JPS5837101A - Generating method for hydrostatic pressure - Google Patents

Generating method for hydrostatic pressure

Info

Publication number
JPS5837101A
JPS5837101A JP13275581A JP13275581A JPS5837101A JP S5837101 A JPS5837101 A JP S5837101A JP 13275581 A JP13275581 A JP 13275581A JP 13275581 A JP13275581 A JP 13275581A JP S5837101 A JPS5837101 A JP S5837101A
Authority
JP
Japan
Prior art keywords
pressure
hydrostatic pressure
uniform
elastic bodies
combining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13275581A
Other languages
Japanese (ja)
Inventor
Takashi Shimaguchi
島口 崇
Hideaki Kanbara
秀明 蒲原
Yuji Yoshitomi
吉富 雄二
Yasukata Tamai
玉井 康方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13275581A priority Critical patent/JPS5837101A/en
Publication of JPS5837101A publication Critical patent/JPS5837101A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only

Abstract

PURPOSE:To generate uniform hydrostatic pressure by laminating and combining in an axial direction elastic bodies of the same quality which differ in hardness, restraining the deformation in a circumferential direction from the outside and applying pressure in the axial direction. CONSTITUTION:A powder molding 4 enclosed with a rubber mold 2 and elastic bodies 3a, 3a' is contained in a cylindrical die 1, and is pressurized with a pressurizing rod 5, whereby hydrostatic pressure is generated. Here, the uniform hydrostatic pressure is obtained by laminating and combining the bodies 3a, 3a' differing in hardness alternately >=2 layers. It is equally avilable to laminate and combine the bodies 3a, 3a' differing in the modulus of longitudinal elasticity alternately in >=2 layers. Thus the uniform hydrostatic pressure is generated.

Description

【発明の詳細な説明】 本発明は弾性体を用い、均一な静水圧力を発生せしめる
方法に係り、特に2種以上の弾性体を組合せることKよ
り、均一な圧力を発生するのに好適な方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of generating uniform hydrostatic pressure using an elastic body, and in particular, a method suitable for generating uniform pressure by combining two or more types of elastic bodies. Regarding the method.

従来、静水圧力発生方法としては、ポンプによる水また
は油を加圧する方法、または気体を高温に加熱し発生す
る膨張力を利用する方法が知られている。静水圧力の発
生方法が最も一般的であるが、加圧ポンプの容量が限定
され、さらに高圧を発生せしめるには大規模な装置が必
要となる。また気体の膨張力を利用した方法は一般には
高温静水圧力発生装置()lIp−1(Ol Illo
Iitaticpresstng )と呼ばれる装置に
より2000Kgf/cnP以上の均一な圧力を得るこ
とができるが、膨張力とし、静水圧力を発生する方法は
第1図に示すように、円筒状金型1内にゴム型2、弾性
体3で包んだ粉末4を収納し、加圧用ロッド5で加圧し
て静水圧力を発生する方法である。この方法はプレス機
のような高荷重を負荷することのできる装置があれば3
〜4000Kgf/;−の圧力を簡単に得ることができ
るという特徴がある。しかし、圧力媒体が水と異シ弾性
体であるため、圧力の分布が一様でない、すなわち完全
な静水圧力とはならない欠点がある。このため、例えば
粉末の成形において部分的に密度が異る等の問題が生じ
る。
Conventionally, known methods for generating hydrostatic pressure include a method of pressurizing water or oil using a pump, or a method of heating gas to a high temperature and utilizing the generated expansion force. The most common method is to generate hydrostatic pressure, but the capacity of a pressurizing pump is limited, and large-scale equipment is required to generate high pressure. In addition, the method using the expansion force of gas is generally a high temperature hydrostatic pressure generator ()lIp-1 (Ol Illo
It is possible to obtain a uniform pressure of 2000 Kgf/cnP or more using a device called Iitatic press. However, the method of generating hydrostatic pressure using expansion force is as shown in FIG. In this method, a powder 4 wrapped in an elastic body 3 is stored and pressurized with a pressurizing rod 5 to generate hydrostatic pressure. This method is possible if you have a device that can apply a high load such as a press.
It has the characteristic that a pressure of ~4000Kgf/;- can be easily obtained. However, since the pressure medium is a heteroelastic body with water, there is a drawback that the pressure distribution is not uniform, that is, perfect hydrostatic pressure is not achieved. For this reason, problems such as partially different densities occur during powder molding, for example.

本発明の目的は、弾性体を圧力媒体として圧力を負荷す
る方法において、2種以上の弾性体を組み合せることK
よシ均一な圧力を付与することができる静水圧力発生方
法を提供することにある。
An object of the present invention is to combine two or more types of elastic bodies in a method of applying pressure using an elastic body as a pressure medium.
It is an object of the present invention to provide a method for generating hydrostatic pressure that can apply a highly uniform pressure.

第1図に示す方法において、単一弾性体に上部よシ荷重
を負荷した場合、金型1の内面に発生する圧力は加圧ロ
ンド面Aと金型底面Bとの拘束された部分で最も高く、
中央に向かい圧力は減少する分布になる。この理由は次
の通シである。
In the method shown in Fig. 1, when a load is applied from the top to a single elastic body, the pressure generated on the inner surface of the mold 1 is highest at the restrained part between the pressurized iron surface A and the mold bottom surface B. high,
The pressure distribution decreases toward the center. The reason for this is as follows.

弾性体を用いて第1図に示すような円筒状の金型IK正
圧力与える場合、すなわち変形させようとする場合、そ
れに要する全仕事量Waは、弾性体を変形させるに要す
る仕事WRと円筒金型1だけを変形させるに要する仕4
IWcとの和であると考えられる。
When applying positive pressure to a cylindrical mold IK as shown in Fig. 1 using an elastic body, that is, when trying to deform it, the total amount of work Wa required is equal to the work WR required to deform the elastic body and the cylinder shape. Processing required to deform only mold 1 4
It is considered that it is the sum of IWc.

Wa=W*+Wc       ・・・・・・・・・・
・・・・・(11ここでP、を全荷重、PRを弾性体の
単軸圧縮時の荷重とすれば(1)式は /  Pads==/ P寞ds+/ π旧pdS  
・・団・・・・(2)OOO となる。ここでSは加圧ロッド5の変位量であシ、R,
は弾性体3の半径、pは円筒金型1の内面の圧力である
。従って両端拘束の場合、変形前の断面積に対する軸方
向圧力p、と円筒金型1の内面に作用する側圧pとの関
係は次式で与えられる。
Wa=W*+Wc ・・・・・・・・・・・・
......(11Here, if P is the total load and PR is the load during uniaxial compression of the elastic body, equation (1) is / Pads = = / P ds + / π old pdS
...Dan...(2) becomes OOO. Here, S is the displacement amount of the pressure rod 5, R,
is the radius of the elastic body 3, and p is the pressure on the inner surface of the cylindrical mold 1. Therefore, when both ends are restrained, the relationship between the axial pressure p with respect to the cross-sectional area before deformation and the lateral pressure p acting on the inner surface of the cylindrical mold 1 is given by the following equation.

1’ @ ” p暑+1)、(p−pm−pm)  ・
・・・旧・・(3)一方、各種弾性体の自由単軸圧縮時
における応111□11 力ひずみは第2図に示すようにpIIとひずみは比例関
係にある1図において曲線は硬い弾性体、曲線2は中位
の硬さの弾性体、曲線3は軟かい弾性体の場合である。
1' @ ” p heat + 1), (p-pm-pm) ・
...Old... (3) On the other hand, the force and strain during free uniaxial compression of various elastic bodies are shown in Figure 2, where pII and strain are in a proportional relationship.In Figure 1, the curve represents hard elasticity. Curve 2 is for an elastic body of medium hardness, and curve 3 is for a soft elastic body.

また第3図(イ)に示すように、例えば円柱状の弾性体
を上部よシ荷重を負荷し自由変形させた場合(ロ)のよ
うに通常、中央部に向かい大きなひずみが発生する。従
って側圧pは(3)式の関係からe→に示すように中央
部に向がい減少することになる。このように単一弾性体
に荷重を負荷した場合、均一な圧力分布を得ることは極
めて難かしい。
Further, as shown in FIG. 3(a), for example, when a cylindrical elastic body is subjected to a load from the top and is allowed to freely deform (b), a large strain usually occurs toward the center. Therefore, from the relationship of equation (3), the lateral pressure p decreases in direction toward the center as shown by e→. When a load is applied to a single elastic body in this way, it is extremely difficult to obtain a uniform pressure distribution.

本発明は弾性体を用いても均一な圧力を得ることができ
るものである。発明の基本は(3)式におけるpmを一
定にすることである。具体的には第2図に示したように
同一の軸圧縮応力p 、=p、を得るために、ひずみ量
の異なる(g=g□、#x)2種以上の弾性体を組合せ
る方法である。この方法によシ、軸方向のひずみ量を均
一にでき、(3)式におけるI)mが各部で一定となシ
、均一な側圧pを得ることができる。
The present invention allows uniform pressure to be obtained even when using an elastic body. The basis of the invention is to keep pm constant in equation (3). Specifically, as shown in Figure 2, a method of combining two or more types of elastic bodies with different amounts of strain (g = g□, #x) in order to obtain the same axial compressive stress p, = p. It is. By this method, the amount of strain in the axial direction can be made uniform, I)m in equation (3) is constant at each part, and a uniform lateral pressure p can be obtained.

このように弾性体に荷重を負荷し、圧力を発生せしめる
方法において2種以上の弾性体の硬度または縦弾性係数
の異なる弾性体を組み合せることによシ、容器または金
型内に均一な圧力、すなわち静水圧力を発生させること
が可能となる。
In this method of applying a load to an elastic body and generating pressure, it is possible to create a uniform pressure inside a container or mold by combining two or more types of elastic bodies with different hardnesses or longitudinal elastic modulus. In other words, it becomes possible to generate hydrostatic pressure.

弾性体の組み合せを第4図から第6図に示す。Combinations of elastic bodies are shown in FIGS. 4 to 6.

第4図は硬度の異なる同種弾性体3m、3a’を交互に
2層以上、積層することによシ、均一な圧力または静水
圧力を得る方法である。第5図は縦弾性係数の異なる弾
性体3b、3b’を交互に2層以上、積層することによ
シ、均一な圧力または静水圧力を得る方法である。第6
図は硬度の異な    ゛る同種弾性体30,3c’と
これらと異なる縦弾性係数を持つ弾性体3C“を積層す
ることによシ均一な圧力ま九は静水圧力を得る方法であ
る。
FIG. 4 shows a method of obtaining uniform pressure or hydrostatic pressure by alternately laminating two or more layers of the same type of elastic bodies 3m and 3a' having different hardnesses. FIG. 5 shows a method of obtaining uniform pressure or hydrostatic pressure by alternately stacking two or more layers of elastic bodies 3b, 3b' having different longitudinal elastic modulus. 6th
The figure shows a method for obtaining uniform hydrostatic pressure by laminating similar elastic bodies 30, 3c' with different hardnesses and elastic bodies 3C'' with different longitudinal elastic modulus.

〔実施例1〕 第4図によシ説明する。[Example 1] This will be explained with reference to FIG.

鉄粉とアルミ粉末を重量比で6:4の割合で混合した粉
末4を4■X15■X60■の空間を持っシリコンゴム
製(硬度40@)に充填した。このゴム型の周囲を直径
100m厚さ20wmのシリコンゴム3麿(硬度5G”
)とシリコンゴム3 a /(硬[60@)とを交互に
合計5層積層し、ゴムの上部よシ荷重184トンを負荷
した。この荷重は組み合せたゴムの圧力伝達効率を考慮
すると約2600に9f/6I/Iの圧力が発生したこ
とになる。粉末の成形品の形状は3.1■XIZO寵X
31.5mとなった。
Powder 4, which was a mixture of iron powder and aluminum powder at a weight ratio of 6:4, was filled into a silicone rubber (hardness: 40@) space with a space of 4×15×60×. Surround this rubber mold with 3 layers of silicone rubber (hardness 5G) with a diameter of 100m and a thickness of 20wm.
) and silicone rubber 3a/(hard [60@) were alternately laminated in a total of 5 layers, and a load of 184 tons was applied to the top of the rubber. Considering the pressure transmission efficiency of the combined rubber, this load would generate a pressure of approximately 2600 to 9f/6I/I. The shape of the powder molded product is 3.1■
It was 31.5m.

この形状はゴム空間形状と比較すると各辺共にほぼ50
%ずつ縮められた状態であり、静水圧力が発生したこと
を証明している。また成形品の各部から切シ出したブロ
ックの密度を測定したところ、上部、下部の部分の密度
は理論値の95.3%、中央部のそれは95.2%であ
り、極めて均一な成形がなされた。
Compared to the rubber space shape, this shape has approximately 50 mm on each side.
%, proving that hydrostatic pressure was generated. In addition, when we measured the density of the blocks cut out from each part of the molded product, the density of the upper and lower parts was 95.3% of the theoretical value, and that of the central part was 95.2%, indicating that extremely uniform molding was achieved. It was done.

一方、同じ混合粉を同一のゴム型に充填し、周囲を直径
100 fi、合計厚さ200mのシリコンゴム(硬度
60@)で覆い、190)ンの荷重をゴム上部よシ負荷
した。この時、各部の密度を測定した結果、成形品の上
部、下部では理論値の95.3%、中央部では92.6
%となシ、不均一な成形状態′r:あった。。
On the other hand, the same mixed powder was filled into the same rubber mold, the periphery was covered with silicone rubber (hardness 60@) having a diameter of 100 fi and a total thickness of 200 m, and a load of 190 mm was applied to the top of the rubber. At this time, as a result of measuring the density of each part, the upper and lower parts of the molded product were 95.3% of the theoretical value, and the central part was 92.6%.
%, there was uneven molding. .

〔実施例2〕 本発明の方法を用いて管の継手加工を行った。[Example 2] A pipe joint was processed using the method of the present invention.

その方法を第7図に示す、5は加圧用ロッド、6はロッ
ド、7は定盤、8は金型である。使用した弾性体の形状
は外径117.8sam、内径80mM、厚さ20mで
アシ、その組合せ、負荷荷重は第1表の通りである。継
手加工するための管は公称外径127簡、厚さ4.5 
mの炭素鋼々管である。この時の管の端部における変形
の状態を第8図に示す。
The method is shown in FIG. 7, where 5 is a pressure rod, 6 is a rod, 7 is a surface plate, and 8 is a mold. The shape of the elastic body used was an outer diameter of 117.8 sam, an inner diameter of 80 mm, a thickness of 20 m, and the combinations and loads are as shown in Table 1. The pipe for processing the joint has a nominal outer diameter of 127 mm and a thickness of 4.5 mm.
It is a carbon steel pipe of m. The state of deformation at the end of the tube at this time is shown in FIG.

第    1    表 ここで明らかなように単一の弾性体を用いた加工に比較
し、シリコンゴムと金属または、シリコンゴムとウレタ
ンゴムの組合せにより加工した場合の方が圧力の分布が
極めて一定となシ、良好な継手が得られる。
As is clear from Table 1, the pressure distribution is much more constant when processing using a combination of silicone rubber and metal or silicone rubber and urethane rubber than when processing using a single elastic body. A good joint can be obtained.

以上説明したように本発明によれば、物体に均一な変形
を与えることができるので、粉末成形において密度の均
一な粉末成形体が得られる。
As explained above, according to the present invention, since uniform deformation can be given to an object, a powder compact with uniform density can be obtained in powder compaction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は弾性体を用いて圧力を発生する従来方法の縦断
面図、第2図は硬さの異なる弾性体の応力・ひずみ線図
、第3図は従来法におけるひずみおよび円筒内面に発生
する応力分布の説明図、第4図は同種弾性体において硬
度の異なる弾性体を組合せ均一または静水圧力を発生さ
せる方法の縦断面図、第5図は縦弾性係数の異なる弾性
体を組み会せ均一または静水圧力を発生させる方法の縦
断面図、第6図は硬度の異なる弾性体と縦弾性係数の異
なる弾性体を組み合せ均一または静水圧力を発生させる
方法の縦断面図、第7図は弾性体を組み合せることによ
り、金型を用いないで良好な継手を得る方法の実施例の
説明図、第8図は第7図に示した方法により成形した管
端の形状を表わした図である。 1.8・・・金型、2・・・ゴム型、3.3m、3a’
。 3b、3b’ 、3C,3C’ 、3C“・・・弾性体
、4・・・粉末成形体、5・・・加圧ロッド。 代理人 弁理士 薄田利幸 扇 1 図 □    ¥52  図 vlみ 第 3I¥] (イ) 8 第 41¥] 扇 5I2] 第 6 図
Figure 1 is a vertical cross-sectional view of the conventional method of generating pressure using an elastic body, Figure 2 is a stress/strain diagram of elastic bodies with different hardness, and Figure 3 is the strain and strain generated on the inner surface of the cylinder in the conventional method. Fig. 4 is a longitudinal cross-sectional view of a method for generating uniform or hydrostatic pressure by combining elastic bodies of the same type with different hardnesses, and Fig. 5 is a diagram showing a method for generating uniform or hydrostatic pressure by combining elastic bodies with different longitudinal elastic modulus. A vertical cross-sectional view of a method for generating uniform or hydrostatic pressure. Figure 6 is a vertical cross-sectional view of a method for generating uniform or hydrostatic pressure by combining elastic bodies with different hardness and elastic bodies with different longitudinal elastic modulus. Figure 7 is a vertical cross-sectional view of a method for generating uniform or hydrostatic pressure. An explanatory diagram of an embodiment of a method of obtaining a good joint without using a mold by combining bodies, and FIG. 8 is a diagram showing the shape of a tube end formed by the method shown in FIG. 7. . 1.8...Mold, 2...Rubber mold, 3.3m, 3a'
. 3b, 3b', 3C, 3C', 3C"... Elastic body, 4... Powder molded body, 5... Pressure rod. Agent: Patent attorney Toshiyuki Usuda 1 Figure □ ¥52 Figure vl Mi No. 3I¥] (A) 8th 41¥] Fan 5I2] Fig. 6

Claims (1)

【特許請求の範囲】 1、弾性体に軸方向荷重を付与し、弾性体の円周方向へ
の変形を外部よシ拘束し、拘束体内部に圧力を負荷する
方法において、弾性体を軸方向に組み合せ積層すること
により、均一な圧力を生じせしめることを特徴とする静
水圧力発生方法。 2、第1項記載の方法において、硬度の異なる同質弾性
体を軸方向に積層・組合せることにより、均一な圧力を
生じせしめることを特徴とする静水圧力発生方法。 3、第1項記載の方法において、硬度またはヤング率の
異なる2種以上の弾性体を軸方向に積層・組合せること
により、均一な圧力を発生せしめることを特徴とす1静
水圧力発生方法。 4、第1項記載の方法において、硬度の異なる同質弾性
体、ヤング率の異なる弾性体を2種以上軸方向に積層・
組合せることにより、均一な圧力を生じせしめることを
%微とする静水圧力発生方法。
[Claims] 1. In a method of applying an axial load to an elastic body, restraining deformation of the elastic body in the circumferential direction from the outside, and applying pressure inside the restraint body, the elastic body is A hydrostatic pressure generation method characterized by generating uniform pressure by combining and laminating. 2. A method for generating hydrostatic pressure according to item 1, characterized in that a uniform pressure is generated by laminating and combining homogeneous elastic bodies having different hardnesses in the axial direction. 3. A method for generating hydrostatic pressure according to item 1, characterized in that a uniform pressure is generated by laminating and combining two or more types of elastic bodies having different hardnesses or Young's moduli in the axial direction. 4. In the method described in item 1, two or more kinds of homogeneous elastic bodies with different hardnesses and two or more kinds of elastic bodies with different Young's moduli are laminated in the axial direction.
A method of generating hydrostatic pressure that, when combined, produces a very uniform pressure.
JP13275581A 1981-08-26 1981-08-26 Generating method for hydrostatic pressure Pending JPS5837101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13275581A JPS5837101A (en) 1981-08-26 1981-08-26 Generating method for hydrostatic pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13275581A JPS5837101A (en) 1981-08-26 1981-08-26 Generating method for hydrostatic pressure

Publications (1)

Publication Number Publication Date
JPS5837101A true JPS5837101A (en) 1983-03-04

Family

ID=15088792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13275581A Pending JPS5837101A (en) 1981-08-26 1981-08-26 Generating method for hydrostatic pressure

Country Status (1)

Country Link
JP (1) JPS5837101A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640175A (en) * 1985-02-06 1987-02-03 Hoshino Gakki Co., Ltd. Support leg for bass drum
JPH01183316A (en) * 1988-01-19 1989-07-21 Toshiba Corp Electric discharge machining method and its device
US4869147A (en) * 1988-04-05 1989-09-26 Hoshino Gakki Co., Ltd. Attachment of support leg for base drum
CN106216669A (en) * 2016-08-25 2016-12-14 陕西师范大学 A kind of dry type pseudo isostatic pressing method and device
CN106239961A (en) * 2016-08-25 2016-12-21 陕西师范大学 A kind of dry type pseudo isostatic pressing method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640175A (en) * 1985-02-06 1987-02-03 Hoshino Gakki Co., Ltd. Support leg for bass drum
JPH01183316A (en) * 1988-01-19 1989-07-21 Toshiba Corp Electric discharge machining method and its device
US4869147A (en) * 1988-04-05 1989-09-26 Hoshino Gakki Co., Ltd. Attachment of support leg for base drum
CN106216669A (en) * 2016-08-25 2016-12-14 陕西师范大学 A kind of dry type pseudo isostatic pressing method and device
CN106239961A (en) * 2016-08-25 2016-12-21 陕西师范大学 A kind of dry type pseudo isostatic pressing method and device
CN106216669B (en) * 2016-08-25 2018-08-17 陕西师范大学 A kind of dry type pseudo isostatic pressing method and device

Similar Documents

Publication Publication Date Title
US20070079909A1 (en) Process for producing a lightweight molded part and molded part made of metal foam
JP2002284033A (en) Strength member for automobile
JPS5837101A (en) Generating method for hydrostatic pressure
CN105574341B (en) A kind of bolt room temperature pretightning force computational methods to work under worst cold case
CN106845014A (en) A kind of computational methods of track plates thermal cracking width
CN111545132A (en) Ultrahigh pressure synthesis cavity
JPS61140328A (en) Formation of superplastic material by using granular body as pressure-transmitting medium
JPH0328277B2 (en)
Ross et al. The buckling of GRP hemi-ellipsoidal dome shells under external hydrostatic pressure
JPH0711016B2 (en) Method for manufacturing heat transfer module using hydrogen storage alloy
JPWO2022039240A5 (en)
US1547840A (en) Steam plate
JPS642641B2 (en)
JP2008180266A (en) Hydrogen occlusion alloy container
US3135995A (en) Method of and apparatus for the generation of pressure inside an enclosed cavity
JPS6096333A (en) Holding method of cylinder
US3450035A (en) Hydraulic press
Weimin et al. A study on the determination of the blow energy of hammers by the steel-column upsetting method
Wang et al. Enhancement Design and Quasi‐Static Crushing Response of Novel Star‐Rhombus Honeycombs
Phong Stress on the Nozzle of a Steel Vertical Storage Tank
JP2003148687A5 (en)
US3542723A (en) Method of molding aggregate pressure release material
JPH02221302A (en) Manufacture of powder forming body
SU659318A1 (en) Method of diffusion welding of hard alloy to steel
Hobbs Stress Intensity Factors for Layered Pressure Vessel Inner Layer Through Cracks