JPS5836664A - Refining method for liquid - Google Patents

Refining method for liquid

Info

Publication number
JPS5836664A
JPS5836664A JP13445381A JP13445381A JPS5836664A JP S5836664 A JPS5836664 A JP S5836664A JP 13445381 A JP13445381 A JP 13445381A JP 13445381 A JP13445381 A JP 13445381A JP S5836664 A JPS5836664 A JP S5836664A
Authority
JP
Japan
Prior art keywords
liquid
tank
particles
electric field
refined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13445381A
Other languages
Japanese (ja)
Inventor
Noboru Inoue
昇 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Sangyo Co Ltd
Original Assignee
Inoue Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Sangyo Co Ltd filed Critical Inoue Sangyo Co Ltd
Priority to JP13445381A priority Critical patent/JPS5836664A/en
Publication of JPS5836664A publication Critical patent/JPS5836664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)

Abstract

PURPOSE:To obtain refined liquid of high clarity with a series of stages by applying an electric field to the liquid to be refined, then allowing the liquid to stagnate for a required time in a flocculating tank having electrical insulation characteristics thereby allowing fine particles to grow coarsely. CONSTITUTION:Liquid to be refined is pumped 1 into an ionizing tank 2, and receives the effect of an electric field in the tank 2, whereby the particles contained in the liquid is charged or polarized. The liquid receiving the effect of the electric field flows immediately into the next flocculating tank 4, and is allowed to stagnate for a constant time in the tank 4. Then the charged or polarized particles in the liquid are attracted to each other by Coulomb force, thus joining and growing to large particles. When the liquid flows from the tank 4 into the next removing means 5, the grown coarse grains in the liquid are removed, whereby the liquid is clarified.

Description

【発明の詳細な説明】 この発明は絶縁油のような油液のみならず。[Detailed description of the invention] This invention applies not only to oil fluids such as insulating oil.

水など各種の液体を精製処理する精製法に関するもので
ある。
It relates to purification methods for purifying various liquids such as water.

油液のような液体に含まれる夾雑粒子のうち、5μ以下
の粒子の除去は、通常のPa等の方法では極めて困難で
ある。これは粒子が微小であるため1重力や遠心力、吸
着剤の吸引力の作用を充分に受けないことによる。中で
も、コロイド粒子とよばれる0、1μ以下の粒子は、液
体中でブラウン運動という自由運動をしており、この運
動の衝突等で帯電し相互に反撥するので、いつまでも沈
澱せず、通常の除去方法では除去できない。
Among the contaminant particles contained in a liquid such as an oil solution, it is extremely difficult to remove particles with a size of 5 μm or less using a conventional method such as Pa. This is because the particles are so small that they are not sufficiently affected by gravity, centrifugal force, or the suction force of the adsorbent. Among them, colloidal particles, which are particles smaller than 0.1 μm, undergo free movement called Brownian motion in the liquid, and they become charged and repel each other due to collisions of this movement, so they do not settle forever and cannot be removed normally. cannot be removed by any method.

一方、近年は工業技術の進歩とともに、絶縁油のような
使用液体に関して1μ以下の精製度が必要とされてきて
おり、高精製度の液体の製法が強く求められている0 そこで従来においても、精製すべき液体に電界をかけ、
微小粒子を電極もしくけ電極間の誘電体にクーロン力に
より吸引して除去する方法が開発されているが、前記し
たようにコロイド粒子には充分にクーロン力が作用しな
いため、同一の工程f:5回、10回と繰り返さなけれ
ばならず、処理能率が低い。
On the other hand, in recent years, with the advancement of industrial technology, it has become necessary for liquids used such as insulating oil to have a purity of 1μ or less, and there is a strong demand for methods for producing highly purified liquids. Applying an electric field to the liquid to be purified,
A method has been developed to remove microparticles by attracting them to an electrode or a dielectric between electrodes using Coulomb force, but as mentioned above, Coulomb force does not act sufficiently on colloidal particles, so the same process f: This process must be repeated 5 or 10 times, resulting in low processing efficiency.

ところで、この発明の発明者が上記方法において微小粒
子が電極もしくけ誘電体に吸引される龜程を観察したと
ころ、5μ以上の粒子は直接電極等圧吸引されるが、5
μ以下の粒子は直ちに吸引されず、一定時同経d後に急
速に吸引される事実があった。この現象は、5μ以下の
粒子が帯電したのち互いにクーロン力で吸引し合って合
体し、徐々に大きな粒子に成長し、液体の抵抗に打ち勝
つ程度の粒径になって初めて、電極に吸引されるためで
あると考えられる。また、粒子の成長はガラス容器など
の絶縁性容器中において急速に進行する、という事実金
も見出した。
By the way, when the inventor of this invention observed the extent to which microparticles were attracted to the electrode and the dielectric material in the above method, it was found that particles of 5μ or more were directly attracted to the electrode at equal pressure, but
There was a fact that particles smaller than μ were not immediately attracted, but were rapidly attracted after a certain period of time. This phenomenon occurs when particles of 5μ or less become electrically charged, then attract each other by Coulomb force and coalesce, gradually growing into larger particles, and only when the particle size reaches a size large enough to overcome the resistance of the liquid are they attracted to the electrode. This is thought to be due to the They have also discovered that particle growth occurs rapidly in insulating containers such as glass containers.

この発明は上記のような観察結果に基いてなされたもの
であって、その要旨とするところは。
This invention was made based on the above observation results, and its gist is as follows.

精製すべき液体に電界をかけてその液中の微小粒子を帯
電、分極させたのち、この微小粒子が充分な大きさに成
長するまで液体を電気絶縁性のタンク内に滞溜させ1次
にこれをフィルターのような粗大粒子除去手段に送り込
むことに、6る。
After applying an electric field to the liquid to be purified and electrifying and polarizing the microparticles in the liquid, the liquid is retained in an electrically insulating tank until the microparticles grow to a sufficient size. This is then sent to a coarse particle removal means such as a filter.

以下この発明の詳細を図示の実施例に基いて説明すると
!1図においてIFiポンプ、2は電離槽、sFi電源
装置、4Fi精製すべき液体を所要時間滞溜させるため
の凝集タンクで、電気絶縁性を有する。εはフィルター
のような粗大粒子の除去手段である。電離槽2としては
、種々のものが採用af能であるが、この例では第2図
に示すように、円筒形の槽本体St−一方の電極とし、
その内部に円板電極7を支柱8により段設したもの金柑
いている。
The details of this invention will be explained below based on the illustrated embodiments! In Figure 1, an IFi pump, 2 an ionization tank, an sFi power supply, and a coagulation tank for retaining the liquid to be purified for a required period of time have electrical insulation properties. ε is a means for removing coarse particles such as a filter. Various types of ionization tank 2 can be used, but in this example, as shown in FIG. 2, a cylindrical tank body St and one electrode are used.
There is a kumquat in which circular plate electrodes 7 are arranged in stages by pillars 8.

精製すべき液体はポンプ1の稼動により電離槽2内へ送
り込まれて該榴2内で電界の作用全受け、これによって
液体に含まれた粒子が帯電もしくは分極する。この電離
槽2でかける電界は、絶縁性液体の場合、電極間間隔d
が3Qwsmとして10〜20KVの静電電界とし、非
絶縁性液体の場合は上記の電極間間隔で30V以Fの静
電電界とするのが適当である。
The liquid to be purified is fed into the ionization tank 2 by the operation of the pump 1, and is fully subjected to the action of an electric field within the tank 2, whereby the particles contained in the liquid are charged or polarized. In the case of an insulating liquid, the electric field applied in this ionization tank 2 is
Assuming 3Qwsm, the electrostatic electric field is 10 to 20 KV, and in the case of a non-insulating liquid, it is appropriate to set the electrostatic electric field to 30 V or more with the above-mentioned inter-electrode spacing.

このように電界の作用を受けた液体は直ちに次の凝集タ
ンク4に流入し、#タンク4内に一定時間滞溜する。こ
れによって、液中の帯電もしくけ分極した粒子はクーロ
ン力で互いに吸引し合体して大きな粒子に成長する。こ
の場合。
The liquid thus subjected to the electric field immediately flows into the next coagulation tank 4 and remains in #tank 4 for a certain period of time. As a result, the charged or polarized particles in the liquid attract each other due to the Coulomb force, coalesce, and grow into large particles. in this case.

粒子は液体の流動の影響tはとんど受けず、また凝集タ
ンク4の絶縁で外部からの電気的な影響も受けないので
1合体成長が促進され、迅速に粗大な粒子となる。凝集
タンク4は電気絶縁性を有するものであればよく、タン
ク全体kFRPのような絶縁性物質で構成してもよいし
Since the particles are hardly affected by the flow of the liquid and are not affected by external electrical influences due to the insulation of the coagulation tank 4, their coalescence growth is promoted and they quickly become coarse particles. The aggregation tank 4 may be any material as long as it has electrical insulation properties, and the entire tank may be made of an insulating material such as kFRP.

金m製のタンク本体の内面に絶縁性内張りを施したもの
でもよい。また、タンクを絶縁材で支持し、且り他の装
置との闇に絶縁性接続部を設けて絶縁性金もたせること
もできる。
It is also possible to use an insulating lining on the inner surface of the tank body made of gold. Further, it is also possible to support the tank with an insulating material and provide an insulating connection part between it and other equipment to provide an insulating metal.

凝集タンク4内で微小粒子が粗大粒子に成長することに
より、フィルターのような既存の除去手段で除去が1I
iT能となる。そのため、液体が凝集タンク4から次の
除去手段6内へ流入すると、液体中の成長した粗大粒子
が除去され、液体は清浄化される。除去手段は上記のフ
ィルターの他、遠心分離機や、電極に粒子を吸着し除去
する静電浄化装*1−用いることができる。
As fine particles grow into coarse particles in the flocculation tank 4, removal by existing removal means such as filters is reduced to 1I.
Becomes IT Noh. Therefore, when the liquid flows from the coagulation tank 4 into the next removing means 6, the grown coarse particles in the liquid are removed and the liquid is purified. In addition to the above-mentioned filter, the removal means may include a centrifugal separator and an electrostatic purifier*1 that removes particles by adsorbing them to an electrode.

凝集タンク4内の滞溜時間は、この粗大粒子の除去手段
の能力に応じて設定される。即ち、フィルターの網目が
細かければ、fl溜時闇を短縮できるし、フィルターの
網目が大であれば、滞溜時間が長くなる。
The residence time in the coagulation tank 4 is set depending on the ability of the coarse particle removal means. That is, the finer the filter mesh, the shorter the darkness during fl storage, and the larger the filter mesh, the longer the retention time.

尚、フィルターのような粗大粒子の除去手段にも電気絶
縁性をもたせると、粒子の粗大化効果が一層促進される
Incidentally, if a means for removing coarse particles such as a filter also has electrical insulation properties, the effect of coarsening the particles is further promoted.

このようにこの発#4h、精製すべき液体に電界をかけ
たのら、この液体を凝集タンク内で滞溜させ1次に粗大
粒子の除去手段にかけるもので、従来の方法では容易に
取り除けなかった微小粒子も粗大に成長して除去手段で
取り除かれるから、一連の工程で一挙に清浄度の高い精
製液体が得られ、連続的な精製が可能である。
In this way, in #4h, after applying an electric field to the liquid to be purified, this liquid is allowed to stagnate in a coagulation tank and is first applied to coarse particle removal means, which cannot be easily removed using conventional methods. Since the remaining microparticles grow coarsely and are removed by the removal means, a highly clean purified liquid can be obtained all at once in a series of steps, making continuous purification possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第4図はこの発明方法の工程図、@2図は電離槽の一部
切り大いた側面図である。 1・・・ポ ン プ、 2・・・電 離 檜。 4・・・凝集タンク、 6・・・粗大粒子の除去手段特
許出願人井上産業株式会社 代理人 弁理士 杉 太     巌 同  弁理士 杉  末  勝  徳 第11囚
Fig. 4 is a process diagram of the method of this invention, and Fig. 2 is a partially cut-away side view of the ionization tank. 1...Pump, 2...Ionized Hinoki. 4...Agglomeration tank, 6...Means for removing coarse particles Patent applicant Inoue Sangyo Co., Ltd. Agent Patent attorney Iwaodo Sugi Patent attorney Katsunori Sugisue 11th prisoner

Claims (1)

【特許請求の範囲】[Claims] 1、精製すべき液体に電界金かけたのら、この液体をフ
ィルター、遠心分離機等の粗大粒子除去手段へ送り込む
前に、この液体を電気絶縁性を有する凝痰タンク内に所
要時間滞溜させることを特徴とする液体精製法。
1. After applying an electric field to the liquid to be purified, this liquid is retained in an electrically insulating sputum tank for the required time before being sent to coarse particle removal means such as a filter or centrifuge. A liquid purification method characterized by:
JP13445381A 1981-08-26 1981-08-26 Refining method for liquid Pending JPS5836664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13445381A JPS5836664A (en) 1981-08-26 1981-08-26 Refining method for liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13445381A JPS5836664A (en) 1981-08-26 1981-08-26 Refining method for liquid

Publications (1)

Publication Number Publication Date
JPS5836664A true JPS5836664A (en) 1983-03-03

Family

ID=15128693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13445381A Pending JPS5836664A (en) 1981-08-26 1981-08-26 Refining method for liquid

Country Status (1)

Country Link
JP (1) JPS5836664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344912A (en) * 1986-08-13 1988-02-25 Nippon Mining Co Ltd Method for removing suspensions in mineral oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344912A (en) * 1986-08-13 1988-02-25 Nippon Mining Co Ltd Method for removing suspensions in mineral oil

Similar Documents

Publication Publication Date Title
US2116509A (en) Electric filtration system
US3567619A (en) Electrostatic coalescence means
US4941962A (en) Electrostatic adsorptive fluid filtering apparatus
US3247091A (en) Electrohydrodynamic precipitator
CN103130363B (en) Desalination system and desalination method
DE3629102C2 (en)
CN102872646A (en) Charge type coalescing-separating oil filter
JP7399604B2 (en) Filtration equipment and filtration systems
EP0121540B1 (en) Gas scrubbing method and device
US3970536A (en) Liquid treating method and apparatus
JPWO2023080199A5 (en)
JPH0468002B2 (en)
JPS5836664A (en) Refining method for liquid
EP0968258B1 (en) Method and device for purifying contaminated liquids
DE4344828A1 (en) Removing particles from liquids
US1326106A (en) Schaet fur elektro-osmose m
JPS6124042B2 (en)
US1029579A (en) Method of separating substances in suspension by washing.
EP0042674A2 (en) Process for refining electric insulating liquids
RU2212377C1 (en) Water purifying apparatus
EP0159910B1 (en) Method and apparatus for centrifugal separation of dispersed phase from continuous liquid phase
NZ283588A (en) Particle separation from conductive fluid: transverse electric field
CN1005091B (en) Method for Purifying Insulating Oil with High Gradient and Stable Electrostatic Field
JP2006000801A (en) Charge injection type electrostatic oil purifier
JPH0583306B2 (en)