JPS5836932A - Manufacture of ferromagnetic oxide - Google Patents

Manufacture of ferromagnetic oxide

Info

Publication number
JPS5836932A
JPS5836932A JP56133073A JP13307381A JPS5836932A JP S5836932 A JPS5836932 A JP S5836932A JP 56133073 A JP56133073 A JP 56133073A JP 13307381 A JP13307381 A JP 13307381A JP S5836932 A JPS5836932 A JP S5836932A
Authority
JP
Japan
Prior art keywords
reaction
solution
added
ferrous ions
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56133073A
Other languages
Japanese (ja)
Other versions
JPS6020329B2 (en
Inventor
Keiki Shimizu
惠己 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENKI KANKYO ENG KK
Original Assignee
NIPPON DENKI KANKYO ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENKI KANKYO ENG KK filed Critical NIPPON DENKI KANKYO ENG KK
Priority to JP56133073A priority Critical patent/JPS6020329B2/en
Publication of JPS5836932A publication Critical patent/JPS5836932A/en
Publication of JPS6020329B2 publication Critical patent/JPS6020329B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a ferromagnetic oxide easily especially through normal temp. reaction independent of reaction temp. characteristics, by reacting lepidocrosite with ferrous ions in >=6pH value, especially in an alkaline range. CONSTITUTION:A soln. contg. ferrous ions, for example, as FeCl2, is added to a soln. of lepidocrosite (gamma-FeOOH) and reaction is accelerated by always keeping pH>=6 to give a ferromagnetic oxide consisting of magnetite, ferrite (Fe3O4) as shown in the formula. At that time, an amount of ferrous ions added is 1/2 of gamma-Fe in mole ratio as shown in the formula. This reaction occurs in a moment especially even at a low temp. gamma-FeOOH is obtained by oxidizing ferrous ions in an acidic range of a soln. at normal temp.

Description

【発明の詳細な説明】 本発明はスピネル型強磁性酸化物の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a spinel-type ferromagnetic oxide.

スピネル型強磁性酸化物を生成させる方法として、第一
鉄塩水溶液にアルカリを添加して第一鉄の白色沈澱を生
じさせ1次いでこの沈澱が懸濁された水溶液を除々に酸
化してマグネタイトまたはオキシ水酸化鉄、あるいはそ
れらの混合物を生成させるいわゆる1湿式酸化法”が開
発され、この方法がフェライトの製造や重金属含有廃液
の処理に有効な方法として現在すでに実用化されている
As a method for producing spinel-type ferromagnetic oxides, an alkali is added to an aqueous ferrous salt solution to form a white precipitate of ferrous iron, and then the aqueous solution in which this precipitate is suspended is gradually oxidized to produce magnetite or A so-called wet oxidation method for producing iron oxyhydroxide or a mixture thereof has been developed, and this method is already in practical use as an effective method for producing ferrite and treating waste liquids containing heavy metals.

この方法は反応温度、  pHの設定、酸化条件などの
条件設定が重要であり、マグネタイト、フェライトを生
成させるには特定の条件の下で行なわなければならない
。第1図は第一鉄塩溶液にアルカリを添加した後、空気
酸化反応を活発に行った場合に、生成する鉄化合物の結
晶構造が、アルカリの添加比と1反応源度とで変化する
様相を示したものである。同図によって明らかなとおり
、高い反応温度ではFe3O4が生成し、低い反応温度
ではFeα刑が生成するため、磁性体酸化物粒子である
マグネタイトを得るには高温で反応させなければならな
い。もっとも、上記の反応条件によらず、酸化反応を静
粛に行なうことによって常温処理を行なうことも不可能
ではないが、酸化処理に特別の設備を要し%また酸化反
応に長時間を要するなど、処理操作、処理時間のうえに
種々の問題点が残されていた。
In this method, setting conditions such as reaction temperature, pH setting, oxidation conditions, etc. are important, and it must be carried out under specific conditions to produce magnetite and ferrite. Figure 1 shows how the crystal structure of the iron compound produced changes depending on the alkali addition ratio and the degree of 1 reaction when an alkali is added to a ferrous salt solution and then an air oxidation reaction is actively carried out. This is what is shown. As is clear from the figure, Fe3O4 is produced at a high reaction temperature, and Feα is produced at a low reaction temperature, so the reaction must be carried out at a high temperature to obtain magnetite, which is a magnetic oxide particle. However, it is not impossible to perform the oxidation reaction at room temperature without relying on the above reaction conditions, but it requires special equipment for the oxidation treatment, and the oxidation reaction takes a long time. Various problems remained in addition to processing operations and processing time.

本発明は上記問題点を一挙に解消するもので、酸化反応
を必要とせず、また1反応源度の高低。
The present invention solves the above problems at once; it does not require an oxidation reaction, and the degree of source of one reaction is high or low.

pHの設定、その他の処理条件に殆んど左右されること
なく簡単な設備で瞬間的に強磁性酸化物を生成できる方
法を提供するものである。すなわち本発明はレピドクロ
サイトと、第一鉄イオンとをpH6以上の液中で反応さ
せて強磁性酸化物全生成させる方法である。
The present invention provides a method that can instantaneously generate ferromagnetic oxides using simple equipment, almost unaffected by pH settings and other processing conditions. That is, the present invention is a method in which lepidocrocite and ferrous ions are reacted in a solution with a pH of 6 or higher to completely generate a ferromagnetic oxide.

本発明者はレピドクロサイ) (rPeoOH)の液中
に第一鉄イオンを加えると、液のpHが6以上の条件で
は次の反応によってマグネタイ) (F*5O4)が生
成されることを見出した。
The present inventor has discovered that when ferrous ions are added to a liquid of Lepidocroci (rPeoOH), magnetite (F*5O4) is produced by the following reaction under conditions where the pH of the liquid is 6 or higher.

2rFeOOH+FeOH→Fe3O4+f−50+ 
H”rFeooHは強酸性領域では第一鉄イオンをFe
”の形で吸着する為に、容易に溶解することは知られて
いる。液のpHが6以上、特にアルカリ領域では第一鉄
イオンをFeOHの形で吸着する為に、上記反応が生じ
、マグネタイトとなって沈澱する。
2rFeOOH+FeOH→Fe3O4+f-50+
H”rFeooH converts ferrous ion to Fe in a strongly acidic region.
It is known that the above reaction occurs because ferrous ions are adsorbed in the form of FeOH when the pH of the liquid is 6 or higher, especially in the alkaline region. Precipitates as magnetite.

上記の反応はその反応途中において、Hを生成して液が
酸性側に戻るため、アルカリの添加により反応中宮に液
のpHを6以上に維持する必要がある。もっとも液が強
いアルカリ性であれば、改めてアルカリを添加する必要
はない。また、第一鉄イオンを添加するときの液のpH
が6以下のときにはアルカリを加えてpHを6以上に調
整する。このように反応時の液のpHを6以上に維持す
ればよく第一鉄イオンの添加時の液のpHの領域は問題
にならない。また、第一鉄イオンは固体又は液体のいず
れの形で供給してもよい。
During the above reaction, H is produced and the liquid returns to the acidic side, so it is necessary to maintain the pH of the liquid at 6 or higher during the reaction by adding an alkali. However, if the liquid is strongly alkaline, there is no need to add alkali. Also, the pH of the solution when adding ferrous ions
When the pH is 6 or less, an alkali is added to adjust the pH to 6 or more. In this way, the pH range of the solution at the time of addition of ferrous ions does not matter as long as the pH of the solution during the reaction is maintained at 6 or higher. Furthermore, ferrous ions may be supplied in either solid or liquid form.

第一鉄イオンの添加量は上式で明らかなとおり、モル比
でrFeooHの全量の4である。
As is clear from the above formula, the amount of ferrous ion added is 4 of the total amount of rFeooH in terms of molar ratio.

第−鉄子オンの添加量が少ないと、rFeooHが液中
に残り、純度の高いマグネタイトを得ることができない
If the amount of FeooH added is small, rFeooH remains in the solution, making it impossible to obtain highly pure magnetite.

また、上記の反応において、反応温度は全く問題になら
ない。それtipH6以上の液中でγFe0OHに対す
る第一鉄イオンの吸着が全温度範囲で起るからである。
Further, in the above reaction, the reaction temperature does not matter at all. This is because adsorption of ferrous ions to γFe0OH occurs over the entire temperature range in a solution with a tip pH of 6 or more.

特に低温においても上記反応が瞬間的に起るのはこれら
の吸着の機能に加えてrFeoOHがP g304、に
酷似した結晶構造を有しており、F、304への構造変
イヒに要する活性化エネルギーが極めて小さいからであ
ると考えられる。
In addition to these adsorption functions, the reason why the above reaction occurs instantaneously even at low temperatures is that rFeoOH has a crystal structure very similar to Pg304, and the activation required for the structural change to F,304. This is thought to be because the energy is extremely small.

なお、rFeooHは、第一鉄イオンを酸性領域の常温
液中で酸化することによって得ることができる。
Note that rFeooH can be obtained by oxidizing ferrous ions in a normal temperature solution in an acidic region.

したがって、重金属含有廃液などの重金属イオンを含有
する液中でγFe00Hを生成させ、ひきつづきこの溶
液について前述の処理を行なうことにより液中に生成さ
れたγFe00Hを利用して重金属イオンを結晶格子中
に取り組んだフェライトを得ることができる。勿論pH
6以上の重金属含有廃液中にγFe00Hを添加しても
よく、いずれの場合でも特別の設備を要せず、簡単な操
作でマグネタイト、フェライトを製造できる。
Therefore, by generating γFe00H in a liquid containing heavy metal ions, such as heavy metal-containing waste liquid, and subsequently performing the above-mentioned treatment on this solution, heavy metal ions can be incorporated into the crystal lattice using the γFe00H generated in the liquid. You can get ferrite. Of course pH
γFe00H may be added to the waste liquid containing 6 or more heavy metals, and in either case, magnetite and ferrite can be produced with simple operations without requiring special equipment.

以上のように本発明によれば、第1図に示すような反応
温度特性には一切左右されず、また従来法のような厳密
な製造条件や特別の設備を必要とせずにほとんど瞬間的
にマグネタイト、フェライトを製造でき、特に常温反応
、できわめて容易に強磁性酸化物を製造できる優れた効
果を有するものである。以下に本発明の実施例を示す。
As described above, according to the present invention, the reaction temperature is not influenced by the reaction temperature characteristics as shown in FIG. It has the excellent effect of being able to produce magnetite and ferrite, and particularly easily producing ferromagnetic oxides through room temperature reactions. Examples of the present invention are shown below.

(実施例1) 59のFaClaを含むpH5,5の液750 rrL
に、液2+ 温25°Cで毎分1,5tの空気を吹きこみ、 Fg 
 イオンを酸化してrFeoOH’を生成した。さらに
この液(pH5,5)中に、2.52のFeCl2を加
え、また、液中に加えるアルカリの添加量を変化させて
液のpHを5〜10の範囲で数段階に調整し、それぞれ
の場合に液中に生成される沈澱物について検討したとこ
ろpH& 4以上では瞬間的(5〜6分)に黒色の沈澱
物が生成し、これらはすべてFa3Qlであっ九ところ
がpH5,8以下では液の色に変化がなく、得られた沈
澱物はrFgooHと、 Fg(OH)2との混合物で
あった。なお、沈澱物の成分分析は粉末X線回析、メス
バラアースベクトル、電子顕微鏡撮影、化学分析により
行なった。これは以下の実施例についても同じである。
(Example 1) 750 rrL of pH 5.5 solution containing 59 FaCl
Blow 1.5 tons of air per minute into liquid 2+ at a temperature of 25°C, Fg
The ions were oxidized to produce rFeoOH'. Furthermore, 2.52 FeCl2 was added to this solution (pH 5.5), and the pH of the solution was adjusted to several levels in the range of 5 to 10 by changing the amount of alkali added to the solution. When we investigated the precipitates formed in the liquid when the pH was 4 or higher, black precipitates were formed instantaneously (5 to 6 minutes), and all of these were Fa3Ql, but at pH 5.8 or lower, the liquid There was no change in color, and the precipitate obtained was a mixture of rFgooH and Fg(OH)2. The components of the precipitate were analyzed by powder X-ray diffraction, Mössbacher earth vector, electron microscopy, and chemical analysis. This also applies to the following examples.

第2図は液中に生成されたrFe(1)Hの粒子、第5
図はpHを6.4以上とした場合に液中に生成されたF
a304の粒子を示す電子顕微鏡写真である。
Figure 2 shows particles of rFe(1)H generated in the liquid.
The figure shows the amount of F generated in the liquid when the pH is set to 6.4 or higher.
It is an electron micrograph showing particles of a304.

(実施例2) 実施例1と同一の方法で52のFgC4を用いて液中に
γFeα別を生成させた後、液をアルカリ領域(pH8
,9,10,11)とし、これらに2.5fのFeC1
eを含むpH2の溶液とアルカリ液とを同時に添加し、
それぞれの液のpHを8.9.10.11に保った。全
てのFaC1q溶液を添加した後、いずれのpHの液に
も完全なFgsO4が生成された。  1また、2.5
2のF#C/JをpH8,9,10,11のアルカリ懸
濁液としてこれらに、γFe00Hを含むpH8,9,
10,11の懸濁液を加えた場合でも結果は同じであっ
た。
(Example 2) After generating γFeα in a solution using 52 FgC4 in the same manner as in Example 1, the solution was adjusted to an alkaline region (pH 8
, 9, 10, 11), and 2.5f of FeC1 is added to these.
simultaneously adding a pH 2 solution containing e and an alkaline solution,
The pH of each solution was maintained at 8.9.10.11. After adding all the FaC1q solutions, complete FgsO4 was produced in the solutions at both pHs. 1 Also, 2.5
2 F#C/J as an alkaline suspension with pH 8, 9, 10, 11, and added with γFe00H containing pH 8, 9,
The results were the same when suspensions of 10 and 11 were added.

(実施例5) 実施例2と同一の液(PH8,9,10,11)中に、
M?+、 C6”、 Cu”、 CI”、 Z?L’+
をFe1C対し5〜5チ加えた後、実施例2と同様にそ
れぞれの液に2.51のFeC1yを含む溶液をアルカ
リと同時に加えて最終的に液のpHをそれぞれ8,9,
10.11に保った。
(Example 5) In the same liquid (PH8, 9, 10, 11) as in Example 2,
M? +, C6", Cu", CI", Z?L'+
After adding 5 to 5 g of FeC1y to Fe1C, a solution containing 2.51 FeC1y was added to each solution at the same time as an alkali as in Example 2, and the final pH of the solution was adjusted to 8, 9,
It was kept at 10.11.

各液中に生成された沈澱物はすべてこれらの金属イオン
を含むフェライトであった。これらの金属イオンは完全
にフェライトの格子点に取込まれ、pH3以下の酸性領
域でわずかにフェライトが溶解するに伴って初めて再溶
出することが判った。また、フェライトが生成したとき
の溶液中の金属イオンの濃度は液温25℃でいずれも0
0 lppm以下であった。
All precipitates formed in each solution were ferrite containing these metal ions. It has been found that these metal ions are completely incorporated into the lattice points of the ferrite and re-eluted only when the ferrite slightly dissolves in an acidic region of pH 3 or less. Furthermore, when ferrite is formed, the concentration of metal ions in the solution is 0 at a liquid temperature of 25°C.
It was less than 0 lppm.

その他Tと+’Z Ns2’: Mn”+ Crなとの
金属イオンを含む液についても同一の試験を行ったとこ
ろ同じ結果が得られた。
The same results were obtained when the same test was conducted on other liquids containing metal ions such as T and +'Z Ns2': Mn''+ Cr.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来法におけるアルカリの添加比と反応温度と
に対する生成物の変化を示す図、第2図は液中に添加し
たrFeooHの電子顕微鏡写真、第3図は本発明方法
により生成したマグネタイトの電子顕微鏡写真である。 特許出願人 日本電気環境エンジニアリング株式会社第
1図 nOH/2Fe         + 第2図 第3図 賢弟i3・痛z:;ふ〜−シ
Figure 1 is a diagram showing the changes in the product with respect to the alkali addition ratio and reaction temperature in the conventional method, Figure 2 is an electron micrograph of rFeooH added to the liquid, and Figure 3 is the magnetite produced by the method of the present invention. This is an electron micrograph. Patent applicant Nippon Electric Environmental Engineering Co., Ltd. Figure 1 nOH/2Fe + Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (11レピドクロサイトと、第一鉄イオンとをpH6以
上の液中で反応させて強磁性の沈澱粒子を生成させるこ
とを特徴とする強磁性酸化物の製造力も(2)  レピ
ドクロサイトの総量に対し1モル比で約2の第一鉄イオ
ンを添加することを特徴とする特許請求の範囲第1項記
載の強磁性酸化物の製造方法。
(2) Total amount of lepidocrocite 2. The method for producing a ferromagnetic oxide according to claim 1, wherein about 2 ferrous ions are added at a molar ratio of 1 to 1.
JP56133073A 1981-08-25 1981-08-25 Method for producing ferromagnetic oxide Expired JPS6020329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56133073A JPS6020329B2 (en) 1981-08-25 1981-08-25 Method for producing ferromagnetic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133073A JPS6020329B2 (en) 1981-08-25 1981-08-25 Method for producing ferromagnetic oxide

Publications (2)

Publication Number Publication Date
JPS5836932A true JPS5836932A (en) 1983-03-04
JPS6020329B2 JPS6020329B2 (en) 1985-05-21

Family

ID=15096208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133073A Expired JPS6020329B2 (en) 1981-08-25 1981-08-25 Method for producing ferromagnetic oxide

Country Status (1)

Country Link
JP (1) JPS6020329B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159017U (en) * 1987-10-09 1989-04-13
JP2007028945A (en) * 2005-07-25 2007-02-08 Iseki & Co Ltd Combine harvester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0159017U (en) * 1987-10-09 1989-04-13
JPH04654Y2 (en) * 1987-10-09 1992-01-10
JP2007028945A (en) * 2005-07-25 2007-02-08 Iseki & Co Ltd Combine harvester

Also Published As

Publication number Publication date
JPS6020329B2 (en) 1985-05-21

Similar Documents

Publication Publication Date Title
Sapieszko et al. Preparation of well-defined colloidal particles by thermal decomposition of metal chelates. I. Iron oxides
US3970738A (en) Process for producing iron oxide products from waste liquids containing ferrous salts
Kaneko et al. The formation of Mg-bearing ferrite by the air oxidation of aqueous suspensions.
US4090888A (en) Production of black iron oxide pigments
US4119536A (en) Method of disposing of a ferrous-ion containing acidic aqueous waste by forming polycrystalline iron compound particles
JPS5829258B2 (en) Method for producing iron oxide black pigment by oxidizing metallic iron with oxygen-containing gas
WO2020241065A1 (en) Cobalt ferrite particle production method and cobalt ferrite particles produced thereby
JP4621911B2 (en) Method for producing magnetite fine particles
JPS5836932A (en) Manufacture of ferromagnetic oxide
JPS6341854B2 (en)
WO2020217982A1 (en) Method for producing cobalt ferrite particles and cobalt ferrite particles produced by same
JPS5919163B2 (en) Method for producing magnetic metal powder
GB2050330A (en) Process for producing hydrated iron oxide having silicon and phosphorus components
JPS5829604B2 (en) Kiyoji Seifun Matsuno Seiho
JPH101315A (en) Production of high purity iron oxide powder
JPS61219720A (en) Production of particulate magnet plumbite-type ferrite
JPS5918117A (en) Preparation of ferromagnetic oxide
JPH02133324A (en) Production of sr ferrite particles
JPS5834085A (en) Treatment of noxious metal-contg. waste water
JPS6334608B2 (en)
JPS6019092A (en) Treatment of waste liquid
JPS6313934B2 (en)
KR0128128B1 (en) Producing method of fe3o4
KR0136151B1 (en) Manufacturing method of magnetite powder
JPS61141627A (en) Production of alpha-feooh needles