JPS583690A - Treatment of waste water containing iron cyanide complex salt - Google Patents

Treatment of waste water containing iron cyanide complex salt

Info

Publication number
JPS583690A
JPS583690A JP10383981A JP10383981A JPS583690A JP S583690 A JPS583690 A JP S583690A JP 10383981 A JP10383981 A JP 10383981A JP 10383981 A JP10383981 A JP 10383981A JP S583690 A JPS583690 A JP S583690A
Authority
JP
Japan
Prior art keywords
zinc
salt
thiosulfate
red blood
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10383981A
Other languages
Japanese (ja)
Other versions
JPS5932194B2 (en
Inventor
Koichi Tanihara
谷原 紘一
Keiko Tamai
玉井 桂子
Seiji Yasuda
安田 誠二
Hitoo Kakiyama
垣山 仁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10383981A priority Critical patent/JPS5932194B2/en
Publication of JPS583690A publication Critical patent/JPS583690A/en
Publication of JPS5932194B2 publication Critical patent/JPS5932194B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To remove an iron cyanide complex salt in waste water in a good efficiency, by the action of a acting thiosulfate on waste water containing an iron cyanide complex salt including a ferricyanide compound in the presence of a zinc salt and an ammonium salt to expedite formation of zinc ferrocyanide. CONSTITUTION:To waste water containing an iron cyanide complex salt including a ferricyanide compound, 2.1-5mol of a zinc salt, 1X10<-4>-1M (in terms of an ammonium ion) of an ammonium salt and 1-2mol of a thiosulfate per mol of a ferricyanide ion are added to precipitate the ferricyanide ion as zinc ferrocyanide. The formed precipitate is removed by a conventional solid-liquid separation method and the cyanide concn. in the treated liquid can be easily reduced to 1ppm or less which is a regulation value and the reduction thereof to 0.1ppm or less can also be attained within a short time.

Description

【発明の詳細な説明】 本発明は、亜鉛塩を沈殿剤とじチオ硫酸塩を還元剤すと
るフェリシアン化物を含む鉄シアノ錯塩含有廃水の沈殿
処理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for precipitation treatment of wastewater containing iron cyano complexes containing ferricyanide, which uses zinc salt as a precipitant and thiosulfate as a reducing agent.

フェリシアン化物、フェロシアン化物などの鉄シアノ錯
塩含有廃水は、写真の現像所、メッキ工場、鉄鋼の浸炭
、窒化工場、青果物くん蒸倉庫。
Wastewater containing iron cyano complex salts such as ferricyanide and ferrocyanide is used in photo labs, plating plants, steel carburizing plants, nitriding plants, and fruit and vegetable fumigation warehouses.

青化法製錬工場などから排水されるが、廃水中のシアン
濃度は規制値の1 ppm以下になるように処理されな
ければならない。
Cyanide is discharged from cyanide smelting plants, etc., and must be treated so that the concentration of cyanide in the wastewater is below the regulatory value of 1 ppm.

従来知られている鉄シアノ錯塩を廃水中から除去する方
法としては、化学的、電気化学的又は光化学的な分解処
理法、イオン交換、電気浸透、逆浸透などの物理的濃縮
法、活性炭などの吸着剤による吸着処理法及び沈殿剤に
よる沈殿処理法が挙げられる。
Conventionally known methods for removing iron cyano complexes from wastewater include chemical, electrochemical, or photochemical decomposition treatment methods, physical concentration methods such as ion exchange, electroosmosis, and reverse osmosis, and activated carbon. Examples include an adsorption treatment method using an adsorbent and a precipitation treatment method using a precipitant.

上記分解処理法は、鉄シアノ錯塩が化学的に安定である
ため、苛酷な反応条件を必要とし、また電気エネルギー
、光エネルギーなど高0価なエネルギーと特殊な装置を
用いても分解速度は小さく経済的でないという欠点があ
り、物理的濃縮法は。
The above decomposition treatment method requires harsh reaction conditions because iron cyano complex salts are chemically stable, and the decomposition rate is low even if high valence energy such as electric energy and light energy and special equipment are used. Physical concentration methods have the disadvantage of being uneconomical.

装置が高価である上、この方法によって得られる濃縮液
は分解処理法、沈殿処理などによる後処理をしなければ
ならないという欠点があり、さらに吸着処理法は、低廉
で吸着力が大きく選択性のよい吸着剤がまだ出現してい
ないので実用的でない。
Not only is the equipment expensive, but the concentrated liquid obtained by this method must be subjected to post-treatment such as decomposition treatment or precipitation.Furthermore, the adsorption treatment method is inexpensive, has large adsorption power, and is highly selective. It is not practical because good adsorbents have not yet appeared.

沈殿処理法は、大量処理に適しているが、9i!際に利
用されている唯一の方法である鉄塩を沈殿剤とする紺青
法においても、不溶性のフェリー、フェロシアン化物の
生成及び沈殿分離には、 フェリシアンイオンとフェロ
シアンイオンの正確な分析、空気中の酸素の影響、PH
による溶解度の変動など幾多の困難な問題がある上に、
処理水中のシアン濃度を規制値はもとより、数ppm以
下に抑えることも相当困難であり、さらに厳密な工程管
理を必要とするのが現状である。
The precipitation treatment method is suitable for large-scale treatment, but 9i! Even in the Prussian method, which uses iron salts as a precipitant, which is the only method currently used, accurate analysis of ferricyanide and ferrocyanide ions is required for the production and precipitation separation of insoluble ferrocyanide and ferrocyanide. Effect of oxygen in the air, PH
In addition to many difficult problems such as fluctuations in solubility due to
It is extremely difficult to suppress the cyanide concentration in the treated water to a few ppm or less, not to mention the regulatory value, and the current situation is that even stricter process control is required.

そのほかの沈殿処理法として、フェリシアン化物を含む
鉄シアノ錯塩含有廃水にこ亜鉛塩存在下で還元剤を作用
させて鉄シアノ錯塩をフェロシアン化亜鉛として沈殿除
去する方法が特開昭55−59886号公報に提案され
ている。
As another precipitation treatment method, a method is disclosed in JP-A-55-59886 in which a reducing agent is applied to wastewater containing iron cyano complex salts containing ferricyanide in the presence of zinc salt to precipitate and remove iron cyano complex salts as zinc ferrocyanide. It is proposed in the Publication No.

還元剤としてチオ硫酸塩、亜硫酸塩、ピロ亜硫酸塩、亜
二チオン酸塩、ヒドラジン塩、ヒドロキシルアンモニウ
ム塩などが使用されている上記公報による方法は、当該
還元剤によりフェリシアンイオンを−たんフェロシアン
イオンに還元後亜鉛塩によって7エロシアン化亜鉛沈殿
を生成させるよりも比較的迅速に処理ができ、しかも残
留シアン濃度を容易にI PPm以下に処理できる特徴
がある。
The method according to the above publication in which thiosulfate, sulfite, pyrosulfite, dithionite, hydrazine salt, hydroxylammonium salt, etc. is used as a reducing agent, uses the reducing agent to convert ferricyanion to -tamferrocyanide. This process is characterized in that it can be processed relatively more quickly than in the case where a zinc 7-erocyanide precipitate is produced using a zinc salt after reduction to ions, and that the residual cyanide concentration can be easily reduced to IPPm or less.

しかし、上記還元剤のうち、ヒドラジン塩やヒドロキシ
ルアミン塩は高価であり実用性に乏しい。
However, among the above-mentioned reducing agents, hydrazine salts and hydroxylamine salts are expensive and have poor practical use.

また、亜硫酸塩、ピロ亜硫酸塩、亜ニチオン酸塩は空気
からの溶存酸素による酸化を非常に受は易い欠点がある
。それに対して、チオ硫酸塩は溶存酸素による酸化を受
けないという特徴を有するが。
Furthermore, sulfites, pyrosulfites, and dithionites have the disadvantage that they are very susceptible to oxidation by dissolved oxygen from the air. In contrast, thiosulfates have the characteristic of not being oxidized by dissolved oxygen.

フェロシアン化亜鉛沈殿の生成速度が比較的遅(1とい
う難点があった。すなわち、チオ硫酸塩を除く上記還元
剤の場合、数分以内なこ)x ’Jシアンイオンの還元
とフェロシアン化亜鉛沈殿の生成がほぼ完結するが、チ
オ硫酸塩の場合は、“フェリシアンイオンに対するチオ
硫酸塩の添加量が1〜2倍モル程度では沈殿の生成が徐
々に進み9反応の完結に60分以上要する。さらに、塩
類か共存すると、フェロシアン化亜鉛沈殿の生成速度は
顕著量こ低下する。それ故、赤血塩含有漂白液を使用す
る写真定着処理施設からの廃水の処理にチオ硫酸塩含有
定着液を使用する写真定着処理施設からの廃水を利用す
る場合、副成分として添・加される共存塩のため、処理
に相当時間を要すると(・5問題があった〇 本発明者らは、亜鉛塩存在下でフェリシアンイオンをチ
オ硫酸塩により還元処理し、フェロシアン化亜鉛として
沈殿処理する方法に関して、フェロシアン化亜鉛の生成
速度を高めるべく鋭意検討した結果、意外にもアンモニ
ウム塩存在下で著しくそれが増大することを見出し本発
明に到ったものである。
The rate of formation of zinc ferrocyanide precipitate is relatively slow (1. In other words, in the case of the above reducing agents except thiosulfate, it is within a few minutes). The formation of a precipitate is almost completed, but in the case of thiosulfate, "if the amount of thiosulfate added is about 1 to 2 times the molar amount of ferricyanion, the formation of a precipitate will gradually progress and it will take more than 60 minutes to complete the reaction." Furthermore, the rate of formation of zinc ferrocyanide precipitates is significantly reduced in the presence of salts.Thus, thiosulfate-containing When using wastewater from a photographic fixing facility that uses a fixing solution, processing time is required due to coexisting salts that are added as subcomponents (5 problems). As a result of extensive research into the method of reducing ferricyanion with thiosulfate in the presence of zinc salt and precipitating it as zinc ferrocyanide in order to increase the production rate of zinc ferrocyanide, we unexpectedly found that ammonium salt was present. The inventors have discovered that this increases significantly under the following conditions, leading to the present invention.

すなわち9本発明は、フェリシアン化物を含む鉄シアノ
錯塩含有廃水に亜鉛塩及びアンモニウム塩存在下でチオ
硫酸塩を作用させて鉄シアノ錯塩を7エロシアン化亜鉛
として沈殿除去することから成っている。
That is, the present invention consists of treating iron cyano complex-containing wastewater containing ferricyanide with thiosulfate in the presence of zinc salts and ammonium salts to precipitate and remove iron cyano complexes as zinc 7-erocyanide.

本発明においてアンモニウム塩は、亜鉛イオンと難溶性
の塩を生成せず可溶性のものであれば酸根の相違による
効果の差異はほとんどないが、塩化アンモニウム又は硫
酸アンモニウムの状態で含有させるのが最も経済的であ
る。また、写真漂白処理施設からの廃水の処理に際して
は、写真定着処理施設からの廃水中)こ含まれるチオ硫
酸塩を還元剤として利用する場合、チオ硫酸アンモニウ
ムを定着液成分として使用すると好都合である。アンモ
ニウム塩の所要濃度は処理条件によって異るが、  p
H3,5〜pH8,5で2時間以内で処理する場合には
、゛アンモニウムイオンとして1x 1a−’ M以上
1M以下、好ましくは0,5 x 10”” M以上0
.1M以下である。pHは中性附近に設定するのが最も
効率的である。上記の条件下での亜鉛塩及びチオ硫酸塩
の添加量は、°゛それぞれフ、 IJシアンイオンに対
して2.1〜5倍モル、1〜2栢モルで十分である。フ
ェロシアン化亜鉛沈殿の生成速度はアンモニウムイオン
の含有濃度が1x10−’Mから0.1Mにかけて顕著
に増大する。このようなアンモニウム塩による効果は、
その他の通常の塩では認められず、原因は明らかでない
がアンモニウムイオンと亜鉛イオンとが相乗した何らか
の特異的作用の存在を示している。
In the present invention, if the ammonium salt is soluble and does not form a poorly soluble salt with zinc ions, there is almost no difference in effectiveness depending on the acid group, but it is most economical to include it in the form of ammonium chloride or ammonium sulfate. It is. Furthermore, in the treatment of wastewater from photographic bleaching facilities, it is advantageous to use ammonium thiosulfate as a fixer component when the thiosulfates contained in the wastewater from photographic fixing facilities are utilized as a reducing agent. The required concentration of ammonium salt varies depending on the processing conditions, but p
When processing within 2 hours at H3.5 to pH 8.5, ammonium ions must be 1 x 1a-' M or more and 1 M or less, preferably 0.5 x 10" M or more and 0.
.. It is 1M or less. It is most efficient to set the pH around neutrality. Under the above conditions, the amount of zinc salt and thiosulfate added is sufficient to be 2.1 to 5 times mole and 1 to 2 times mole relative to IJ cyan ion, respectively. The rate of formation of zinc ferrocyanide precipitate increases significantly as the concentration of ammonium ions increases from 1x10-'M to 0.1M. The effect of ammonium salts is
This was not observed in other ordinary salts, and although the cause is not clear, it indicates the presence of some specific synergistic action of ammonium ions and zinc ions.

なお、アンモニウム塩の添加濃度が0.1M附近より高
い領域ではフェロシアン化亜鉛沈殿の生成速度が次第1
4低下するが、これは酸根の影響によるとみられ、亜鉛
イオンとの錯体がより安定な酸根はどこの影響が大きい
In addition, in the region where the concentration of ammonium salt added is higher than around 0.1M, the formation rate of zinc ferrocyanide precipitate gradually decreases to 1.
4, but this seems to be due to the influence of the acid radical, which has a greater influence on the acid radical whose complex with zinc ions is more stable.

本発明において、生成するフェロシアン化亜鉛の沈殿を
常法により固液分離により除去することにより処理液中
のシアン濃度を規制値である1 ppm以下にすること
は容易であり、さらにt’ 6.1  ppm以下にす
ることさえ短時間で達成できる。なお。
In the present invention, it is easy to reduce the cyanide concentration in the treatment liquid to the regulatory value of 1 ppm or less by removing the generated zinc ferrocyanide precipitate by solid-liquid separation using a conventional method, and furthermore, it is possible to reduce the cyanide concentration in the treatment liquid to 1 ppm or less, which is the regulatory value. Even reductions to below .1 ppm can be achieved in a short period of time. In addition.

処理液中に亜鉛イオンが規制値である5 ppm以上に
残存する場合がある。このような・場合、処理液中の亜
鉛イオンを、各種沈殿法、イオン交換法。
Zinc ions may remain in the treatment solution at levels greater than the regulatory value of 5 ppm. In such cases, zinc ions in the treatment solution can be removed using various precipitation methods and ion exchange methods.

吸着法、イオン浮選法などの常法により容易に除去でき
る。また9本発明の方法によりフェロシアン化亜鉛沈殿
の生成本完結後、アルカリを加え゛てpH9前後で常法
により水酸化亜鉛を生成させ。
It can be easily removed by conventional methods such as adsorption and ion flotation. Further, after the process of the present invention has been completed to produce zinc ferrocyanide precipitate, alkali is added and zinc hydroxide is produced by a conventional method at a pH of around 9.

フェロシアン化亜鉛沈殿と同時に除去してもよい。It may be removed simultaneously with zinc ferrocyanide precipitation.

それ故9本発明は残留亜鉛イオンの除去方法によって限
定を受けるものでないことは勿論である。
Therefore, it goes without saying that the present invention is not limited by the method of removing residual zinc ions.

本発明は、カラー現像所における漂白処理施設からの廃
水のチオ硫酸塩含有定着処理施設からの廃水利用による
処理や鉄シアノ錯体とチオ硫酸塩が共存するファーマー
減カ液使用写真処理施設からの廃水の処理に適用すれば
非常に有用なことは明らかである。また、亜・硫酸塩系
還元剤は空気酸化を受は易く、とくにメッキ処理施設か
らの廃水など微量の銅イオンが含まれる場合には空気酸
化が著しく加速され、所要量が増大するのに対して。
The present invention is applicable to the treatment of wastewater from bleaching facilities in color photo labs, wastewater from thiosulfate-containing fixing facilities, and wastewater from photographic processing facilities using Farmer-reduced liquids in which iron cyano complexes and thiosulfates coexist. It is clear that it would be very useful if applied to the treatment of. In addition, sulfite-based reducing agents are easily susceptible to air oxidation, and especially when they contain trace amounts of copper ions, such as wastewater from plating processing facilities, air oxidation is significantly accelerated and the amount required increases. hand.

本発明の方法では反応速度が遅いというチオ硫酸塩の弱
点が解消されるので、空気酸化を受けないというチオ硫
酸塩の長所を生かすことができ、−メッキ処理施設から
の廃水中の鉄シアノ錯体の除去を効率的に行なうことが
できる。
Since the method of the present invention overcomes the disadvantage of thiosulfate, which is the slow reaction rate, it is possible to take advantage of the advantage of thiosulfate, which is not subject to air oxidation, and - iron cyano complexes in wastewater from plating facilities. can be efficiently removed.

以下、実施例等により説明する。以下の処理実験におい
て、沈殿処理は恒温槽(25℃)中で行なった。また、
全シアン濃度の分析はピリジン・ピラゾロン法又は原子
吸光光度法(鉄の分析値より換算)により、フェリンア
ンイオンの分析は比色法(420nm )により行なっ
た。また pH調整は希硫酸又は水酸化す) IJウム
溶液により行なったが。
This will be explained below using Examples. In the following treatment experiments, the precipitation treatment was performed in a constant temperature bath (25° C.). Also,
The total cyanide concentration was analyzed by the pyridine-pyrazolone method or the atomic absorption spectrophotometry (converted from the iron analysis value), and the ferrin anion was analyzed by the colorimetric method (420 nm). The pH was adjusted using dilute sulfuric acid or hydroxide solution.

それに伴う液量増加は5%以下であった。The resulting increase in liquid volume was 5% or less.

実施例1゜ シアンとして50 ppmの赤血塩と0.001N−塩
化アンモニウムを含む水溶液100 mlにマグネチッ
クスターラーでかき混ぜなから赤血塩に対して2.5倍
モルの硫酸亜鉛溶液1ml添加し、PHを6.5に調整
後赤血塩に対して等モルのチオ硫酸す) IJウム溶液
1.6ml添加し、  pHスタットでpH6,5に保
持した。所定時間毎に採液し、速やかに東洋沖紙(ム5
C)を用いて濾過し、p液中の全シアン濃度を測定した
。その結果を図1のfilに示した。全シアン濃度が0
.1 ppm以下になったのは処理時間約80分後であ
った〇 比較例1 シアンとして5o PPm含む赤血塩溶液100m1に
マグネチックスターデーでかき混ぜなから赤血塩に対し
て2.5倍モルの硫酸亜鉛溶液1ml添加し。
Example 1 To 100 ml of an aqueous solution containing 50 ppm red blood salt and 0.001N ammonium chloride as cyanide was stirred with a magnetic stirrer, and 1 ml of a zinc sulfate solution with a molar ratio of 2.5 times the red blood salt was added. After adjusting the pH to 6.5, 1.6 ml of a solution of thiosulfuric acid in an equimolar amount to red blood salt was added, and the pH was maintained at 6.5 using a pH stat. Collect the liquid at predetermined intervals and immediately place it on Toyo Okishi (Mu5).
C) to measure the total cyanide concentration in the p solution. The results are shown in fil of FIG. Total cyan concentration is 0
.. It was after about 80 minutes of processing time that it became 1 ppm or less. Comparative Example 1 100 ml of red blood salt solution containing 50 PPm as cyanide was stirred with magnetic starde, so it was 2.5 times the red blood salt. Add 1 ml of molar zinc sulfate solution.

pH6,5に調整後赤血塩に対して等モルのチオ硫酸ナ
トリウム溶液1.6 ml添加し、pHスタットでpH
6,5に保持した。所定時間毎に採液し、速やかに東洋
沖紙(ム5C)を用いて濾過し、′f5液中の全シアン
濃度を測定した。その結果を図1の(2)に示した。炉
液中の全シアン濃度が0.1 ppm以下になったのは
約250分後であった。
After adjusting the pH to 6.5, add 1.6 ml of an equimolar sodium thiosulfate solution to red blood salt, and check the pH with a pH stat.
It was held at 6.5. The solution was sampled at predetermined intervals, immediately filtered using Toyo Oki paper (Mu5C), and the total cyanide concentration in the 'f5 solution was measured. The results are shown in FIG. 1 (2). It took about 250 minutes for the total cyanide concentration in the furnace liquid to drop to 0.1 ppm or less.

マグネチックスターラーでかき混ぜなから赤血塩奇藉に
対して等モルのチオ硫酸ナトリウム溶液1.6mlを添
加後、pHスタットでpH6,5に保持した。
After stirring with a magnetic stirrer, 1.6 ml of an equimolar sodium thiosulfate solution was added to the red blood salt mixture, and the pH was maintained at 6.5 using a pH stat.

2時間後、ならびに室温(20〜27℃)で1日放置後
のフェリシア;イオン濃度はシアン換算で各49.5 
ppm、  46.2 PPm (いずれも原液量5Q
ml換算)であり、フェリシアンイオンの還元反応速度
は極めて小さかった。
Felicia after 2 hours and after being left at room temperature (20-27°C) for 1 day; ion concentration is 49.5 in terms of cyanide.
ppm, 46.2 PPm (Both undiluted solution amount 5Q
(in terms of ml), and the reduction reaction rate of ferricyanion ions was extremely low.

実施例2 シアンとして50ppmの赤血塩と種々の濃度の塩化ア
ンモニウムを含む水溶液100m1にマグネチックスタ
ーデーでかき混ぜなから赤血塩に対して5倍モルの硫酸
亜鉛溶液2mlを添加し、PHを6.5に調整後赤血塩
に対して等モルのチオ硫酸ナトリウ°ム溶液1.6ml
添加し、pHスタットでpH6,5に保持した。フェリ
シアンイオンの存在を示す黄色の着色が完全に消失し、
残留シアン濃度がlppm以下になる所要時間は、塩化
アンモニウム濃度が0.001N、  0.01N、 
 0.INのとき、それぞれ15分、2.5分、3分で
あった。
Example 2 To 100 ml of an aqueous solution containing 50 ppm red blood salt as cyanide and ammonium chloride at various concentrations was stirred with a magnetic starde, 2 ml of a zinc sulfate solution with a molar ratio of 5 times the red blood salt was added, and the pH was adjusted. After adjusting to 6.5, add 1.6 ml of equimolar sodium thiosulfate solution to red blood salt.
and maintained at pH 6.5 using a pH stat. The yellow coloring that indicates the presence of ferricyanion ions completely disappears,
The time required for the residual cyanide concentration to be 1ppm or less is when the ammonium chloride concentration is 0.001N, 0.01N,
0. When IN, it was 15 minutes, 2.5 minutes, and 3 minutes, respectively.

比較例2 シアンとして50ppmの赤血塩と種々の濃度の水溶性
共存塩を含む水溶液100m1にマグネチックスターラ
ーでかき混ぜなから赤血塩に対して5倍モルの硫酸亜鉛
溶液2mlを添加し、  pH6,5に調整後赤血塩に
対して等モルのチオ硫酸す) IJウム溶液1jmlを
添加し+  PHスl ットでpH6,5に保持した。
Comparative Example 2 To 100 ml of an aqueous solution containing 50 ppm red blood salt as cyanide and various concentrations of water-soluble coexisting salts was stirred with a magnetic stirrer, 2 ml of a zinc sulfate solution with a molar ratio of 5 times the red blood salt was added, and the solution was adjusted to pH 6. After adjusting the pH to pH 6.5, 1 jml of thiosulfate (IJ) solution in an equimolar amount to the red blood salt was added, and the pH was maintained at pH 6.5 using a +PH slot.

ろ液中の全シアン濃度と経過時間の関係を図2に示す。FIG. 2 shows the relationship between the total cyanide concentration in the filtrate and the elapsed time.

図中の記号に対応する共存塩とその濃度(カッコ内で示
す)は次の通りである。
The coexisting salts corresponding to the symbols in the figure and their concentrations (indicated in parentheses) are as follows.

(1):無添加、 (2) : MgC12(0,01
N)、 f3i : CaC12(0,01N)、(4
1:LaCl5(O釦I N)、 (5) :KCl0
4(0,IN)、(61: KBr(0,I N)、 
(71: KCI (0,I N)。
(1): No additive, (2): MgC12 (0,01
N), f3i: CaC12 (0,01N), (4
1: LaCl5 (O button IN), (5): KCl0
4(0,IN), (61: KBr(0,IN),
(71: KCI (0, I N).

fsl 二NaCl (0,I N)+  f9) :
 K2S04(0,’ N)+Ql : LiC1(0
,I N)、  (11) : MgC12(0,I 
N)。
fsl2NaCl(0,IN)+f9):
K2S04(0,'N)+Ql: LiC1(0
, I N), (11): MgC12(0, I
N).

Q3  :  CaCl2(0,I  N)なお、その
他に、臭化ナトリウム、酢酸す) IJウム、硝酸ナト
リウム、重炭酸ナトリウム、ロダン酸ナトリウム、リン
酸二水素ナトリウム、四はう酸す) IJウムについて
も含有濃度が増加するほど、これらの共存塩を含まない
ときに比べてフェロシアン化亜鉛沈殿の生成速度が低下
することが認められた。
Q3: CaCl2 (0, IN) In addition, sodium bromide, acetate, IJium, sodium nitrate, sodium bicarbonate, sodium rhodanate, sodium dihydrogen phosphate, tetraoxalate) About IJium It was observed that as the concentration of zinc ferrocyanide increased, the rate of formation of zinc ferrocyanide precipitate decreased compared to when these coexisting salts were not included.

実施例3 シアンとして1100ppの赤血塩と種々の濃度の硫酸
アンモニウムを含む水溶液50m1にマグネチックスタ
ーラーでかき混ぜなから赤血塩に対して2.5倍モルの
硫酸亜鉛溶液1mlを添加し、pH6,5に調整後赤血
塩に対して等モルのチオ硫酸ナトリウム溶液1.6 m
lを添加し、  pHスタットでpH6,5に保持した
。その結果、フェリシアンイオンの存在を示す黄色の着
色が完全に消失し、残留シアン濃度が1 ppm以下に
なる所要時間は、硫酸アンモニウム濃度力0.0005
N、  0.001N、  0.01N、  0.IN
ノ、!11それぞれ17分、6.5分、2.・2分、7
.2分であった。
Example 3 To 50 ml of an aqueous solution containing 1100 pp of red blood salt as cyanide and ammonium sulfate at various concentrations was stirred with a magnetic stirrer, 1 ml of a zinc sulfate solution with a molar ratio of 2.5 times the red blood salt was added, and the pH was 6. 1.6 m of equimolar sodium thiosulfate solution to red blood salt after adjusting to 5.
1 was added and the pH was maintained at 6.5 using a pH stat. As a result, the time required for the yellow coloration indicating the presence of ferricyanide ions to completely disappear and for the residual cyanide concentration to be 1 ppm or less was 0.0005% for the ammonium sulfate concentration.
N, 0.001N, 0.01N, 0. IN
of,! 11 respectively 17 minutes, 6.5 minutes, 2.・2 minutes, 7
.. It was 2 minutes.

比較例5 シアンとして100 ppm含む赤血塩溶液50m1に
マグネチックヌターラーでかき混ぜなから赤血塩に対し
て2.5倍モルの硫酸亜鉛溶液1mlを添加し。
Comparative Example 5 To 50 ml of a red blood salt solution containing 100 ppm of cyanide was stirred with a magnetic nutara, then 1 ml of a zinc sulfate solution with a molar ratio of 2.5 times the red blood salt was added.

pH6,5に調整後赤血塩に対して等モルのチオ硫酸ナ
トリウム溶液1.6 mlを添加し、pHスタットでp
H6,5に保持した。その結果、フェリシアンイオンの
存在を示す黄色の着色が完全に消失し、残留シアン濃度
がI PP”以下になる所要時間は、25分であった。
After adjusting the pH to 6.5, add 1.6 ml of an equimolar sodium thiosulfate solution to the red blood salt, and check the pH with a pH stat.
It was maintained at H6.5. As a result, the time required for the yellow coloration indicating the presence of ferricyan ions to completely disappear and the residual cyan concentration to be below IPP'' was 25 minutes.

実施例4 シアンとして100ppnl)赤血塩と0.4 X 1
O−3Nの塩化アンモニウムおよび0.1Nの塩化ナト
リウムを含む水溶液50m1にマグネチックスターラー
でかき混ぜなから赤血塩に対して2.5倍モルの硫酸亜
鉛溶液jmlを添加し、pH6,5に調整後赤血塩に対
して等モルのチオ硫酸ナトリウム溶液j、6mlを添加
し、pHスタットでpH6,5に2時間保持したのち濾
過した。炉液中の全シアン濃度は、 o、uosPPm
であった。
Example 4 100 ppnl as cyan) red blood salt and 0.4 x 1
Stir with a magnetic stirrer to 50 ml of an aqueous solution containing O-3N ammonium chloride and 0.1N sodium chloride, add jml of a zinc sulfate solution of 2.5 times the mole of red blood salt, and adjust the pH to 6.5. 6 ml of a sodium thiosulfate solution J having an equimolar amount to the red blood salt was added, and the mixture was maintained at pH 6.5 for 2 hours using a pH stat, and then filtered. The total cyanide concentration in the furnace liquid is: o, uosPPm
Met.

比較例4 シアンとして1100ppの赤血塩と0.1Nの塩化ナ
トリウムを含む水溶液5Qmlにマグネチックスターラ
ーでかぎ混ぜなから赤血塩に対して2.5倍モルの硫酸
亜鉛溶液1mlを添加し、  pH6,5に調整後赤血
塩に対して等モルのチオ硫酸す) IJウム溶液1.6
mlを添加し、 pHスp、y l−テpH6,5ニ2
時間保持したのち濾過した。炉液中の全シアン濃度は、
  14.2ppmであった。
Comparative Example 4 To 5Qml of an aqueous solution containing 1100 pp of red blood salt and 0.1N sodium chloride as cyan, stir with a magnetic stirrer and then add 1 ml of a zinc sulfate solution of 2.5 times the mole of red blood salt, After adjusting to pH 6.5, add equimolar amount of thiosulfate to red blood salt) IJum solution 1.6
Add ml, pH sp, y l-te pH 6,5 d 2
After holding for a period of time, it was filtered. The total cyanide concentration in the furnace liquid is
It was 14.2 ppm.

実施例5 シアン換算で各50 ppmのフェリシアンイオン。Example 5 Each ferricyanion ion is 50 ppm in terms of cyanide.

フェロシアンイオンとその他のイオンを表1の組成で含
む模擬廃水に硫酸アンモニラA ヲ0.005 N含有
させた試料溶液50m1をマグネチックスターラーでか
き混ぜながらpH6,5に調整後当該溶液に赤血塩と黄
血塩の合量に対して2.5倍モルの硫酸亜鉛溶液1ml
を添加し、再びpH6,5に調整後赤血塩に対して等モ
ルのチオ硫酸す) IJウム溶液0.8m!を添加しr
  pHスタットでpH6,5に保持した。
50 ml of a sample solution containing 0.005 N of ammonyl sulfate A in simulated wastewater containing ferrocyan ions and other ions with the composition shown in Table 1 was adjusted to pH 6.5 while stirring with a magnetic stirrer, and red blood salt was added to the solution. 1 ml of a 2.5 times molar zinc sulfate solution based on the total amount of yellow blood salt
After adjusting the pH to 6.5 again, add thiosulfate in an equimolar amount to the red blood salt) IJum solution 0.8m! Add r
The pH was maintained at 6.5 using a pH stat.

17分後にフェリシアンイオンの存在を示す着色が完全
に消失したので速やかに濾過した。炉液中の全シアン濃
度は0.065 ppmであった。
After 17 minutes, the coloration indicating the presence of ferricyan ions completely disappeared, so the mixture was immediately filtered. The total cyanide concentration in the furnace fluid was 0.065 ppm.

比較例5 表1の組成の模擬廃水50m1をマグネチックスターラ
ーでかき混ぜながらpH6,5に調整後当該溶液に赤血
塩と黄血塩の合量に対して2.5倍モルの硫酸亜鉛溶液
1mlを添加し、再びpH6,5に調整後赤血塩に対し
て等モルのチオ硫酸す) IJウム溶液0.8tr+1
を添加し、  pHスタットでpH6,5に保持した。
Comparative Example 5 After adjusting 50 ml of simulated wastewater having the composition shown in Table 1 to pH 6.5 while stirring with a magnetic stirrer, 1 ml of a zinc sulfate solution with a molar ratio of 2.5 times the total amount of red blood salt and yellow blood salt was added to the solution. After adjusting the pH to 6.5 again, add thiosulfate in an equimolar amount to the red blood salt) IJum solution 0.8tr+1
was added and maintained at pH 6.5 using a pH stat.

17分後と65分後に一部採液し、p液について全シア
ン濃度を測定した結果、各22 ppm、 5.2PP
mであった。また、フェリシアンイオンによる着色が完
全に消失し、残留シアン濃度がI PPm以下になるの
は90分後であった。
A portion of the liquid was collected after 17 minutes and 65 minutes, and the total cyanide concentration of the p liquid was measured, and the results were 22 ppm and 5.2 PP, respectively.
It was m. Furthermore, it took 90 minutes for the coloring caused by ferricyan ions to completely disappear and the residual cyan concentration to be below IPPm.

実施例6 シアン換算で各50 ppmの7ヱリシアンイオン。Example 6 7 Elysian ions, each 50 ppm in terms of cyanide.

フェロシアンイオンとその他のイオンを表2の組成で含
む模擬廃水に塩化アンモニウムを0.001 N又は0
.005 N含有させた試料溶液53m1をマグネチッ
クスターラーでかき混ぜながらpH6,5に調整後当該
溶液に赤血塩と黄血塩の合量に対して2.5倍モルの硫
酸亜鉛溶液1mlを添加し、再びpH6,5に調整後赤
血塩に対して等モルのチオ硫酸す) IJウム溶液Q、
8mlを添加し+  PHスタットでpH6,5に保持
した。フェリシアンイオンの存在を示す着色は、塩化ア
ンモニウム濃度0.0[]IN、 0.005Nの場合
、それぞれ57分後、20分後に完全に消失した。着色
の消失後、速やかに沖過したろ液中の全シアン濃度は、
塩化アンモニウム濃度0.001 N。
Ammonium chloride was added at 0.001 N or 0 to simulated wastewater containing ferrocyanium ions and other ions with the composition shown in Table 2.
.. After adjusting the pH of 53 ml of the sample solution containing 005 N to 6.5 while stirring with a magnetic stirrer, 1 ml of a zinc sulfate solution of 2.5 times the molar amount relative to the total amount of red blood salt and yellow blood salt was added to the solution. , after adjusting the pH to 6.5 again, add equimolar amount of thiosulfate to red blood salt) IJum solution Q,
8 ml was added and the pH was maintained at 6.5 using a +PH stat. The coloration indicating the presence of ferricyanion ions completely disappeared after 57 minutes and 20 minutes in the case of ammonium chloride concentrations of 0.0[]IN and 0.005N, respectively. The total cyanide concentration in the filtrate filtered immediately after the coloring disappears is:
Ammonium chloride concentration 0.001N.

0゜005Nニツイてそれぞれ0.50 ppm、  
0.13 ppmであった。
0°005N, each 0.50 ppm,
It was 0.13 ppm.

表 2                  単位pp
n比較例6 表2の組成の模擬廃水50m1をマグネチックスターラ
ーでかき混ぜながらpH6,5に調整後当該溶液に赤血
塩と黄血塩の合量に対して2.5倍モルの硫酸亜鉛溶液
1mlを添加し、再びpH6,5に調整後赤血塩に対し
て等モルのチオ硫酸す) IJつl溶液0.8 mlを
添加し、pHスタットでpH6,5に保持した。20分
後、60分後および130分後に一部採液し、ろ液につ
いて全シアン濃度を測定した結果。
Table 2 Unit pp
Comparative Example 6 50ml of simulated wastewater having the composition shown in Table 2 was adjusted to pH 6.5 while being stirred with a magnetic stirrer, and then a zinc sulfate solution of 2.5 times the molar amount relative to the total amount of red blood salt and yellow blood salt was added to the solution. After adjusting the pH to 6.5 again, 0.8 ml of a solution of thiosulfuric acid in an equimolar amount to the red blood salt was added, and the pH was maintained at 6.5 using a pH stat. A portion of the liquid was sampled after 20 minutes, 60 minutes, and 130 minutes, and the total cyanide concentration of the filtrate was measured.

各34.1 ppm、  19.5 ppm、  10
.2 ppmであった。
34.1 ppm, 19.5 ppm, 10 each
.. It was 2 ppm.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、沈殿処理速度に及ぼすアンモニウムイオンの影
響を示したものであり9図2は沈殿処理速度1こ及ぼす
各種共存塩の影響を示したもめである。 特許出願人工業技術院長石板誠−
Figure 1 shows the influence of ammonium ions on the precipitation processing rate, and Figure 2 shows the influence of various coexisting salts on the precipitation processing rate. Patent applicant Makoto Ishiita, Director of the Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims] フェリシアン化物を含む鉄シアノ錯塩含有廃水に亜鉛存
在下でチオ硫酸塩を作用させて鉄シアノ錯塩を7エロシ
アン化亜鉛として沈殿除去する方法において、アンモニ
ウム塩存在下で行なうことを特徴とする鉄シアノ錯塩含
有廃水0処理法。
A method for precipitating and removing iron cyano complexes as zinc hepterocyanide by acting thiosulfate on iron cyano complex-containing wastewater containing ferricyanide in the presence of zinc, characterized in that the process is carried out in the presence of ammonium salts. Zero treatment method for wastewater containing complex salts.
JP10383981A 1981-06-30 1981-06-30 Treatment method for wastewater containing iron cyano complex salts Expired JPS5932194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10383981A JPS5932194B2 (en) 1981-06-30 1981-06-30 Treatment method for wastewater containing iron cyano complex salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10383981A JPS5932194B2 (en) 1981-06-30 1981-06-30 Treatment method for wastewater containing iron cyano complex salts

Publications (2)

Publication Number Publication Date
JPS583690A true JPS583690A (en) 1983-01-10
JPS5932194B2 JPS5932194B2 (en) 1984-08-07

Family

ID=14364587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10383981A Expired JPS5932194B2 (en) 1981-06-30 1981-06-30 Treatment method for wastewater containing iron cyano complex salts

Country Status (1)

Country Link
JP (1) JPS5932194B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053548U (en) * 1991-02-18 1993-01-19 高橋金物株式会社 Raising and lowering
JP2013163144A (en) * 2012-02-10 2013-08-22 Nippon Steel & Sumikin Eco-Tech Corp Treatment method for cyanide-containing wastewater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178092U (en) * 1985-04-26 1986-11-06

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053548U (en) * 1991-02-18 1993-01-19 高橋金物株式会社 Raising and lowering
JP2013163144A (en) * 2012-02-10 2013-08-22 Nippon Steel & Sumikin Eco-Tech Corp Treatment method for cyanide-containing wastewater

Also Published As

Publication number Publication date
JPS5932194B2 (en) 1984-08-07

Similar Documents

Publication Publication Date Title
US4822496A (en) Process for the treatment of effluent containing cyanide and toxic metals, using hydrogen peroxide and trimercaptotriazine
JPH05192665A (en) Method for separating metal forming difficultly fusible sulfide from industrial waste water
US4172785A (en) Process for the separation of Cu++ -ions from sewage, waste water and aqueous solutions
US4172784A (en) Process for the separation of cadmium (Cd++)-ions from sewage, waste water and aqueous solutions
JPS583690A (en) Treatment of waste water containing iron cyanide complex salt
US4530768A (en) Method for the disposal of waste water containing iron-cyanide complexes
JPH0137192B2 (en)
CN114933352A (en) Treatment method of cyanide-containing wastewater
JPH0578105A (en) Treatment of selenium-containing waste water
JPS5846355B2 (en) Treatment method for fluorine-containing ammonia waste liquid
JPS6043798B2 (en) Treatment method for wastewater containing iron cyano complex salts
SU1677076A1 (en) Method of dechlorination of zinc solutions
JPH1099874A (en) Reduction of hexavalent selenium
JPH01171690A (en) Removal of iron cyan complex
JP2003063826A (en) Method for recovering chromic acid and bichromic acid
SU833565A1 (en) Method of waste water purification from thiosulfate ion
JPS59145094A (en) Treatment of cyanoferrate-contg. waste water
JPS6235840B2 (en)
SU544611A1 (en) The method of extraction of selenium from aqueous solutions
RU2002835C1 (en) Process for recovering silver from spent photosolutions
FI66334B (en) FOERFARANDE FOER FRAMSTAELLNING AV VANADYLHYDRAT
RU2281918C1 (en) Method of removing hexacyanoferrates from waste waters
SU1629336A1 (en) Method for removing chlorine from zinc sulphate solution
SU660942A1 (en) Method of purifying waste water from mercury
SU1735414A1 (en) Method of mercury extraction from nitrate solutions