1種類のガス発生剤の分解でガスを発生する、ガラ
スを均質化しかつ(又は)清澄する方法であって、ガス
発生速度を、ガラスの全体積のあらゆる箇所でガスが発
生しかつガラスの容積が少なくとも15倍に増加するよ
うな速度にし、そしてその後ガラスの粘度を、発泡が静
まってガスのないガラスが出来上るまで1000ポイズ
を越えない値に維持することを特徴とする方法を提供す
るものである。
The present invention involves homogenizing and/or refining the glass by bringing it to a temperature such that its viscosity does not exceed iooo poise and generating gas by decomposition of at least one gas generant present in the glass. The gas generation rate is such that gas is generated throughout the entire volume of the glass and the volume of the glass increases by a factor of at least 15, and the viscosity of the glass is then adjusted to such a rate that the gas evolution subsides and the gas The present invention provides a method characterized in that the value is maintained at a value not exceeding 1000 poise until a glass free of poise is obtained.

発泡をもたらすため、処理すべきガラス材料中に1種以
上のガス発生剤( gas generationa
gent)又はガス発生起泡剤(gasogenic
foamingagents)、即ち所要温度でガスを
放出する物質が混入される。
One or more gas generators are added to the glass material to be treated in order to effect foaming.
gent) or gasogenic foaming agent (gasogenic
foaming agents), ie substances that release gas at the required temperature, are mixed in.

実際、この目的のために硫酸ソーダのような通常の清澄
剤の使用が有利であるが、それはこのような精製剤で、
周知のガラス製造法の場合と同様、光学的に良品質のガ
ラスが得られるからである。
In fact, for this purpose it is advantageous to use the usual clarifying agents, such as sodium sulfate;
This is because, as in the case of well-known glass manufacturing methods, optically good quality glass can be obtained.

このような清澄剤はまた上述の粘度に対応する温度にお
いて、ガラス内部で気泡を形戒するが、一方ガスの大部
分がガラスから除去された後では、残っている気泡をガ
ラスの冷却中(こ再吸収する。
Such fining agents also form air bubbles inside the glass at temperatures corresponding to the above-mentioned viscosities, whereas after most of the gas has been removed from the glass, the remaining air bubbles form during cooling of the glass ( This is reabsorbed.

強力なかつ完全な発泡を実現することが望ましいが、こ
れは一般(こ材料全体fこできるだけ平均的に分布して
、1分間当り少なくとも20℃という温度上昇速度を与
えるような迅速加熱によって達或される。
It is desirable to achieve strong and complete foaming, which is generally achieved by rapid heating, distributed as evenly as possible throughout the material, giving a temperature rise rate of at least 20° C. per minute. Ru.

このためにガラス塊中心部に作用する種々の加熱手段、
例えば沈めたバーナや、ジュール熱を放出する抵抗体を
沈めた電気加熱器、或いはまた高周波誘導が任意に併用
される。
For this purpose, various heating means acting on the center of the glass lump,
For example, a submerged burner, an electric heater with a submerged resistor emitting Joule heat, or also high-frequency induction are optionally used.

非連続溶融工場では、これら強力な加熱手段は、ガラス
塊がなお固体または気体の気泡核の大部分および発泡に
よる容積膨張率が少なくとも15となるのに十分な量の
起泡剤とを含有する状態(こ達した瞬間(こ運転間始さ
れ、この加熱操作は膨張率が少なくとも15、好ましく
は2〜3fこなるまで続けられる。
In discontinuous melting plants, these powerful heating means ensure that the glass mass still contains a large proportion of solid or gaseous cell nuclei and a sufficient amount of blowing agent such that the volumetric expansion due to foaming is at least 15. The moment this condition is reached, the operation is started and the heating operation is continued until the expansion coefficient is at least 15, preferably 2 to 3 f.

この場合、上述の温度は泡の治まるまで保持されるが、
その所要時間は15〜20分である。
In this case, the above temperature is maintained until the bubbles subside;
The required time is 15-20 minutes.

本発明による特{こ精製溶融ガラス製造法を連続式で行
なう工場では、非連続式の場合と同様な加熱手段でガラ
ス塊が上述と同じ延時間加熱されるが、この場合、ガラ
ス塊はその流路に沿って熱処理されながら流れ、流れ位
置および流速{こ従って加熱が調節される。
In a factory that carries out the special refined molten glass manufacturing method according to the present invention in a continuous manner, the glass gob is heated by the same heating means as in the case of the non-continuous method for the same amount of time as described above, but in this case, the glass gob is As the heat treatment flows along the flow path, the flow position and flow rate (thus the heating is adjusted accordingly).

このような連続式製造工場では逆流( returnc
urrents )、即ち下流から上流へ向う流れの発
生を防止することが望ましい。
In such continuous manufacturing plants, there is a
It is desirable to prevent the occurrence of flows from downstream to upstream.

この逆流はしばしば熱起源のもので、ガラス流塊に混合
が起り易く、結果として製品が不揃い{こなる。
This backflow is often of thermal origin and tends to cause mixing in the glass flow mass, resulting in uneven product.

この望ましくない現象を避けるため、例えばガラス塊の
熱処理流路に沿ってchicanes ,堰、狭搾部或
いは滝さえ設けられるが、この場合材料の移動に重力が
重要な役割を果している。
To avoid this undesirable phenomenon, for example chicanes, weirs, constrictions or even waterfalls are provided along the heat treatment flow path of the glass gob, where gravity plays an important role in the movement of the material.

溶融材料の流れる溝の幅は長さに比して小さくすること
で、例えば両者の比を1:5またはそれ以下にすること
が有利である。
It is advantageous for the width of the groove through which the molten material flows to be small compared to its length, for example in a ratio of 1:5 or less.

また、溝を流れる材料の厚さもパラメータとして重要で
ある。
The thickness of the material flowing through the groove is also an important parameter.

後述する実施例における溝を流れるガラス材料の厚さは
4〜7CrfLである。
The thickness of the glass material flowing through the grooves in the examples described below is 4 to 7 CrfL.

大型装置の場合、溝の側壁は膨張時の材料の厚さに十分
なように、かつまた逆流の生じないように、10〜20
cm,或いはそれ以上の高さfこすることが適当である
For large devices, the side walls of the groove should be 10 to 20 mm thick, sufficient for the thickness of the material during expansion, and also to avoid backflow.
It is appropriate to rub at a height f of cm or more.

発泡が同時にガラス塊の厚さ全体に行なわれるには、ガ
ラス塊に未溶融物質の固体粒子、または小さな気泡とい
った上述の発泡を導き得る核の大部分を含むことが有利
である。
In order for the foaming to take place simultaneously over the entire thickness of the glass gob, it is advantageous for the glass gob to contain a large proportion of the nuclei that can lead to the above-mentioned foaming, such as solid particles of unfused material or small air bubbles.

外部から添加する核としては例えばガラスぐず、特に色
つきのものが適当である。
For example, glass waste, especially colored ones, is suitable as the externally added core.

本発明による方法はガス発生起泡剤、好ましくは起泡核
が処理すべきガラス塊中に存在することを必要とするも
ので、これは特に非常に粗状態に作られた溶融ガラスに
良好{こ適用される。
The process according to the invention requires that a gas-generating foaming agent, preferably foaming nuclei, be present in the glass mass to be treated, which is particularly good for molten glass produced in a very coarse state. This applies.

炭酸カルシウムやドロマイトからの1〜2間粒度の小粒
は清澄槽中の溶融液に添加された場合、発泡期の持続時
間である約15分が経過した時Gこは完全に溶けて消え
ることが認められている。
When small grains from calcium carbonate or dolomite with a particle size between 1 and 2 are added to the melt in a clarifier, they will completely dissolve and disappear after about 15 minutes, which is the duration of the foaming phase. It recognized.

かくして本発明の方法の場合、高品質のガラス材料塊を
使用する必要がなく、他力ガラス工業では通常用いられ
ていないような高い熱出力をもつ溶融手段を使用するこ
とができ、ざらに材刺の滞在時間が短かくてすみ、上述
と同じ利点が得られる。
Thus, in the case of the method of the present invention, it is not necessary to use high-quality bulk glass material, melting means with high heat outputs not normally used in the glazing industry can be used, and the process can be carried out in a rough manner. The residence time of the barbs is short and the same advantages as mentioned above are obtained.

本発明によるガラス製造法ではガラス化すべき出発材料
を団塊化処理して用いることが望ましい。
In the glass manufacturing method according to the present invention, it is desirable to use the starting material to be vitrified after agglomeration treatment.

この団塊化処理の効果として、ガラス化される材料は溶
融されるに先立って予熱を受けることになる。
The effect of this agglomeration process is that the material to be vitrified is preheated prior to being melted.

この予熱は材料を発抱温度以下に保ちながら短時間に強
力な伝熱を行なうのが有利である。
This preheating advantageously provides intense heat transfer in a short period of time while keeping the material below the onset temperature.

これによって、未溶融材料や気泡の相当部分がガラス塊
に保有され、次段階の発泡に役立つ。
This retains a significant portion of the unmelted material and air bubbles in the glass gob, which is useful for the next step of foaming.

団塊化処理した出発材料のこの迅速な加熱は、種々の手
段によって、特に粉末化した材料に、所定温度に調節さ
れ高速度で噴射される。
This rapid heating of the agglomerated starting material can be achieved by various means, especially injected into the powdered material at a controlled temperature and at high velocity.

大きい熱交換能を有する高熱ガスを作用させることによ
って実現される。
This is achieved by using high-temperature gas with a large heat exchange capacity.

材料粒粉はできれは直接高熱ガス流へ導入し、加熱され
るべき材料に関してガスの速度を最高に増大するのが良
く、加熱ざれるべき材料は薄い層としてゆっくりと流す
のが有利である。
The material granules are preferably introduced directly into the hot gas stream to maximize the velocity of the gas with respect to the material to be heated, and it is advantageous for the material to be heated to flow slowly in a thin layer. .

これは高熱ガスを材料粉粒の落下する傾斜面に対しほぼ
垂直な方向に噴射することによって得られる。
This can be achieved by injecting high-temperature gas in a direction substantially perpendicular to the slope on which the material particles fall.

粒粉層はこの傾斜面に容易に粘着し、従って非常に急速
に(約数分間で)上述したようなガラス塊状態にもたら
されるが、これは特に全発泡処理(total fo
rm1ng treatment) に適している。
The powder layer easily sticks to this inclined surface and is therefore brought very quickly (in about a few minutes) to the glass lump state described above, especially in the total foam process.
rm1ng treatment).

薄層での溶融の行なわれる表面としては、サイクロンの
内壁、溶融ガラス塊を除去するためのレーキを付備した
回転ドラム、或いはガラス塊がその形或するにつれて流
れる傾斜面が良い。
The surface on which the melting takes place in a thin layer may be the inner wall of a cyclone, a rotating drum equipped with a rake for removing the molten glass gob, or an inclined surface along which the glass gob flows as it takes its shape.

この表面を流れる流速は、表面の角度、溶融塊の粘度に
影響を与える温度、従ってこの表面への粒粉物質の粘着
或いはガスジェットの方向や温度によって調節可能であ
る。
The flow velocity over this surface can be adjusted by the angle of the surface, the temperature which influences the viscosity of the molten mass, and thus the adhesion of the granular material to this surface or the direction and temperature of the gas jet.

次に杢発明を実施例につき添付図面Qこより詳細に説明
する。
Next, the present invention will be explained in detail with reference to the accompanying drawings Q with reference to embodiments.

第1図は本発明による装置の一実施例を示す。FIG. 1 shows an embodiment of the device according to the invention.

溝1では溶融ガラス材料が図の右から左方へ流れその間
に発泡が行なわれた後、均質化し清澄された溶融ガラス
の除去が行なわれる。
In the groove 1, the molten glass material flows from the right to the left in the figure, and after foaming occurs during the flow, the homogenized and clarified molten glass is removed.

清澄溝はその断面図を第2図に示したが、ロジウムを1
0%含有する0.7山厚さの白金合金シートで作られて
いる。
The cross-sectional view of the fining groove is shown in Figure 2.
It is made of platinum alloy sheet with a thickness of 0.7 mounds containing 0%.

清澄溝の長さは1.5m,幅およひ深さはそれぞれ15
(mである。
The length of the clarification groove is 1.5m, and the width and depth are each 15m.
(It is m.

清澄溝の両端1こある端子2は電圧がO〜10ボルトに
調節でき、出力が25牌(最高2 5 0 OA)のA
C発電機3から電流の供給を受ける。
Terminal 2, which has one terminal at each end of the clearing groove, can adjust the voltage from O to 10 volts, and has an output of 25 tiles (maximum 250 OA).
Receives current supply from C generator 3.

両端子2は厚さ10山、長さ20cm、高さ10Cr/
lの白金/ロジウム合金で作られたプレートである。
Both terminals 2 have a thickness of 10 threads, a length of 20 cm, and a height of 10 Cr/
It is a plate made of l platinum/rhodium alloy.

両端子板は、循環水(この設備については図示せず)g
こよって冷却される2個のあご4間に把持され、そして
電流用リード線5が固定されている。
Both terminal boards are equipped with circulating water (this equipment is not shown)
It is held between the two jaws 4 which are thus cooled, and a current lead wire 5 is fixed.

溝はその底に溶融ガラスを取出すための導管6が溶接に
より取付けられており、導管6を覆う絶縁管上{こ巻か
れた白金/ロジウム合金製抵抗線【こよって加熱される
A conduit 6 for taking out the molten glass is attached to the bottom of the groove by welding, and a platinum/rhodium alloy resistance wire wound on an insulating tube covering the conduit 6 is heated thereby.

白金/ロジウム合金針8を備える弁(こよって導管6の
下端を漸次閉塞し得る。
A valve with a platinum/rhodium alloy needle 8 (thus allowing the lower end of the conduit 6 to be progressively occluded).

溝中には、導管6の付近で上流にやはり白金/ロジウム
合金からなる障壁が溝の土壁に溶接され、溝底から20
mmの高さまではガラス溶融物が自由に流れるよう通路
9aが形e,されている。
In the trench, a barrier also made of platinum/rhodium alloy is welded to the soil wall of the trench upstream near the conduit 6, and 20 mm from the bottom of the trench.
The channel 9a is shaped so that the glass melt flows freely up to a height of 1.0 mm.

溝の他端側には白金/ロジワム合金プレートからなる抵
抗体10が沈められている。
A resistor 10 made of a platinum/Rodium alloy plate is sunk in the other end of the groove.

これは厚さ0. 7 mm,幅が20cm.あり、溝の
内部プロファイルにおよそ従うようにU字状に曲げられ
ている。
This thickness is 0. 7 mm, width 20 cm. It is bent in a U-shape to approximately follow the internal profile of the groove.

この抵抗体の下端部には規則的に分布して孔が穿設され
ており、これらの寸法は、電流の通過幅を約25%減じ
、放散される電力を局部化するとともに、ガラス塊の発
泡期間中における混合を改良するのに役立つよう考慮さ
れている。
The lower end of this resistor is drilled with regularly distributed holes, the dimensions of which reduce the width of the current passage by about 25%, localize the dissipated power, and reduce the size of the glass block. It is considered to help improve mixing during the foaming period.

沈められている抵抗体10にはAC発電機(電圧2〜3
ボルト、可調節:電力5毘)一第2図−から電流が供給
される。
An AC generator (voltage 2 to 3
Volts, adjustable: power 5) - Current is supplied from Figure 2-.

精製溝1はアルミナレンガと非密封絶縁レンガと交互に
配置されてできた絶縁壁12〜12aで囲まれる。
The refining groove 1 is surrounded by insulating walls 12 to 12a made of alternating alumina bricks and unsealed insulating bricks.

非密封絶縁レンガは溝に沿って流れる材料中の温度分布
をより良好に制御するため熱を制御可能に漏れさせるの
に役立つ。
The unsealed insulating bricks serve to controllably leak heat to better control the temperature distribution in the material flowing along the grooves.

清澄溝1へは、その上端から、溶融炉13で形成された
溶融ガラス材料が傾斜ベッド15を備える導管14を通
って供給される。
From its upper end, the fining channel 1 is fed with molten glass material formed in a melting furnace 13 through a conduit 14 with an inclined bed 15 .

溶融炉の底もやはり傾斜して作られている。The bottom of the melting furnace is also made sloped.

底(15および16)の下側に複数個の鋼管17が装置
の対称面に垂直方向1こ配置されている。
Below the bottom (15 and 16) a plurality of steel tubes 17 are arranged in one direction perpendicular to the plane of symmetry of the device.

これら鋼管17には、底の温度を調節するための流速を
制御できる冷却液が通っている。
These steel pipes 17 carry a coolant whose flow rate can be controlled to adjust the temperature at the bottom.

導管14および炉13の天井壁18および19は、それ
それ絶縁レンガで覆われている。
The conduit 14 and the ceiling walls 18 and 19 of the furnace 13 are each covered with insulating brick.

炉13および導管14は、1つlこは天井壁を貫通して
対応する底に垂直に向うガスバーナ20によって、第2
には炉の煙突底22を貫くバーナで、その火焔が煙突2
2を通って底16に導入されるガラス化性材料粉粒の落
下する帯域に向うように方向付けられたガスバーナ21
によって加熱される。
The furnace 13 and the conduit 14 are connected to a second one by a gas burner 20, one of which passes through the ceiling wall and points perpendicularly to the corresponding bottom.
There is a burner that penetrates the chimney bottom 22 of the furnace, and the flame flows into the chimney 2.
a gas burner 21 oriented towards the falling zone of the vitrifiable material particles introduced through 2 into the bottom 16;
heated by.

これらバーナ{こは、強力なものとして周知の型の、即
ちガスの噴射速度が用いられる燃料混合物の爆燃(de
flagaration)速度より大きく、かつ従って
火焔が遅延して天井壁で作られた燃焼室で燃焼する型の
ものが用いられる。
These burners are of a type known to be powerful, i.e. the gas injection velocity is used to deflagrate the fuel mixture.
A type of combustion engine is used in which the combustion speed is higher than the fragration velocity, and the flame is therefore delayed and burns in a combustion chamber formed by the ceiling wall.

これらバーナは、例えは混合器(図示せず)からプロパ
ン、空気、および/または酸素の混合物を供給され、■
時間に600,000カロリーの熱量を発生する。
These burners are supplied with a mixture of propane, air and/or oxygen, for example from a mixer (not shown);
Generates 600,000 calories per hour.

高熱ガスは煙突22を下から上方へ逃げて熱交換器23
へ入り、同熱交換器内を予め団塊化されて重力により落
下するガラス材料混合物と向流的に流れる。
The high-temperature gas escapes from the bottom up through the chimney 22 and into the heat exchanger 23.
The glass material mixture flows countercurrently through the heat exchanger with the previously agglomerated glass material mixture falling by gravity.

熱交換器から排出されるガスと煙突22から側路24を
通って直接排出されるガスとは粉塵を除去するためサイ
クロンに送られる。
The gases discharged from the heat exchanger and the gases discharged directly from the chimney 22 through the bypass 24 are sent to a cyclone to remove dust.

ここからのガスの排出は通風機26により行なわれる。Gas is discharged from here by a ventilator 26.

熱交換器23は耐熱鋼で作られており、第1図に示すよ
うに、粉末状熱縁材料、例えば珪藻士を混入した二重壁
からなっている。
The heat exchanger 23 is made of heat-resistant steel and, as shown in FIG. 1, is double walled with a powdered thermal edge material, such as diatomaceous material.

団塊化されたガラス化すべき出発材料は熱交換器23で
予熱された後、ドラム式配分器27で炉に導入される。
The agglomerated starting material to be vitrified is preheated in a heat exchanger 23 and then introduced into the furnace in a drum distributor 27.

この場合、出発材料の炉への供給速度は炉の回転速度に
よって調節される。
In this case, the feed rate of the starting material to the furnace is regulated by the rotational speed of the furnace.

次に上述した均質化および/または清澄装置の溶融およ
び清澄運転について実施例をもって説明する。
Next, melting and clarification operations of the above-mentioned homogenization and/or clarification apparatus will be explained using examples.

この運転には、押出しプレスによって直径7mmにコン
パクト化されたリボンを、上述の団塊化された出発材料
として用いた。
For this run, a ribbon compacted to a diameter of 7 mm by an extrusion press was used as the agglomerated starting material described above.

実施例 ガラス製品90kgを得べく装入したガラス化される材
料の組戊は次の通りである。
Example The composition of the materials to be vitrified to obtain 90 kg of glass products is as follows.

砂(250μm) 60 ky炭酸カ
ルシウム( 1 0 0 μm) 8.5k9
ド07イト(<lim) 1 4.5
kg長石( 5 0 0 μm) 5.5
kg高密度(dense)炭酸ソーダ 6.8
kg苛性ソーダ溶液(50%水酸化ソーダ) 20.
2kg粉末硫酸ソーダ 0. 9
kg粒粉は、通風式電気炉中を250゜Cで通過させ
て乾燥し、湿気を吸わないように保蔵されるが、この場
合特別な注意は必要ない。
Sand (250 μm) 60 ky Calcium carbonate (100 μm) 8.5k9
Do07ite (<lim) 1 4.5
kg feldspar (500 μm) 5.5
kg dense carbonated soda 6.8
kg caustic soda solution (50% soda hydroxide) 20.
2kg powdered sodium sulfate 0. 9
The kg powder is dried by passing it through a ventilated electric oven at 250° C. and stored without taking up moisture, in which case no special precautions are required.

粒粉は冷たいままで熱交換器23へ上部から供給され、
漸次加熱されながら重力により流下し、ドラム式配分機
27付近では500〜600℃に上昇する。
The grain powder is supplied from above to the heat exchanger 23 while being cold,
It flows down by gravity while being gradually heated, and the temperature rises to 500 to 600° C. near the drum type distributor 27.

同時に、熱交換器へは孔28を通って浸入した冷たい空
気と混合し750℃に調節された高熱ガスが導入され、
そこで200℃まで冷却された後、サイクロン25へ吸
引される。
At the same time, high-temperature gas mixed with the cold air that entered through the holes 28 and adjusted to 750°C is introduced into the heat exchanger.
There, after being cooled to 200° C., it is sucked into the cyclone 25.

粒粉は配分器27によつて直接炉底へ各バーナ21から
の火焔が集中する帯域に落ちる。
The powder falls directly to the bottom of the furnace by means of a distributor 27 in a zone where the flames from each burner 21 are concentrated.

そして溶融ガラス塊に急速に変化し、炉底に粘着し、そ
れに沿って毎分10CrrLの平均速度で流れる。
It then rapidly transforms into a molten glass mass that sticks to the furnace bottom and flows along it at an average speed of 10 CrrL/min.

溶融塊の温度は導管底15付近では、その目標としての
1300℃に達し、底15の急傾斜によって迅速に移動
する。
The temperature of the molten mass reaches its target temperature of 1300° C. near the conduit bottom 15 and moves quickly due to the steep slope of the bottom 15.

加熱は清澄溝1の入口まで続けられる。Heating continues up to the entrance of the fining groove 1.

底(15および16)の腐食現象(コロージョンおよび
エロージョン)は、各管17に冷却液を環流させること
により各底の表面温度を約800℃に制限しているので
無視できる程度である。
Corrosion phenomena (corrosion and erosion) on the bottoms (15 and 16) are negligible since the surface temperature of each bottom is limited to about 800° C. by circulating cooling liquid in each tube 17.

他方、炉のこれら帯域の天井壁の温度は約1450℃で
ある。
On the other hand, the temperature of the ceiling walls in these zones of the furnace is approximately 1450°C.

清澄溝1へ落下した溶融ガラスは溝底や側壁との接触、
並びに沈漬電気抵抗体10と接触し、伝導と対流の両作
用によって、さらに急速に加熱され、温度は約1530
’Cに維持される。
The molten glass that falls into the clarification groove 1 comes into contact with the groove bottom and side walls,
It also comes into contact with the submerged electric resistor 10 and is further rapidly heated by both conduction and convection, and the temperature reaches approximately 1530°C.
'C maintained.

例えば毎時間のガラス供給量が52kgの場合、溝壁か
ら放散される電力量は20KVAで、沈漬抵抗体からの
それは4KVAである。
For example, if the hourly glass supply is 52 kg, the amount of power dissipated from the channel walls is 20 KVA and that from the submerged resistor is 4 KVA.

溶融塊は電気抵抗体10の付近を通過する間に急激に熱
せられ、そのため発泡、従って膨張が行なわれ、溶融塊
層の厚さは沈漬電気抵抗体の上流側で約4crfLであ
るのに対して下流側では約14CrI′Lになる。
While the molten mass passes near the electrical resistor 10, it is rapidly heated, resulting in foaming and therefore expansion, even though the thickness of the molten mass layer is approximately 4 crfL upstream of the immersed electrical resistor. On the other hand, on the downstream side, it becomes about 14CrI'L.

沈漬抵抗体10のすぐ下流の溝底で試料を採取検査して
、ガラス塊が完全に泡化しているのが認められた。
A sample was taken and inspected at the bottom of the trench immediately downstream of the immersed resistor 10, and it was found that the glass lump was completely foamed.

抵抗体10の下流で温度が約1520℃である時は、約
1rrLにわたる流動距離−これは約15分間の流動時
間に当る一でほぼ一定である。
When the temperature downstream of resistor 10 is about 1520 DEG C., the flow distance is approximately constant over about 1 rrL - which corresponds to a flow time of about 15 minutes.

次いで10〜15cIrLの流動距離において泡は急速
に治まり、ガラス塊は障壁9の付近で完全に清澄された
ガラスの様相を呈する。
Then, at a flow distance of 10-15 cIrL, the bubbles subside rapidly and the glass mass assumes the appearance of completely clear glass in the vicinity of the barrier 9.

この時の温度は約1450℃に過ぎない。The temperature at this time is only about 1450°C.

障壁の下を通過した清澄ガラスは導管6を通して取出さ
れるが、その際の流速はバルブ8により、溝中の溶融材
料の液位がほぼ一定に保持されるように調節される。
The clarified glass passing under the barrier is removed through conduit 6, the flow rate of which is regulated by valve 8 so that the level of molten material in the channel remains approximately constant.

上述の実施例においては、予熱されよ粒粉材料が溶融炉
の炉底16へ落下してから、この粒粉から清澄ガラスと
して導管6から取出されるまでの所要時間は僅かに約3
0分に過ぎない。
In the embodiment described above, the time required from the time the preheated powder material falls into the bottom 16 of the melting furnace until it is removed from the conduit 6 as clear glass is only about 3.
It's only 0 minutes.

上述の装置は、その寸法を変更することなしに、発泡の
程度を比例的に減ずることによって清澄ガラスの製造速
度を高め得ることが認められた。
It has been found that the apparatus described above can increase the production rate of clear glass by proportionally reducing the degree of foaming, without changing its dimensions.

この場合、ガラス化されるべき材料は上述の組或中、粉
末硫酸ソーダの量を生産ざれるべきガラス100kgに
対して0. 7 kgに減じた。
In this case, the material to be vitrified is in the above-mentioned composition, with an amount of powdered sodium sulfate of 0.000 kg per 100 kg of glass to be produced. It was reduced to 7 kg.

この条件においては、溶融塊の沈漬抵抗10より下流の
初高さは7cIrtに上昇するが、完全膨張後の最高液
位は14crILの高さを維持した。
Under these conditions, the initial height of the molten mass downstream of the submergence resistance 10 rose to 7 cIrt, but the highest liquid level after complete expansion remained at a height of 14 crIL.

これは膨張指数2に当る。This corresponds to an expansion index of 2.

また、温度の上昇経過およびガラス化されるべき材料の
組或(特に硫酸ソーダ含有量)について与えられている
場合は、非連続法または連続法のいずれを選ぼうと、清
澄のために必要な運転継続時間は実質的に変らないこと
を認めた。
Also, given the course of temperature rise and the composition of the material to be vitrified (in particular the sodium sulfate content), whether a discontinuous or continuous process is chosen, the necessary It was acknowledged that there was no substantial change in the duration of operation.

本出願人はさらにまた試験中に発泡が機械的作用、例え
ば超音波発生器によって開始されたり強められたりする
のを認めた。
The Applicant has also observed that during the tests the foaming can be initiated or intensified by mechanical action, for example an ultrasonic generator.

ガラス塊全体にわたって発泡させることで、溶融過程の
促進、溶融ガラスの清澄や均質化が認められるが、これ
ら効果はこれまで知られていなかつたことである。
By foaming the entire glass lump, it has been observed that the melting process is accelerated and the molten glass is clarified and homogenized, but these effects have not been known until now.

発泡過程は種々の組威のガラスに適用でき、かくしてガ
ラス製造工程において時間やエネルギ消費量の著しい節
約、および運転上の融通性が得られる。
The foaming process can be applied to glasses of various strengths, thus providing significant savings in time and energy consumption and operational flexibility in the glass manufacturing process.

第1表〜第■表は本発明の方法によって製造した通常の
5種のガラスの製造例を纒めたものである。
Tables 1 to 2 summarize production examples of five types of ordinary glasses produced by the method of the present invention.

第1表は、これらガラスの分析値を酸化物の重量百分率
で示した。
Table 1 shows the analytical values of these glasses in terms of weight percentage of oxides.

ガラス.41は上述の実施例で溶融して得られたもので
ある。
Glass. No. 41 was obtained by melting in the above example.

第■表は、第I表で示した各種ガラスの製造に適するガ
ラス化されるべき混合物材料の5種の重量組或である。
Table 1 is a set of five weights of mixture materials to be vitrified suitable for the production of the various glasses shown in Table I.

第■表は、ガラス化されるべき材料が相溶融されてから
完全溶融されるまでの処理特性を示している。
Table (1) shows the processing characteristics of the material to be vitrified from mutual melting to complete melting.

第3図および第4図には、ジュール効果によってガラス
を加熱する清澄るつぼを示した。
Figures 3 and 4 show a refining crucible in which glass is heated by the Joule effect.

このるつぼはモリブデン電極を備えており、或種のガラ
ス、例えば例3および4の鉛ガラスには適さないが、経
済的な運転が可能であるという利点を有している。
This crucible is equipped with molybdenum electrodes and has the advantage of being economical to operate, although it is not suitable for certain glasses, such as the lead glasses of Examples 3 and 4.

このるつぼは、内のり寸法が25CrfLの長方形断面
で、長さが2mの耐火溝30からなっている。
This crucible had a rectangular cross-section with an internal dimension of 25CrfL and consisted of a refractory groove 30 with a length of 2m.

下流部は、約5CrIlの上げ底で幅が数のに減じた狭
搾部31を形或し、これにより死角が生じないようにな
っており、かくしてガラスはよどみ帯域を形戊すること
なく分散器33に導かれる。
The downstream part forms a constriction 31 with a raised bottom of about 5 CrIl and whose width is reduced to a few, so that no blind spots are created, so that the glass can pass through the distributor without forming stagnation zones. 33.

この溝の底、側壁および天井壁(図示せず)は、従来の
ガラス溶融炉に普通に用いられているのと同様、アルミ
ナと酸化ジルコニウムとをベースとする電気溶融材料で
ある。
The bottom, side walls and ceiling walls (not shown) of this channel are an electrofused material based on alumina and zirconium oxide, similar to that commonly used in conventional glass melting furnaces.

外被34は軽量耐火材料のレンガで作られており、熱絶
縁性に役立っている。
The jacket 34 is made of brick, a lightweight refractory material, and serves as a thermal insulator.

ガラスは溝に沿って流れる間に加熱されるが、この温度
調節は、両図に示すよう(こ、溝の軸に関して対称的に
かつ両側に配列された、それぞれ3crIl幅のプレー
トからなる電極E1〜E6によって行なわれる。
The glass is heated while flowing along the groove, and this temperature regulation is achieved by electrodes E1 each consisting of plates 3crIl wide, arranged symmetrically and on both sides with respect to the axis of the groove, as shown in both figures. ~E6.

電極は各対毎にそれそれ電流を独立的に調節可能な電源
に接続されている。
Each pair of electrodes is connected to a power source whose current can be adjusted independently.

電極はやはりモリブデン製であり、この電極へのリード
線は溝壁を水平に貫通し、そして電極面に正確に垂直に
固着されている。
The electrode is also made of molybdenum, and the leads to this electrode pass horizontally through the groove wall and are fixed exactly perpendicular to the electrode surface.

分散器33上のガラスの厚さは、電極が完全に沈められ
、それによって酸化を防止できるよう十分なものにして
ある。
The thickness of the glass on the diffuser 33 is sufficient so that the electrodes are completely submerged, thereby preventing oxidation.

電流リード線はその高熱径路を還元性電囲気、例えば都
市ガスのそれで覆うことによって保護される。
The current leads are protected by covering their hot paths with a reducing electric field, for example that of city gas.

ガラスが底および側壁に沿って電極の周りを自由に通過
できるようになっている。
The glass is allowed to pass freely around the electrodes along the bottom and side walls.

かくして1電極から他の電極への流れによって活発な熱
対流が起り、これは大きな縦方向の流れを抑え、横力向
:Cの流れによって溶融魁の均質化に好影響を及ぼす。
Thus, the flow from one electrode to the other causes active thermal convection, which suppresses the large longitudinal flow and favorably influences the homogenization of the molten material due to the flow in the transverse force direction: C.

この結果、ガラス塊の”ピストン流れ″として知られる
均一な流れが実現される。
This results in a uniform flow of glass gobs known as "piston flow".

各点T1〜T7で温度測定が行なわれる。Temperature measurements are taken at each point T1-T7.

第■表は、上述の実施例の場合と同様な運転条件、即ち
同様な組或の材料を予備溶融して得た溶融ガラス塊が1
250〜1300°Cでるつぼの点T1 へ約50kg
/時の流速で供給された場合に適用された電力供給量お
よび温度状態を纒めたものである。
Table 2 shows that the molten glass gob obtained by pre-melting the same composition and material under the same operating conditions as in the above-mentioned example was 1
Approximately 50 kg to point T1 of the crucible at 250-1300°C
The power supply amounts and temperature conditions applied when supplied at a flow rate of /hour are summarized.

本発明の実施の態様は次の通りである。The embodiments of the present invention are as follows.

1.ガラス発生速度がガラスの容積を2〜3倍{こする
ような速度であることを特徴とする特許請求の範囲1に
述べた方法。
1. 2. The method according to claim 1, wherein the glass generation rate is such that the volume of the glass is rubbed 2 to 3 times.

2.ガス発生剤がガラス材料に溶解することを特徴とす
る前記第1項に述べた方法。
2. The method described in item 1 above, characterized in that the gas generating agent is dissolved in the glass material.

3.ガス発生剤が砒素、アンチモニー、硫黄マf.=は
ハロゲンを含有する化合物であることを特徴とする前記
第2項{こ述べた方法。
3. The gas generating agent is arsenic, antimony, sulfur f. = is a halogen-containing compound {the method described in item 2 above).

4.泡を形或するガスの溶融材料への溶解度が温度の低
下に従って増大することを特徴とする特許請求の範囲1
および前記諸項の何れか1項に述べた方法。
4. Claim 1 characterized in that the solubility of the gas forming the bubbles in the molten material increases as the temperature decreases.
and the method described in any one of the preceding items.

5.溶融塊が上記温度まで毎分少なくとも20’Cの割
で加熱されることを特徴とする特許請求の範囲1および
前記諸項の倒れか1項に述べた方法。
5. 2. A method as claimed in claim 1, characterized in that the molten mass is heated to said temperature at a rate of at least 20'C per minute.

6,溶融塊がその全体に分布した固体または気体の起泡
核を含有することを特徴とする特許請求の範囲1および
前記諸項の如れか1項に述べた方法。
6. The method as claimed in claim 1 and any one of the preceding claims, characterized in that the molten mass contains solid or gaseous foaming nuclei distributed throughout it.

7.起泡核が溶融塊全体に毎一当り少なくとも10個の
密度で分布されていることを特徴とする前記第4項に述
べた方法。
7. 4. A method according to item 4, characterized in that the foaming nuclei are distributed throughout the molten mass at a density of at least 10 foaming nuclei per molten mass.

8,固体または気体の起泡核を含有するガラス材料が固
体のガラス材料混合物を均一に加熱することによって祝
速に溶融することによって製造されることを特徴とする
前記第6項または第7項に述べた方法。
8. Item 6 or 7 above, wherein the glass material containing solid or gaseous foaming nuclei is produced by uniformly heating a solid glass material mixture and melting it at a rapid rate. The method described in.

9.ガラス材料混合物の加熱による溶融が10分以内に
迅速に行なわれることを特徴とする前記第8項に述べた
方法。
9. 9. The method according to item 8, characterized in that the glass material mixture is rapidly melted by heating within 10 minutes.

10.固体のガラス化される材料がその戊分の粒粉また
は団塊を含有し、かつその或分が加熱中に凝離( se
gregat ion) を起さないものであること
を特徴とする前記第8項または第9項に述べた方法。
10. The solid material to be vitrified contains part of its grains or agglomerates, and some of them segregate during heating.
9. The method described in item 8 or 9 above, characterized in that the method does not cause gregation.

11 ガラス化すべき材料が粒粉または団塊の最小寸
法の厚さを有する溶融材料の厚さを形或するように溶融
されることを特徴とする前記第10項に述べた方法。
11. A method according to item 10 above, characterized in that the material to be vitrified is melted to form a thickness of molten material having the thickness of the smallest dimension of the granules or nodules.

12.溶融ガラス質材料が溝に沿い、逆流を実質的tこ
起すことなしに流れることを特徴とする特許請求の範囲
1およひ前記諸項の創れかの項に述べた方法。
12. A method as claimed in claim 1 and any of the preceding claims, characterized in that the molten vitreous material flows along the groove without substantial backflow.

13 直径が0. 5 〜1 cx,長さが1〜5CT
lの顆粒からなり、次の組成(ガラス90kgについて
の重量): 砂(250μm) 60 kg炭酸カルシ
ウム(100μm) 8.5kgドO?イh (<
1mm.) 1 4.5kg長石(50
0μm) 5.5ky高密度(dense)
炭酸ソーダ 6. 8 kg苛性ソーダ溶液(50
%) 20.2kg粉末硫酸ソーダ
0. 9 kgを有するガラス材料混合物を約6
分間で 1300℃に加熱し、ついで毎分30℃の割で1300
℃から1500℃へ加熱して、得られたガラス塊を泡と
して膨張させ、そしてガラス塊の温度を1500℃に精
製ガラスの分離が達せられるまで約10分間維持される
ことを特徴とする特許請求の範囲1および前記諸項の倒
れか1項Qこ述べた方法。
13 Diameter is 0. 5 to 1 cx, length 1 to 5 CT
l of granules with the following composition (weight for 90 kg of glass): Sand (250 μm) 60 kg Calcium carbonate (100 μm) 8.5 kg DoO? Ih (<
1mm. ) 1 4.5kg feldspar (50
0μm) 5.5ky high density (dense)
Carbonated soda 6. 8 kg caustic soda solution (50
%) 20.2kg powdered sodium sulfate
0. Approximately 6 kg of glass material mixture with 9 kg
Heat to 1300℃ per minute, then heat to 1300℃ at a rate of 30℃ per minute.
C. to 1500.degree. C. to expand the resulting glass gob as bubbles, and the temperature of the glass gob is maintained at 1500.degree. C. for about 10 minutes until separation of the refined glass is achieved. Range 1 and the fall of the above items 1 Q The method described above.

14添付図面の第1図および第2図、または第3図およ
び第4図について前述したと実質的に同様な、ガラス材
料溶融塊の均質化および/または情澄法。
14. A method for homogenizing and/or clarifying a molten mass of glass material substantially as described above with respect to FIGS. 1 and 2 or 3 and 4 of the accompanying drawings.

15.実施例について上述したと実質的に同様なガラス
材料溶融塊の均質化および/または清澄法。
15. A method for homogenizing and/or refining a molten mass of glass material substantially as described above for the Examples.

16水平溝が、溶融材料中に沈めて電流が溶融材料を通
して流れるよう使用されたモリブデン電極(複数個)を
備え、これら電極が水平溝の側壁に沿い間隔を置いて配
置されたことを特徴とする特許請求の範囲2に述べた装
置。
16, wherein the horizontal groove comprises molybdenum electrode(s) submerged in the molten material and used to allow electrical current to flow through the molten material, the electrodes being spaced apart along the sidewalls of the horizontal groove. An apparatus according to claim 2.

17,添付図面の第1図および第2図、或いは第3図お
よび第4図について上述したと実質的に同様な、溶融ガ
ラス材料の精澄および/または均質化装置。
17. Apparatus for refining and/or homogenizing molten glass material substantially similar to that described above with respect to FIGS. 1 and 2 or 3 and 4 of the accompanying drawings.

18. !4?許請求の範囲1および前記第1項〜第1
5項の何れか1項に述べた方法により、或いは特許請求
の範囲2および前記第16項に述べた装置によって清澄
および/または均質化されたガフス。
18. ! 4? Claim 1 and Items 1 to 1 above
Gaffus clarified and/or homogenized by the method as defined in any one of clauses 5 or by the apparatus as defined in claim 2 and above in clause 16.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置を具備した施設の一部縦断面
図を含む概略図、第2図は第1図のn−■線に沿った横
断面図、第3図は変型実施例の一部平面図および第4図
は第3図のIV−IV線に沿った縦断面図である。 1・・・・・・溝、3・・・・・・AC発電機、6・・
・・・・溶融ガラスをとりだす導管、10・・・・・・
抵抗体、1 2 ,1 2a・・・・・・絶縁壁、13
・・・・・・溶鉱炉、14・・・・・・溶鉱炉で形威さ
れた溶融ガラス料の導管、23・・・・・・熱交換器、
26・・・・・・通風機。
Fig. 1 is a schematic diagram including a partial vertical cross-sectional view of a facility equipped with the device according to the present invention, Fig. 2 is a cross-sectional view taken along the line n-■ of Fig. 1, and Fig. 3 is a schematic diagram of a modified embodiment. A partial plan view and FIG. 4 are longitudinal sectional views taken along the line IV-IV in FIG. 3. 1...Groove, 3...AC generator, 6...
...Conduit for taking out molten glass, 10...
Resistor, 1 2, 1 2a...Insulating wall, 13
... Blast furnace, 14 ... Conduit for molten glass material formed in the blast furnace, 23 ... Heat exchanger,
26... Ventilator.

Claims (1)

【特許請求の範囲】 1 ガラスをその粘度が1000ポイズを越えないよう
な温度{こもたらしかつガラス中に存在する少なくとも
1種類のガス発生剤の分解でガスを発生する、ガラスを
均質化しかつ(又は)清澄する方法において、ガス発生
速度を、ガラスの全体積のあらゆる箇所でガスが発生し
かつガラスの容積が少なくとも1.5倍に増加するよう
な速度Qこし、そしてその後ガラスの粘度を、発泡が静
まってガスのないガラスが出来上るまで1000ポイズ
を越えない値をこ維持することを特徴とする方法。 2 ガラスをその粘度がioooポイズを越えないよう
な温度にもたらし、ガラス中に存在する少なくとも1種
類のガス発生剤の分解でガスを発生し、そのガスの発生
速度をガスがガラスの全体積のあらゆる箇所で発生しか
つガラスの容積が少なくとも1.5倍に増加するような
速度とし、かつその後ガラスの粘度を、発泡が静まって
ガスのないガラスが出来上るまで1000ポイズを越え
ない値に維持するために、実質的に水平で電気的に加熱
可能な溝1,30と、該溝内のガラス質材料に沈漬可能
で該ガラス質材料の温度を少なくとも20℃毎分の速度
で上昇せしめ得る電気的加熱装置10,E1,E2と、
前記ガラス材料の戊分を初溶融して同材料溶融物の薄層
を形或する炉を含む、前記溝の一端をこ前記ガラス材料
を供給する装置13とを、含んで或り、前記炉が、傾斜
した底16,17を有するダクト14と該傾斜底pこ向
けて火焔を放つべく設置した少なくとも1個の燃料バー
ト20とを有し、前記炉の前記ダクトが、粒状又は団塊
状の前記ガラス質材料の戊分を重力で供給する供給サイ
ロに接続されており、かつ、少なくとも一個の燃料バー
ナ21が、前記ガラス質材料の前記供給サイロから前記
炉の前記ダクトへ落下する経路に火焔を向けられている
ことを特徴とする、ガラスを均質化し清澄する装置。
[Scope of Claims] 1. The glass is heated to such a temperature that its viscosity does not exceed 1000 poise and gas is generated by decomposition of at least one gas generating agent present in the glass, the glass is homogenized and ( or) in a method of fining, the rate of gas evolution is such that gas is evolved everywhere in the total volume of the glass and the volume of the glass increases by at least 1.5 times, and then the viscosity of the glass is adjusted to A method characterized by maintaining the value not exceeding 1000 poise until the bubbling subsides and a gas-free glass is completed. 2 Bringing the glass to a temperature such that its viscosity does not exceed iooo poise, generating gas by decomposition of at least one type of gas generating agent present in the glass, and controlling the rate of gas generation so that the gas covers the total volume of the glass. The rate is such that bubbles occur everywhere and the volume of the glass increases by at least 1.5 times, and then the viscosity of the glass is maintained at a value not exceeding 1000 poise until the bubbling subsides and a gas-free glass is obtained. a substantially horizontal, electrically heatable groove 1, 30, immersable in the vitreous material in said groove and raising the temperature of said vitreous material at a rate of at least 20°C per minute; electrical heating device 10, E1, E2 to obtain;
a device 13 for supplying the glass material to one end of the groove, the furnace comprising a furnace for initially melting a portion of the glass material to form a thin layer of the molten material; The furnace has a duct 14 with an inclined bottom 16, 17 and at least one fuel bar 20 arranged to emit a flame towards the inclined bottom p, the duct of the furnace containing granular or nodular material. The supply silo is connected to a feed silo which feeds the fraction of vitreous material by gravity, and at least one fuel burner 21 is connected to a supply silo which feeds the vitreous material by gravity, and at least one fuel burner 21 is arranged to provide a flame in the path of the drop of the vitreous material from the supply silo to the duct of the furnace. A device for homogenizing and fining glass, characterized in that it is directed at
JP50098167A 1974-08-14 1975-08-14 Method and apparatus for homogenizing and fining glass Expired JPS5837255B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7428188A FR2281902A1 (en) 1974-08-14 1974-08-14 ADVANCED GLASS MANUFACTURING

Publications (2)

Publication Number Publication Date
JPS5145113A JPS5145113A (en) 1976-04-17
JPS5837255B2 true JPS5837255B2 (en) 1983-08-15

Family

ID=9142396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50098167A Expired JPS5837255B2 (en) 1974-08-14 1975-08-14 Method and apparatus for homogenizing and fining glass

Country Status (15)

Country Link
JP (1) JPS5837255B2 (en)
AT (1) AT366014B (en)
BE (1) BE832408A (en)
CA (1) CA1073213A (en)
CH (1) CH595291A5 (en)
DE (1) DE2535937C2 (en)
DK (1) DK368075A (en)
ES (1) ES440243A1 (en)
FR (1) FR2281902A1 (en)
GB (1) GB1514317A (en)
IT (1) IT1041566B (en)
LU (1) LU73202A1 (en)
NL (1) NL177682C (en)
NO (1) NO141749C (en)
SE (1) SE413397B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211436A (en) * 1985-03-14 1986-09-19 鹿島建設株式会社 Synthetic joist slab

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110098A (en) 1974-08-14 1978-08-29 Saint-Gobain Industries Molten glass refining apparatus
DE2703223B2 (en) * 1977-01-27 1981-02-05 Sorg - Gmbh & Co Kg, 8770 Lohr Glass melting furnace
JPS5526660U (en) * 1978-08-09 1980-02-21
EP0015794B1 (en) * 1979-02-22 1984-05-30 Rhone-Poulenc Chimie De Base Process for obtaining a glass composition based on metallic silicates and having a low melting point and improved refining properties
FR2530611A1 (en) * 1982-07-26 1984-01-27 Saint Gobain Rech Process and device for melting inorganic, especially vitrifiable, materials.
FR2551746B1 (en) * 1983-09-14 1986-09-05 Saint Gobain Vitrage PROCESS AND DEVICE FOR ELABORATING MOLTEN GLASS, AND APPLICATIONS THEREOF
EP0137881B1 (en) * 1983-10-14 1988-03-09 Isover Saint-Gobain Method and apparatus for melting glassy mineral materials
US4596171A (en) * 1983-10-19 1986-06-24 Gerber Garment Technology, Inc. Method and apparatus for ultrasonically cutting sheet material
EP0176898B1 (en) * 1984-10-01 1988-11-30 Ppg Industries, Inc. Method and apparatus for inductively heating molten glass or the like
ATE79101T1 (en) * 1986-10-02 1992-08-15 Ppg Industries Inc METHOD AND DEVICE FOR REFINING GLASS OR SIMILAR IN SEVERAL STAGES.
FR2774085B3 (en) 1998-01-26 2000-02-25 Saint Gobain Vitrage PROCESS FOR MELTING AND REFINING VITRIFIABLE MATERIALS
FR2815341B1 (en) * 2000-10-18 2003-08-29 Clariant France Sa COMPOSITIONS FOR THE MANUFACTURE OF GLASS WITH REDUCED QUANTITY OF CARBONATES AS WELL AS A REFINING SYSTEM AND PROCESS FOR PREPARING GLASS COMPOUNDS
JP4425536B2 (en) * 2001-10-30 2010-03-03 株式会社吉野工業所 Container, thermoforming apparatus and thermoforming method thereof
DE10348072B4 (en) * 2003-10-13 2006-01-05 Schott Ag Device for refining a glass melt
US9096452B2 (en) * 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
FR2991759B1 (en) * 2012-06-12 2014-06-20 Saint Gobain Isover GLASS FUSION INSTALLATION
EP2903941A4 (en) 2012-10-03 2016-06-08 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
CN105776819B (en) * 2016-04-27 2018-07-31 巨石集团有限公司 A kind of cell furnace with high melting rate
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859120A (en) * 1971-11-26 1973-08-18
JPS499404A (en) * 1972-05-25 1974-01-28
JPS4962519A (en) * 1972-06-09 1974-06-18

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB624002A (en) * 1946-07-23 1949-05-26 Juan Finger Improvements relating to electric furnaces for the manufacture of glass or the like
US2523030A (en) * 1948-10-30 1950-09-19 Glass Fibers Inc Electric glass furnace
US2593197A (en) * 1949-09-29 1952-04-15 Owens Illinois Glass Co Inclined melter furnace and method of melting glass
DE1017340B (en) * 1953-06-11 1957-10-10 Jenaer Glaswerk Schott & Gen Process for making sounds on glass
NL249907A (en) * 1959-03-28 1900-01-01
US3337324A (en) * 1963-04-30 1967-08-22 Union Carbide Corp Process for melting and refining glass batch
FR2135028B1 (en) * 1971-04-01 1974-09-06 Boussois Souchon Neuvesel Sa
US3819350A (en) * 1972-09-28 1974-06-25 Owens Illinois Inc Method for rapidly melting and refining glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859120A (en) * 1971-11-26 1973-08-18
JPS499404A (en) * 1972-05-25 1974-01-28
JPS4962519A (en) * 1972-06-09 1974-06-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211436A (en) * 1985-03-14 1986-09-19 鹿島建設株式会社 Synthetic joist slab

Also Published As

Publication number Publication date
NO141749C (en) 1980-05-07
SE413397B (en) 1980-05-27
CA1073213A (en) 1980-03-11
NL177682C (en) 1985-11-01
NO752828L (en) 1976-02-17
FR2281902A1 (en) 1976-03-12
BE832408A (en) 1976-02-13
ATA629475A (en) 1981-07-15
LU73202A1 (en) 1976-08-13
ES440243A1 (en) 1977-05-01
NL7509629A (en) 1976-02-17
FR2281902B1 (en) 1978-01-27
CH595291A5 (en) 1978-02-15
JPS5145113A (en) 1976-04-17
GB1514317A (en) 1978-06-14
DE2535937A1 (en) 1976-02-26
AT366014B (en) 1982-03-10
SE7509072L (en) 1976-02-16
DK368075A (en) 1976-02-15
IT1041566B (en) 1980-01-10
NO141749B (en) 1980-01-28
DE2535937C2 (en) 1985-05-09

Similar Documents

Publication Publication Date Title
JPS5837255B2 (en) Method and apparatus for homogenizing and fining glass
US4110097A (en) Method for the manufacture of glass
US4110098A (en) Molten glass refining apparatus
US3337324A (en) Process for melting and refining glass batch
JP4750017B2 (en) Melting and refining in tanks with cooling walls
US2593197A (en) Inclined melter furnace and method of melting glass
US4531960A (en) Glassmaking process and equipment
US11820699B2 (en) Process and apparatus for glass manufacture
US4473388A (en) Process for melting glass
US3592623A (en) Glass melting furnace and method of operating it
CA1086952A (en) Horizontal glassmaking furnace
KR0160313B1 (en) Method for producing glass with lower alkali content
JP5911921B2 (en) Apparatus and method for manufacturing glass
US11919798B2 (en) Gradient fining tank for refining foamy molten glass and a method of using the same
JP2635186B2 (en) Method and apparatus for melting material
JP2004526656A (en) Glass forming batch material melting method
US2975224A (en) Method and apparatus for melting glass
US1953034A (en) Shallow melting tank
US3108149A (en) Method and apparatus for glass melting
US4246432A (en) Method and apparatus for melting frits for inorganic oxidic surface coatings by electric resistance heating
US1874799A (en) Method and apparatus for feeding and melting glass batch
EP2499101B1 (en) Melting method and apparatus
CA1088313A (en) Refining apparatus
JPH11100214A (en) Glass melting furnace
CN207175755U (en) For producing the smelting apparatus of optical glass