JP2008180266A - Hydrogen occlusion alloy container - Google Patents

Hydrogen occlusion alloy container Download PDF

Info

Publication number
JP2008180266A
JP2008180266A JP2007013523A JP2007013523A JP2008180266A JP 2008180266 A JP2008180266 A JP 2008180266A JP 2007013523 A JP2007013523 A JP 2007013523A JP 2007013523 A JP2007013523 A JP 2007013523A JP 2008180266 A JP2008180266 A JP 2008180266A
Authority
JP
Japan
Prior art keywords
container
alloy
pipe
hydrogen storage
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007013523A
Other languages
Japanese (ja)
Other versions
JP4941970B2 (en
Inventor
Yoshinori Kawarasaki
芳徳 河原崎
Takashi Iwamoto
隆志 岩本
Yoshihiko Hayashi
林  義彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2007013523A priority Critical patent/JP4941970B2/en
Publication of JP2008180266A publication Critical patent/JP2008180266A/en
Application granted granted Critical
Publication of JP4941970B2 publication Critical patent/JP4941970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen occlusion alloy container wherein the filling factor of a hydrogen occlusion alloy can be increased without causing the deformation of the container. <P>SOLUTION: In a cylindrical container body 1 in which the hydrogen occlusion alloy 10 is stored, a plurality of pipes 2, 3 in which the hydrogen occlusion alloy 10 is stored is stored along a container cylindrical direction. The pipes are each formed of a material having a yield stress σ<SB>ys</SB>of 200 MPa or more and a pipe strength (2(t/D)σ<SB>ys</SB>) of 5-15.5 MPa, desirably, where t is a pipe thickness (mm) and D is a pipe outer diameter (mm). As the deformation of the container remains suppressed, the filling factor of the hydrogen occlusion alloy can be increased to improve the volume efficiency by 15% or more. An alloy moving space is narrowed by the pipes, whereby the alloy is hardly moved in the vertical direction with vibration to suppress local deformation of the alloy. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、筒状の容器本体内に水素吸蔵合金を収容して水素の吸放出を行う水素吸蔵合金容器に関するものである。   The present invention relates to a hydrogen storage alloy container in which a hydrogen storage alloy is accommodated in a cylindrical container body to absorb and release hydrogen.

水素の吸放出を繰り返し行わせる水素吸蔵合金は、例えばキャニスタに収容し、合金で吸放出される水素は、該キャニスタの口部などを通して外部との間で移動させている。ところで、水素吸蔵合金は水素を吸蔵することで膨張し、逆に放出すると収縮する。また、この吸放出の繰返しにより合金の微粉化が進み体積膨張が起こる。この膨張収縮を繰り返すことで合金が容器下部に移動し易い。さらに、キャニスターの輸送中などの振動により内部の合金が移動して、局部的に充填密度が高くなる。その結果、上記水素の吸放出に伴う歪みによって容器変形が起こり易くなる。このため、容器内部を1枚以上の仕切り板で仕切って粉末を均一に充填することとした収容容器が提案されている(例えば特許文献1参照)。
また、水素吸蔵合金キャニスタに合金を充填する際に、水素吸蔵合金にかさ密度の小さい伝熱促進材となる繊維状のファイバーを数wt%添加混合し、水素吸蔵合金全体のかさ密度を小さくすることで、合金膨張による容器変形を抑える方法も提案されている。
特開2002−22097号公報
The hydrogen storage alloy that repeatedly performs the absorption and release of hydrogen is accommodated in, for example, a canister, and the hydrogen absorbed and released by the alloy is moved to the outside through the mouth of the canister. By the way, the hydrogen storage alloy expands by storing hydrogen, and conversely shrinks when released. Further, by repeating this absorption and release, the alloy is pulverized and volume expansion occurs. By repeating this expansion and contraction, the alloy easily moves to the lower part of the container. Further, the internal alloy moves due to vibration during transportation of the canister, and the filling density is locally increased. As a result, the deformation of the container is likely to occur due to the strain accompanying the absorption and release of hydrogen. For this reason, a storage container has been proposed in which the inside of the container is partitioned by one or more partition plates and the powder is uniformly filled (see, for example, Patent Document 1).
In addition, when filling the hydrogen storage alloy canister with an alloy, several percent by weight of fibrous fibers, which serve as heat transfer accelerators with a low bulk density, are added to and mixed with the hydrogen storage alloy to reduce the bulk density of the entire hydrogen storage alloy. Thus, a method for suppressing container deformation due to alloy expansion has also been proposed.
JP 2002-22097 A

しかし、上記した仕切板を用いた容器構造では、仕切り構造の挿入後に、容器本体(キャニスター)端部を絞って口部あるいは底部を形成することになるため、ネッキング(口絞り)加工後の熱処理を均一に行うのが難しくなるという欠点がある。また容器変形を確実に防止するためには各仕切間空間における合金の充填率を低くすることが必要であり、伝熱促進剤を添加する充填方法とともに、水素吸蔵合金の体積効率(体積効率とは、容器外容積に対する水素の貯蔵量,NL/L)が良くないという問題がある。   However, in the container structure using the partition plate described above, after insertion of the partition structure, the end of the container body (canister) is squeezed to form the mouth or bottom, so heat treatment after necking (mouth squeezing) processing There is a drawback that it is difficult to carry out the process uniformly. In addition, in order to reliably prevent the container from being deformed, it is necessary to lower the filling rate of the alloy in the space between the partitions. Together with the filling method in which a heat transfer accelerator is added, the volume efficiency of the hydrogen storage alloy (volume efficiency and Has a problem that the storage amount of hydrogen with respect to the outer volume of the container (NL / L) is not good.

本発明は、上記事情を背景としてなされたものであり、水素吸蔵合金の充填率を高めても容器の変形が少なく、よって高い体積効率が得られる水素吸蔵合金容器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a hydrogen storage alloy container in which the container is less deformed even when the filling rate of the hydrogen storage alloy is increased, and thus high volumetric efficiency is obtained. .

すなわち、本発明の水素吸蔵合金容器のうち請求項1記載の発明は、水素吸蔵合金が収容される筒状の容器本体内に、水素吸蔵合金が収容される複数のパイプが容器筒方向に沿って収容されていることを特徴とする。   That is, the invention according to claim 1 of the hydrogen storage alloy container of the present invention is such that a plurality of pipes containing the hydrogen storage alloy are arranged in the container cylinder direction in the cylindrical container body in which the hydrogen storage alloy is stored. It is characterized by being housed.

請求項2記載の水素吸蔵合金容器の発明は、請求項1記載の発明において、前記パイプは、降伏応力σysが200MPa以上の材質からなり、かつパイプ強度(2(t/D)σys)が5〜15.5MPaであることを特徴とする。ただし、tはパイプの肉厚(mm)、Dはパイプの外径(mm)である。   According to a second aspect of the present invention, there is provided the hydrogen storage alloy container according to the first aspect, wherein the pipe is made of a material having a yield stress σys of 200 MPa or more and a pipe strength (2 (t / D) σys) of 5. It is ˜15.5 MPa. Here, t is the thickness (mm) of the pipe, and D is the outer diameter (mm) of the pipe.

すなわち、本発明によれば、容器本体内に配置される複数のパイプによって、水素吸蔵合金の膨張が抑えられるとともに、容器本体内でパイプの内外に水素吸蔵合金が収容されるため、合金充填率(合金充填率とは、容器内容積に対して合金の占める割合)を上げて体積効率を向上させることが可能となる。また、パイプを挿入することで、合金の移動スペースが狭くなるため、振動による縦方向の合金の移動がしづらくなり局部的な容器変形を抑えることができる。   That is, according to the present invention, the expansion of the hydrogen storage alloy is suppressed by the plurality of pipes arranged in the container main body, and the hydrogen storage alloy is accommodated inside and outside the pipe in the container main body. It is possible to increase volume efficiency by increasing (alloy filling ratio is the ratio of the alloy to the volume in the container). Moreover, since the movement space of the alloy is narrowed by inserting the pipe, it is difficult to move the alloy in the longitudinal direction due to vibration, and local deformation of the container can be suppressed.

また、最適なパイプ強度および形状(外形と肉厚)をもったパイプを用いることで、体積効率をさらに向上させることができる。
ここでパイプ材質が降伏応力σysで200MPa未満のものであると、十分なパイプ強度を得ようとするとパイプ肉厚を大きくせざるを得ず、体積効率が低下する。また、パイプ強度(2(t/D)σys)が5MPa未満であると、パイプが外径の割に薄肉になって強度不足が起こり、容器変形が起こってしまう。一方、パイプ強度(2(t/D)σys)が15MPaを超えると、パイプは必要以上に強度が増すばかりで外径の割に肉厚が厚くなるので、パイプ内外の容積が小さくなって合金の充填率が低下する。
Moreover, volume efficiency can be further improved by using a pipe having optimum pipe strength and shape (outer shape and thickness).
Here, if the pipe material has a yield stress σ ys of less than 200 MPa, the pipe thickness must be increased to obtain sufficient pipe strength, and the volume efficiency is lowered. On the other hand, if the pipe strength (2 (t / D) σ ys ) is less than 5 MPa, the pipe becomes thin relative to the outer diameter, resulting in insufficient strength and container deformation. On the other hand, if the pipe strength (2 (t / D) σ ys ) exceeds 15 MPa, the pipe will not only increase in strength more than necessary, but the wall thickness will increase with respect to the outer diameter. The filling rate of the alloy decreases.

すなわち、本発明によれば、水素吸蔵合金が収容される筒状の容器本体内に、水素吸蔵合金が収容される複数のパイプが容器筒方向に沿って収容されているので、容器の変形を抑制したままで水素吸蔵合金の充填率を上げて体積効率を向上させることができる。
特に、前記パイプを降伏応力σysが200MPa以上の材質とし、パイプ強度(2(t/D)σys)を5〜15.5MPaとすれば、上記体積効率は顕著に向上する。具体的には、最適なパイプ強度および形状(外形と肉厚)をもったパイプを挿入配列することで、合金膨張による容器変形が起こることなく体積効率を15%以上向上できる効果がある。また、これらパイプの挿入は、容器本体の口部、底部の形成を終えた後から行うので、パイプ挿入前に容器本体を適切に熱処理することが出来る。
That is, according to the present invention, a plurality of pipes for storing the hydrogen storage alloy are stored in the cylindrical direction of the container in the cylindrical container body for storing the hydrogen storage alloy. The volumetric efficiency can be improved by increasing the filling rate of the hydrogen storage alloy while being suppressed.
In particular, if the pipe is made of a material having a yield stress σ ys of 200 MPa or more and the pipe strength (2 (t / D) σ ys ) is 5 to 15.5 MPa, the volume efficiency is remarkably improved. Specifically, by inserting and arranging pipes having optimum pipe strength and shape (outer shape and thickness), there is an effect that the volume efficiency can be improved by 15% or more without causing container deformation due to alloy expansion. Moreover, since these pipes are inserted after the formation of the mouth and bottom of the container body, the container body can be appropriately heat-treated before the pipe is inserted.

以下に、本発明の一実施形態を図1に基づいて説明する。
アルミニウム合金からなる円筒形で小径の口部1aを有する容器本体1内に、SUS304ステンレス鋼からなる大径のパイプ2…2と小径のパイプ3、3とを用意する。これらパイプ2…2、3、3は、降伏応力σysが200MPaで、パイプ強度(2(パイプ肉厚t/パイプ外径D)σys)を5〜15.5MPaの範囲内の形状とする。
Below, one Embodiment of this invention is described based on FIG.
A large-diameter pipe 2... 2 and small-diameter pipes 3 and 3 made of SUS304 stainless steel are prepared in a cylindrical container body 1 having a small-diameter mouth portion 1a made of an aluminum alloy. These pipes 2 ... 2, 3, and 3 have a yield stress σ ys of 200 MPa and a pipe strength (2 (pipe thickness t / pipe outer diameter D) σ ys ) in the shape of 5 to 15.5 MPa. .

上記容器本体1は、口部1aを通して底部に水素通気が可能なフィルタ4aを配置し、該フィルタ4a上に位置するように同じく口部1aを通してパイプ2…2、3、3を挿入する。この際に、大径のパイプ2・・2と小径のパイプ3、3の本数を調整することによりパイプ同士を互いに密着させ、容器本体内で固定されるようにする。   In the container body 1, a filter 4a capable of hydrogen aeration is disposed at the bottom through the mouth 1a, and pipes 2, 2, 3, and 3 are similarly inserted through the mouth 1a so as to be positioned on the filter 4a. At this time, by adjusting the number of the large diameter pipes 2... 2 and the small diameter pipes 3, 3, the pipes are brought into close contact with each other and fixed within the container body.

上記パイプ2、3間の空間には、通気材5を挿入する。上記によりパイプ2、3および通気材5を挿入した容器本体1内には、パイプ2、3の内外に適宜の充填率で水素吸蔵合金粉末10を収容する。該粉末には、伝熱促進材となる繊維状のファイバーなどを混合してもよい。該容器本体1では、さらに上記パイプ2、3上に水素通気が可能なフィルタ4bを配置する。この際に、通気材5の上端は、フィルタ4b内に達しているのが望ましい。口部1aには、通気管(図示しない)接続用のバルブ6を取り付ける。上記により水素吸蔵合金を収容した水素吸蔵合金容器が得られる。   A ventilation material 5 is inserted into the space between the pipes 2 and 3. In the container main body 1 into which the pipes 2 and 3 and the ventilation member 5 are inserted as described above, the hydrogen storage alloy powder 10 is accommodated at an appropriate filling rate inside and outside the pipes 2 and 3. The powder may be mixed with fibrous fibers that serve as heat transfer promoting materials. In the container body 1, a filter 4 b capable of hydrogen ventilation is further disposed on the pipes 2 and 3. At this time, it is desirable that the upper end of the ventilation member 5 reaches the inside of the filter 4b. A valve 6 for connecting a vent pipe (not shown) is attached to the mouth 1a. The hydrogen storage alloy container which accommodated the hydrogen storage alloy by the above is obtained.

次に上記水素吸蔵合金容器の作用について説明する。
上記水素吸蔵合金容器の容器本体1内にバルブ6を通して水素を導入すると、該水素は、フィルタ4bおよび通気材5、またさらにはフィルタ4aを通してパイプ2、3内外の水素吸蔵合金粉末間に供給され、吸蔵される。この結果、水素吸蔵合金粉末は膨張しようとする。また、加熱や減圧などによって水素を吸蔵している水素吸蔵合金粉末から水素が放出されると、該水素吸蔵合金粉末は収縮し、放出された水素は、水素吸蔵合金粉末間から、パイプ2、3内外、通気材5、フィルタ4a、最後にフィルタ4bを通して水素吸蔵合金容器外部に放出される。上記水素吸蔵合金粉末による水素の吸放出の際に、水素吸蔵合金粉末の膨張は、パイプ2、3の介在によって抑えられ、容器本体1に加わる歪みを小さくすることができる。また、パイプ2、3の存在により水素吸蔵合金粉末の充填密度の片寄りが生じにくく、変形が生じにくくなる。なお、水素吸蔵合金粉末の膨張力が容器本体1の内周面に加わる量を少なくするため、容器本体1の内周面に沿ってパイプを隙間なく、又は隙間を小さくして配列するのが望ましい。
Next, the operation of the hydrogen storage alloy container will be described.
When hydrogen is introduced into the container body 1 of the hydrogen storage alloy container through the valve 6, the hydrogen is supplied between the hydrogen storage alloy powders inside and outside the pipes 2 and 3 through the filter 4 b and the ventilation member 5 and further through the filter 4 a. Occluded. As a result, the hydrogen storage alloy powder tends to expand. Further, when hydrogen is released from the hydrogen storage alloy powder storing hydrogen by heating, decompression, etc., the hydrogen storage alloy powder contracts, and the released hydrogen passes from between the hydrogen storage alloy powder to the pipe 2, 3 is discharged to the outside of the hydrogen storage alloy container through the inside and outside, the ventilation material 5, the filter 4a, and finally the filter 4b. When hydrogen is absorbed and released by the hydrogen storage alloy powder, the expansion of the hydrogen storage alloy powder is suppressed by the interposition of the pipes 2 and 3, and the strain applied to the container body 1 can be reduced. Further, the presence of the pipes 2 and 3 makes it difficult for the filling density of the hydrogen-absorbing alloy powder to shift, and deformation hardly occurs. In order to reduce the amount of expansion force of the hydrogen storage alloy powder applied to the inner peripheral surface of the container body 1, the pipes are arranged along the inner peripheral surface of the container body 1 with no gap or with a small gap. desirable.

図2は、上記実施形態の構成に加えて、軸方向において複数に分割する仕切板8a、8b、8cを設けたものである。その他の構成は、上記実施形態と同様であり、同一の符号を付して説明する。前記したパイプ2、3、通気材5は、各仕切板8a〜8cを貫通している。該仕切り板8a〜8cによって、長手方向において、より均一な合金充填および発生ひずみのバラツキの抑制がなされる効果がある。なお、仕切板を設ける場合、その数や間隔は適宜設定することができる。   FIG. 2 is provided with partition plates 8a, 8b, and 8c that are divided into a plurality of parts in the axial direction in addition to the configuration of the above embodiment. Other configurations are the same as those in the above-described embodiment, and are described with the same reference numerals. The pipes 2 and 3 and the ventilation material 5 described above pass through the partition plates 8a to 8c. By the partition plates 8a to 8c, there is an effect that more uniform alloy filling and variation in generated strain can be suppressed in the longitudinal direction. In addition, when providing a partition plate, the number and space | interval can be set suitably.

次に、上記実施形態に示す水素吸蔵合金容器を構成するため、胴部長さ100mm、全高135mm、外径50.8mm、肉厚3.6mmの容器本体を用意した。この容器本体内に、パイプ強度を変えたSUS304パイプで、φ12のものを7本挿入した後、φ8のものを2本挿入して、それぞれのパイプが容器内で密に配置されるようにした。この容器本体内において、充填率を変えて(50〜55%)AB型の水素吸蔵合金粉末をパイプの内外に収容した。また、この容器の底部中央と、側部2点(高さ30mmと40mm)に歪みゲージ(図示しない)を貼り付けた。 Next, in order to constitute the hydrogen storage alloy container shown in the above embodiment, a container body having a trunk length of 100 mm, an overall height of 135 mm, an outer diameter of 50.8 mm, and a wall thickness of 3.6 mm was prepared. In this container body, SUS304 pipes with different pipe strengths were inserted, and 7 pipes with φ12 were inserted, then 2 pipes with φ8 were inserted so that the pipes were closely arranged in the container. . In this container main body, the filling rate was changed (50 to 55%), and AB 5 type hydrogen storage alloy powder was accommodated inside and outside the pipe. Further, a strain gauge (not shown) was attached to the center of the bottom of the container and two points on the side (height 30 mm and 40 mm).

上記水素吸蔵合金容器において、水素の吸収および放出を繰返し、その時の容器変形量を前記ひずみゲージにより計測した。繰返しサイクル数としては、これまでの知見により合金の微粉化が100〜150サイクルまで進行することが分かっているため、150サイクル以上実施した。   In the hydrogen storage alloy container, absorption and release of hydrogen were repeated, and the deformation amount of the container at that time was measured with the strain gauge. As the number of repeated cycles, it was found that the pulverization of the alloy proceeds to 100 to 150 cycles according to the knowledge so far, and therefore, the number of repeated cycles was 150 or more.

図3に、パイプ強度および合金充填率を変えた時の容器発生ひずみとその時の合金充填量を表している。パイプ強度を小さくすると、合金量は多くできるが、発生ひずみが大きくなってしまう。一方、パイプ強度を大きくすると合金量は少なくなってしまう。したがって、歪みと収容可能な合金量を考慮することで望ましいパイプ強度を定められることが分かった。   FIG. 3 shows the strain generated in the container when the pipe strength and the alloy filling rate are changed and the alloy filling amount at that time. If the pipe strength is reduced, the amount of alloy can be increased, but the generated strain increases. On the other hand, increasing the pipe strength decreases the amount of alloy. Therefore, it was found that the desired pipe strength can be determined by considering the strain and the amount of alloy that can be accommodated.

図4は、外径12mm、肉厚0.25mm、パイプ強度8.58MPaのパイプを用いた水素吸蔵合金容器について合金充填率を変えて各サイクルでの歪みを測定したものである。発生ひずみ量の許容値としては、水素吸収時に最大の変形が起こるが、この値を一般的に材料の弾性範囲内となる2000μ以下とした。また、水素放出時にはひずみ値がゼロに戻ることを条件としている。これらの条件から、この試験例では、合金充填率53.5%以内では、放出後の発生ひずみがゼロとなり塑性変形に至っていないことが分かる。したがって、各パイプ強度において、許容される最大の合金充填率および体積効率を知ることができる。   FIG. 4 shows the strain measured in each cycle for a hydrogen storage alloy container using a pipe having an outer diameter of 12 mm, a wall thickness of 0.25 mm, and a pipe strength of 8.58 MPa while changing the alloy filling rate. As an allowable value of the generated strain amount, the maximum deformation occurs at the time of hydrogen absorption, but this value is set to 2000 μm or less, which is generally within the elastic range of the material. In addition, the condition is that the strain value returns to zero when hydrogen is released. From these conditions, it can be seen that in this test example, when the alloy filling rate is within 53.5%, the generated strain after release becomes zero and plastic deformation has not occurred. Therefore, the maximum allowable alloy filling rate and volumetric efficiency can be known for each pipe strength.

また、比較のため、上記パイプを挿入しないで充填率を変えてAB型の水素吸蔵合金粉末を収容した水素吸蔵合金容器を用意し、上記と同様の水素吸放出試験を行った。その結果を図5に示した。比較例では、合金充填率50%においても弾性変形範囲を超える歪みが発生し、放出後の発生ひずみがゼロとはならず塑性変形に至っていることが分かる。したがって、パイプ無しでは十分な合金充填率を得ることが困難であることが明らかとなった。 For comparison, prepared hydrogen absorbing alloy vessel containing AB 5 -type hydrogen absorbing alloy powder by changing the filling ratio without inserting the pipe was subjected to the same hydrogen absorption and release tests described above. The results are shown in FIG. In the comparative example, it can be seen that even when the alloy filling rate is 50%, strain exceeding the elastic deformation range occurs, and the generated strain after release does not become zero and plastic deformation is reached. Therefore, it became clear that it was difficult to obtain a sufficient alloy filling rate without pipes.

上記パイプ強度を変えて体積効率を求めた試験結果より、パイプ強度に対する水素吸蔵合金容器の体積効率をグラフ化して図6に示した。体積効率が良好となる条件は、パイプ強度(2(t/D)σys)が5〜15.5MPaの範囲であることが明らかになった。
また、アルミニウム合金(降伏応力110MPa)、Ti合金(降伏応力380MPa)からなるパイプを用いて同様の試験を行ったところ、アルミニウム合金では、良好な体積効率が得られなかった。一方、Ti合金を用いたパイプでは、上記パイプ強度範囲内で良好な体積効率が得られた。よって本発明でパイプ強度を設定する場合、パイプの材質強度が一定以上(200MPa以上)に高いことが要求されることも明らかとなった。
FIG. 6 is a graph showing the volume efficiency of the hydrogen storage alloy container against the pipe strength, based on the test results obtained by changing the pipe strength and determining the volume efficiency. It was revealed that the condition that the volume efficiency is good is that the pipe strength (2 (t / D) σys) is in the range of 5 to 15.5 MPa.
Further, when a similar test was performed using a pipe made of an aluminum alloy (yield stress 110 MPa) and a Ti alloy (yield stress 380 MPa), good volume efficiency was not obtained with the aluminum alloy. On the other hand, in the pipe using Ti alloy, good volume efficiency was obtained within the above-mentioned pipe strength range. Therefore, when setting pipe strength by this invention, it became clear that the material intensity | strength of a pipe is requested | required to be high more than fixed (200 Mpa or more).

以上、上記実施形態および実施例に基づいて本発明の説明を行ったが、本発明は、上記説明の内容に限定されるものではなく、当然に本発明の範囲内において適宜の変更が可能である。   The present invention has been described above based on the above-described embodiments and examples. However, the present invention is not limited to the contents of the above description, and naturally, appropriate modifications can be made within the scope of the present invention. is there.

本発明の一実施形態の水素吸蔵合金容器を示す平面断面図およびb−b線断面図である。It is the plane sectional view and the bb line sectional view showing the hydrogen storage alloy container of one embodiment of the present invention. 同じく、他の実施形態の正面断面図である。Similarly, it is front sectional drawing of other embodiment. 本発明の実施例におけるパイプ強度と容器歪みおよび合金量の関係を示す図である。It is a figure which shows the relationship between the pipe strength in an Example of this invention, container distortion, and the amount of alloys. 同じく、サイクル数に対する容器歪みの変化を示す図である。Similarly, it is a figure which shows the change of the container distortion with respect to the cycle number. 同じく、比較例におけるサイクル数に対する容器歪みの変化を示す図である。Similarly, it is a figure which shows the change of the container distortion with respect to the cycle number in a comparative example. 同じく、各材質のパイプにおけるパイプ強度と体積効率の関係を示す図である。Similarly, it is a figure which shows the relationship between the pipe strength and volumetric efficiency in the pipe of each material.

符号の説明Explanation of symbols

1 容器本体
2 パイプ
3 パイプ
10 水素吸蔵合金粉末
1 Container body 2 Pipe 3 Pipe 10 Hydrogen storage alloy powder

Claims (2)

水素吸蔵合金が収容される筒状の容器本体内に、水素吸蔵合金が収容される複数のパイプが容器筒方向に沿って収容されていることを特徴とする水素吸蔵合金容器。   A hydrogen storage alloy container characterized in that a plurality of pipes in which a hydrogen storage alloy is stored are stored along a container cylinder direction in a cylindrical container body in which the hydrogen storage alloy is stored. 前記パイプは、降伏応力σysが200MPa以上の材質からなり、かつパイプ強度(2(t/D)σys)が5〜15.5MPaであることを特徴とする請求項1記載の水素吸蔵合金容器。
ただし、tはパイプの肉厚(mm)、Dはパイプの外径(mm)である。
2. The hydrogen storage alloy according to claim 1, wherein the pipe is made of a material having a yield stress σ ys of 200 MPa or more and a pipe strength (2 (t / D) σ ys ) of 5 to 15.5 MPa. container.
Here, t is the thickness (mm) of the pipe, and D is the outer diameter (mm) of the pipe.
JP2007013523A 2007-01-24 2007-01-24 Hydrogen storage alloy container Active JP4941970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013523A JP4941970B2 (en) 2007-01-24 2007-01-24 Hydrogen storage alloy container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013523A JP4941970B2 (en) 2007-01-24 2007-01-24 Hydrogen storage alloy container

Publications (2)

Publication Number Publication Date
JP2008180266A true JP2008180266A (en) 2008-08-07
JP4941970B2 JP4941970B2 (en) 2012-05-30

Family

ID=39724321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013523A Active JP4941970B2 (en) 2007-01-24 2007-01-24 Hydrogen storage alloy container

Country Status (1)

Country Link
JP (1) JP4941970B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004036A1 (en) 2017-06-26 2019-01-03 パナソニックIpマネジメント株式会社 Washing machine
JP7126067B2 (en) 2017-12-01 2022-08-26 パナソニックIpマネジメント株式会社 washing machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149393A (en) * 1978-05-15 1979-11-22 Billings Energy Corp Apparatus and method for supplying increased heat conductivity and heat capacity to pressure vessel containing hydride producing material
JP2004316721A (en) * 2003-04-14 2004-11-11 Nippon Steel Corp Hollow power transmission shaft with excellent high-speed rotation property, and its manufacturing method
JP2006525473A (en) * 2003-05-01 2006-11-09 ヘラ、ハイドロジェン・ストーリッジ・システムズ・インコーポレイテッド Hydrogen storage container
WO2006132163A1 (en) * 2005-06-09 2006-12-14 Jfe Steel Corporation Ferrite stainless steel sheet for bellows stock pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149393A (en) * 1978-05-15 1979-11-22 Billings Energy Corp Apparatus and method for supplying increased heat conductivity and heat capacity to pressure vessel containing hydride producing material
JP2004316721A (en) * 2003-04-14 2004-11-11 Nippon Steel Corp Hollow power transmission shaft with excellent high-speed rotation property, and its manufacturing method
JP2006525473A (en) * 2003-05-01 2006-11-09 ヘラ、ハイドロジェン・ストーリッジ・システムズ・インコーポレイテッド Hydrogen storage container
WO2006132163A1 (en) * 2005-06-09 2006-12-14 Jfe Steel Corporation Ferrite stainless steel sheet for bellows stock pipe

Also Published As

Publication number Publication date
JP4941970B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
ES2567088T3 (en) End plate for hot isostatic pressing canister, hot isostatic pressing canister and hot isostatic pressing procedure
US4583638A (en) Pressure-tight vessel for the storage of hydrogen in a metal matrix body
Hanssen et al. Design of aluminium foam-filled crash boxes of square and circular cross-sections
EP1384940A2 (en) Hydrogen-storage container and method of occluding hydrogen
JP4941970B2 (en) Hydrogen storage alloy container
US8746359B2 (en) Explosion suppressor
JP2005009549A (en) Capsule container and hydrogen storage tank
PT1454875E (en) Apparatus for hydrogen storage and process for its production
CN116336371A (en) Metal hydride hydrogen storage tank
JPS60188697A (en) Heat radiating vessel for alloy absorbing and storing hydrogen
US9089896B2 (en) Device and method for hot isostatic pressing
JPS6027960B2 (en) Method for preventing the spread of radioactive materials in spent nuclear fuel rods
CN210482751U (en) Square steel tube concrete column with negative Poisson&#39;s ratio constraint effect inside
CN103586323B (en) Hydraulic forming method of ellipsoid container with double axis length ratios
JP4098043B2 (en) Method for producing hydrogen storage alloy storage container
JP6547888B2 (en) Catalyst pellet
JP2008527211A (en) Intermediate tank for vacuum toilet
JP2005262308A (en) Method for forming bellows pipe
JPS5837101A (en) Generating method for hydrostatic pressure
CN210949630U (en) Stretch-proofing deformation&#39;s spring
CN215569687U (en) High-pressure integral multi-layer bound hydrogen storage container
US20080016663A1 (en) Formed materials and strips used in fuel tanks and to prevent explosive reactions
KR100825080B1 (en) Getter
JP2015121346A (en) Heat exchanger and hydrogen storage unit
WO2004031645A1 (en) Metal hydride container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4941970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250