JPS5836627A - Production of powder coated with base metal - Google Patents

Production of powder coated with base metal

Info

Publication number
JPS5836627A
JPS5836627A JP13331481A JP13331481A JPS5836627A JP S5836627 A JPS5836627 A JP S5836627A JP 13331481 A JP13331481 A JP 13331481A JP 13331481 A JP13331481 A JP 13331481A JP S5836627 A JPS5836627 A JP S5836627A
Authority
JP
Japan
Prior art keywords
powder
base metal
base
soln
nonmetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13331481A
Other languages
Japanese (ja)
Other versions
JPS6148585B2 (en
Inventor
Shinroku Kawakado
川角 真六
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13331481A priority Critical patent/JPS5836627A/en
Publication of JPS5836627A publication Critical patent/JPS5836627A/en
Publication of JPS6148585B2 publication Critical patent/JPS6148585B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce titled coated powder which is finely granular and uniform easily by dispersing ceramic-base powder in a gellike aq. soln. contg. base metal compds., nonmetallic NH4 salt and aqueous ammonia or caustic alkalis then adding a reducing agent thereto. CONSTITUTION:Base metals alone or their compds. are once dissolved in an arbitrary aq. soln. and nonmetallic NH4 salt such as NH4Cl is mixed with said soln. Aqueous ammonia or an aq. soln. of caustic alkali is added to the mixed solns. to control the pH thereof to 5-10. Powder of ceramic base is added under agitation to the resultant gellike aq. soln., whereby the powder is dispersed uniformly therein. Under agitation, a reducing agent is added to the dispersion to reduce the base metal compd. to the simple substance of the base metal. Then, the gel state of the dispersion is eliminated and at the same time the powder coated with base metal is formed. Said powder is removed by decantation or filtration and is washed and dried.

Description

【発明の詳細な説明】 本発明は、卑金属被覆粉末の製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing base metal coated powders.

更に詳しくは1本発明は、卑金属から成る被覆層による
実質的に完全な被覆状態にある基体物質の粒子からなる
卑金属被覆粉末を製造する方法に関する。
More particularly, the present invention relates to a method for producing a base metal coated powder comprising particles of a substrate material that are substantially completely coated with a coating layer of base metal.

鋼、ニッケル、亜鉛、鉄などの金属粉末と上22ツタス
粉末を成形した後、焼結して得られる複合焼結体は金属
とセラミックスの両者の特性を併譬 せ持り丸め、軸受材料、耐摩耗材料、耐高温材料など各
種の用造に用いられる。しかし金属と金属とOS合焼結
体の製造の場合では、多くの組み合わせにかいては金属
間の比重差が余り大きくない丸め一方の金属粉と他方の
金属粉との通常の混合により均質な混合粉末を得ること
ができるが、金属とセラミックス粉末は一般に比重差が
大きいため、均質′&混合粉末の調製そして均質な焼成
物を得るKは特別な混合装置、成形装置などが必要とな
シま九操作も複雑になる。そして得られる焼成物の均質
度も高くない。
The composite sintered body obtained by molding and sintering metal powders such as steel, nickel, zinc, iron, etc., and the upper 22 Tutas powder has the characteristics of both metals and ceramics, and can be used as a bearing material. Used in various applications such as wear-resistant materials and high-temperature resistant materials. However, in the case of manufacturing metal-to-metal and OS composite sintered bodies, in many combinations, the difference in specific gravity between the metals is not so large, and by normal mixing of one metal powder and the other metal powder, a homogeneous product can be obtained. Mixed powders can be obtained, but since there is generally a large difference in specific gravity between metal and ceramic powders, the preparation of homogeneous and mixed powders and the production of homogeneous fired products require special mixing equipment, molding equipment, etc. It also makes the operation more complicated. The degree of homogeneity of the obtained baked product is also not high.

本発明は上述のよう表金属とセラミックスからなる複合
焼結体の製造に特に適し丸環金属被覆粉末の製造法を提
供するものである。
The present invention provides a method for producing a round metal-coated powder particularly suitable for producing a composite sintered body made of surface metal and ceramics as described above.

本発明は、卑金属化合物、非金属性アンモニウム塩、及
びアンモニア水又祉カ性アルカリを含むlll5−10
のゲル状水性溶液にセラミックス基体粉末が均一に分散
されている分散液に還元剤を攪拌下に加えることを特徴
とする卑金属被覆粉末の製造法である。
The present invention comprises a base metal compound, a nonmetallic ammonium salt, and ammonia water or alkali.
This is a method for producing a base metal-coated powder, which is characterized in that a reducing agent is added to a dispersion in which a ceramic substrate powder is uniformly dispersed in a gel-like aqueous solution under stirring.

本発明によシ製造される粉末は、セラきツクス基体粒子
を核として、この核の周囲に卑金属からなる被覆層が設
けられた複合体粒子から表る被覆粉末である。本発明の
製造法によれば均質で強固な卑金属の被覆層をセラミッ
ク誉体粒子に設けることができ、更にヒの被覆層祉従来
の化学メッキ法によシ製造される被覆層と異なり基体と
なるセ□yAIヵよよ、汚染を実質ゎに。〈受けあいた
め、高純度の卑金属被覆層として形成するととができる
。また本発明では従来の化学メッキ法に比べて層厚が大
きく、均質2強固な被覆層が得られる。更に従来の化学
メッキ法では平均粒径1ミクロン以下の粒子からなる粉
末については均一な金属被覆粉末が得られにくかったが
1本発明の方法によればそのような微粒子状粉末の均一
な被覆が容1IIK達成できる。従って1本発1jlK
より得られる卑金属被覆粉末社、焼結体の製造以外にも
各種O用途に使用することができる。
The powder produced according to the present invention is a coated powder consisting of composite particles having a ceramic base particle as a core and a coating layer made of a base metal provided around the core. According to the manufacturing method of the present invention, it is possible to provide a homogeneous and strong base metal coating layer on the ceramic particles, and the coating layer is more easily bonded to the substrate unlike the coating layer produced by the conventional chemical plating method. It's going to be AI, make pollution a reality. (For mutual acceptance, it can be formed as a high-purity base metal coating layer.) Furthermore, in the present invention, a thicker, more homogeneous and stronger coating layer can be obtained compared to conventional chemical plating methods. Furthermore, with conventional chemical plating methods, it was difficult to obtain uniform metal coating powder for powders with an average particle size of 1 micron or less; however, the method of the present invention makes it possible to uniformly coat such fine powder particles. You can achieve 1IIK. Therefore, one shot is 1jlK
The base metal coated powder obtained from the method can be used for various O applications in addition to the production of sintered bodies.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明で用いる卑金属の例としては、チタン。An example of a base metal used in the present invention is titanium.

パナジウ、ム、クロム、マンガン、鉄、コバルト。Panax, aluminum, chromium, manganese, iron, cobalt.

ニッケル、銅及び亜鉛などの周期律表第4周期に属する
遷害金属を挙げることができる。更に、鉛。
Examples include transition metals belonging to the fourth period of the periodic table, such as nickel, copper, and zinc. Furthermore, lead.

モリブデン、すずなどの空気中で安定な卑金属も。Also base metals that are stable in air, such as molybdenum and tin.

本発明の被覆層を形成するのに適当である。これらの卑
金属化合物のみの単独使用K11lられす、二種以上を
組み合わせて使用してもよい。また、貴金属を卑金属に
対して相対的に少ない量(重量比)で混合使用すること
も可能である。卑金属化合物はその水性溶液(水溶液、
鉱酸溶液、アルカリ性水溶液等)が調製可能なものであ
れば特に制限はない。例えば、卑金属の硫酸塩、硝酸塩
、ハロゲン化物、シアン化物などを挙げることができる
Suitable for forming the coating layer of the present invention. These base metal compounds may be used alone, or two or more of them may be used in combination. It is also possible to mix and use noble metals in a relatively small amount (weight ratio) with respect to base metals. Base metal compounds are dissolved in their aqueous solutions (aqueous solutions,
There is no particular restriction as long as a mineral acid solution, alkaline aqueous solution, etc.) can be prepared. Examples include base metal sulfates, nitrates, halides, and cyanides.

更に、卑金属の錯化合物も使用することができ。Furthermore, complex compounds of base metals can also be used.

また卑金属単体を鉱酸に溶解した溶液も利用することが
できる。
Further, a solution in which a base metal element is dissolved in a mineral acid can also be used.

非金属性のアンモニウム塩の例としては、塩化アンモニ
ウム、酢酸アンモニウム、硫酸アンモニウム、硝酸アン
モニウム、リン酸アンモニウムなどを挙げることができ
るが、塩化アンモニウムが争 特に好ましい。
Examples of nonmetallic ammonium salts include ammonium chloride, ammonium acetate, ammonium sulfate, ammonium nitrate, and ammonium phosphate, with ammonium chloride being particularly preferred.

卑金属化合物、非金属性のアンモニウム塩、及びアンモ
ニア水又は力性アルカリを含む−5−1Oのゲル状水性
溶液は1例えば9次のようにして調製する。卑金属単体
又は卑金属化合物を、水、希酸、淡厚酸、混合酸、アル
カリ性水溶液表どの任意の水性溶媒(対象の卑金属単体
又は卑金属化合物を溶解する溶媒)に一旦溶解させ、仁
の溶液と塩化アンモニウム(Nil、 ct )などの
アンモニウム塩を混合し、この混合液にアンモニア水又
は力性アルカリ水溶液(力性ソーダ、力性カリなどの水
溶液)を加えることにより混合液の−を5−1O(好ま
しくはe−s)ic調整する。卑金属の溶液にアンモニ
ウム塩を加えることによシ、あるいは更にアンモニア水
又は力性アルカリ水溶液を加えて混合液の−を5−10
に調整することによシ該混合液をゲル状とする。塩化ア
ンモニウムなどのアンモニウム塩の添加量は卑金属化合
物の卑金属に対して蟲量以上かつ轟量の3倍以下の量で
あることが好ましい。この範囲よシ少表い量でアンモニ
ウム塩を加えるとセラミックス基体の粉末を安定な状態
で均一に分散させることが困難になり。
A gel-like aqueous solution of -5-1O containing a base metal compound, a nonmetallic ammonium salt, and aqueous ammonia or aqueous alkali is prepared, for example, as follows. Once the base metal element or base metal compound is dissolved in any aqueous solvent such as water, dilute acid, dilute acid, mixed acid, or alkaline aqueous solution (a solvent that dissolves the target base metal element or base metal compound), it is mixed with a solution of chloride. By mixing ammonium salts such as ammonium (Nil, ct) and adding aqueous ammonia or aqueous alkaline solutions (aqueous solutions of sodium chloride, potassium chloride, etc.) to the mixture, - of the mixture can be changed to 5-1O ( Preferably e-s)ic adjustment. By adding an ammonium salt to the base metal solution, or by further adding aqueous ammonia or aqueous alkaline solution, the - of the mixture can be reduced to 5-10.
The mixed solution is made into a gel by adjusting the amount. The amount of ammonium salt such as ammonium chloride added is preferably at least three times the amount and three times the amount relative to the base metal of the base metal compound. If ammonium salt is added in an amount less than this range, it becomes difficult to uniformly disperse the ceramic substrate powder in a stable state.

一方、アンモニウム塩の量が上記の範囲より多い鳩舎に
はゲルの粘度が高くなり過ぎ2反応が不均一になシやす
<、1九生成後の卑金属被覆粉末の被覆層にアンモニウ
ム塩が混入しやすくなる。
On the other hand, if the amount of ammonium salt is greater than the above range, the viscosity of the gel will become too high, causing the reaction to become uneven. It becomes easier.

本発明で用いるセラミツタ一体は、上記のゲル状水性*
*に実質的に溶解性を示さないものであればq#に限定
なく、その例としては、酸化ケイ素。
The ceramic ivy body used in the present invention is the above-mentioned gel-like aqueous *
*It is not limited to q# as long as it does not show substantial solubility in .An example is silicon oxide.

酸化ジルコニウム、二酸化チタン、アルミナ、チタン酸
バリウムなどの酸化物系セラミックス及び炭化チタン、
窒化チタン、炭化タングステン、炭化ケイ素などの非酸
化物系セラミックスなどのようなセラミックスを挙げる
ことができる。
Oxide ceramics such as zirconium oxide, titanium dioxide, alumina, barium titanate, and titanium carbide,
Examples include ceramics such as non-oxide ceramics such as titanium nitride, tungsten carbide, and silicon carbide.

セラミックス基体の粉末は通常は平均粒径が30ミクロ
ン以下程度のものが用いられるが、好ましい粉末は平均
粒径10ミクロン以下のものであシ。
The ceramic substrate powder usually has an average particle size of about 30 microns or less, but preferably has an average particle size of 10 microns or less.

粒度状特に均一である必要はない。また前述のように平
均粒径が1ミクロン以下の粉末の均一な被覆も充分可能
である。
The particle size does not need to be particularly uniform. Furthermore, as mentioned above, uniform coating of powder with an average particle size of 1 micron or less is also possible.

分散液に含有されるセラミックス基体粉末と卑金属化合
物の比率には特に制限はないが、生成する卑金属被覆粉
末の用途として複合焼結体を想定し九場合には、セラミ
ックス基体と、金属化合物中の卑金属との比率は289
8から98:2(重量比)の範囲にあることが望ましい
。更に望ましい範囲は、セラミックス基体:卑金属−S
:5S−95:5(重量比)である。
There is no particular restriction on the ratio of the ceramic base powder and the base metal compound contained in the dispersion liquid, but if the base metal coated powder to be produced is assumed to be used as a composite sintered body, the ratio between the ceramic base powder and the base metal compound may be The ratio to base metals is 289
It is desirable that the ratio is in the range of 8 to 98:2 (weight ratio). A more desirable range is that ceramic substrate: base metal-S
:5S-95:5 (weight ratio).

本発明の分散液は、前記のようにして調製し丸環金属化
合物、非金属性のアンモニウム塩、及びアンモニア水又
は力性アルカリを含む−5−1Oのゲル状水溶液にセラ
ミックス基体粉末を攪拌下に添加するなどの方法により
生成し、この方法によシ均一な分散液が得られる。攪拌
社任意の方筬任意O時期によ〉行なうことができ、攪拌
器具。
The dispersion of the present invention is prepared as described above, and ceramic substrate powder is added to a gel-like aqueous solution of -5-1O containing a round ring metal compound, a nonmetallic ammonium salt, and aqueous ammonia or an aqueous alkali under stirring. A uniform dispersion can be obtained by this method. A stirring device that can be used in any manner and at any time.

鋏置OII類を問わず使用することができる。It can be used regardless of the scissor holder type OII.

分散液への還元剤の添加は攪拌下に行なう。攪拌の方法
には特に制限杜ないが、ゲル状水性溶液とセラ2ツクス
基体粉末との分散液が攪拌対象であるため1強力表攪拌
が可能な方法が望ましい。
The reducing agent is added to the dispersion while stirring. There are no particular restrictions on the stirring method, but since the dispersion of the gel-like aqueous solution and the ceramic base powder is to be stirred, a method that allows for high-power stirring is desirable.

還元剤は、ゲル状水性溶液中の卑金属化合物を還元して
卑金属単体に変換し得るものであれば特に制限はない。
The reducing agent is not particularly limited as long as it can reduce the base metal compound in the gel-like aqueous solution and convert it into a base metal element.

還元剤の例としては、水素化リチウムアル書ニウム、水
素化ホウ素ナトリウムなどが挙けられるが、これらの還
元剤に限定されるものでatい。還元剤祉ゲル状水性溶
液中の卑金属化合物を還元して卑金属単体とするのに充
分な量添加する。
Examples of the reducing agent include lithium arsenium hydride, sodium borohydride, etc., but the reducing agent is not limited to these. A reducing agent is added in an amount sufficient to reduce the base metal compound in the gel-like aqueous solution to a base metal element.

攪拌下のゲル状水性溶液とセラミックス基体粉末との分
散液への還元剤の添加により、該分散液のゲル状態は解
消し、同時に卑金属被覆粉末が生成する。
By adding a reducing agent to the stirred dispersion of gel-like aqueous solution and ceramic substrate powder, the gel state of the dispersion disappears and at the same time a base metal-coated powder is produced.

生成し丸環金属被覆粉末は次いでデヵンテークヨン、F
取などにょシ取シ出され、洗浄、乾燥されて各種の用途
に用いられる。
The resulting round metal-coated powder is then decanted and F
It is taken out, washed, dried, and used for various purposes.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

〔実施例1〕 塩化第二銅(CuC4)  6 fを水45(1w+g
K溶解し、これに塩化アンモニウム5t(銅ニ対t、テ
1.05当量倍)次すでアンモニア水(28に水溶液)
7.5−を加えることにょシ青色のゲル状溶液(f1約
7)が得られた。この溶液にチタン酸パリウA (Ba
Ti0. )の粉末(平均粒径0.13ミクロン)40
Fを加え、充分攪拌して均一な分散液を得九。
[Example 1] 6 f of cupric chloride (CuC4) was mixed with 45 g of water (1 w + g
Dissolve K, add 5 t of ammonium chloride (1.05 times the equivalent of copper), and then add aqueous ammonia (aqueous solution to 28).
Upon addition of 7.5, a blue gel-like solution (f1 about 7) was obtained. Paryu titanate A (Ba
Ti0. ) powder (average particle size 0.13 microns) 40
Add F and stir thoroughly to obtain a uniform dispersion.9.

この分散液を充分攪拌しながら水素化ホウ素ナトリウム
水溶液(NaBH,21/100w1 H,O)を10
0−加えたところゲル状態は解消し、灰色の粉末が生成
した。次いで粉末を炉取し、水及び湯を用いて洗浄し、
65℃て乾燥することによ、941.12tの鋼被覆チ
タン酸バリウム粉末を得た。収率96x0被覆粉末中の
チタン酸バリウム/銅重量比: 914 / 6.6゜ 上記で得られ九銅被榎チタン酸バリウム粉末を容器に入
れ、これに電極を挿入して抵抗値を測定し九ところ抵抗
値ははぼ0であシ、純銅粉の抵抗値に一致し良。
While thoroughly stirring this dispersion, 10% of a sodium borohydride aqueous solution (NaBH, 21/100w1 H,O) was added.
When 0- was added, the gel state disappeared and a gray powder was produced. Next, the powder is taken out of the furnace and washed with water and hot water.
By drying at 65° C., 941.12 tons of steel-coated barium titanate powder was obtained. Yield: 96x0 Barium titanate/copper weight ratio in coated powder: 914/6.6゜The nine copper coated barium titanate powder obtained above was placed in a container, and an electrode was inserted into it to measure the resistance value. The resistance value was almost 0, which matched the resistance value of pure copper powder.

を九上記で得られた銅被覆チタン酸バリウム粉末を圧力
1トン/−にてプレスで円盤状に成形し。
The copper-coated barium titanate powder obtained above was pressed into a disk shape at a pressure of 1 ton/-.

アルゴン気体ふん囲気下1150℃で1時間焼成したと
ころ、均質な表面状態を持つ強固な焼成物が得られ丸。
When fired for 1 hour at 1150°C under an argon atmosphere, a strong fired product with a homogeneous surface condition was obtained.

〔実施例2〕 塩化第二銅42.3 Fを水3tに溶解し、辷れに塩化
アンモニウム3&3f(銅に対して1.05当量僑)次
いで力性ソーダ水溶液(NaOH100f/!!OOs
g) 480 mgを加えることにょシ青色のゲル状溶
液(−約7)を得た。この溶液に二酸化チタン(〒io
、)の粉末20fを加え、充分攪拌して均一な分散液を
得九。この分散液を充分攪拌し々がら水素化ホウ素ナト
リウム水溶液(NaBH,14f/700−■10)を
70 G11g加えたところゲル状態は解消し、灰色の
粉末が生成した。次いで粉末をF取し、水及び湯を用い
て洗浄し、65℃で乾燥することによfi 39.2 
Fの銅被覆二酸化チタン粉末を得た。収率98%。被覆
粉末中の二酸化チタン/鋼重量比: 501500 上記で得られた銅被覆二酸化チタン粉末を容器に入れ、
辷れに電極を挿入して抵抗値を測定したところ抵抗値線
はぼOでオシ、純銅粉の抵抗値に一致した。
[Example 2] Cupric chloride 42.3 F was dissolved in 3 t of water, followed by ammonium chloride 3 & 3 F (1.05 equivalent to copper) and then aqueous sodium chloride solution (NaOH 100 F/!!OOs).
g) A blue gel-like solution (-approx. 7) was obtained by adding 480 mg. Add titanium dioxide (〒io) to this solution.
, ) was added and stirred sufficiently to obtain a uniform dispersion. When this dispersion was thoroughly stirred and 11 g of 70 G of a sodium borohydride aqueous solution (NaBH, 14f/700-10) was added, the gel state disappeared and a gray powder was produced. The powder was then collected, washed with water and hot water, and dried at 65°C to obtain fi 39.2.
A copper-coated titanium dioxide powder of F was obtained. Yield 98%. Titanium dioxide/steel weight ratio in coated powder: 501500 Place the copper coated titanium dioxide powder obtained above in a container,
When I inserted an electrode into the leg and measured the resistance value, the resistance value line was 0, which matched the resistance value of pure copper powder.

また上記で得られた銅被覆二酸化チタン粉末を圧力1ト
ン/jにプレスで円盤状に成形し、アルゴン気体ふん囲
気下1000℃で1時間焼成したところ、均質な表面状
態を持つ強固な焼成物が得られた。
In addition, when the copper-coated titanium dioxide powder obtained above was pressed into a disc shape under a pressure of 1 ton/j and fired at 1000°C for 1 hour in an argon atmosphere, a strong fired product with a homogeneous surface condition was obtained. was gotten.

〔実施例3〕 塩化ニッケル(NiC4・6馬0) 22 Fを水20
0−に溶解し、これに塩化アンモニウム16tにッケル
に対して1.6当量倍)次いで力性ソーダ水溶液(Na
OH5Qf/25Gsg H,O) 140−を加える
ことKより青色のゲル状溶液(−約7)が得られた。こ
の溶液に二酸化チタンの粉末(平均粒径2ミクロン)4
02を加え、充分攪拌して均一な分散液を得た。この分
散液を充分攪拌しながら水素化ホウ素ナトリウム水溶液
(NaBH,5f/2 S OsgH,O)を250g
Id加えたところゲル状部は解消し、灰色の粉末が生成
した。次いで粉末を炉取し。
[Example 3] Nickel chloride (NiC4.6 0) 22F to 20% water
0-, and to this was added 16 t of ammonium chloride (1.6 times the amount of sodium chloride) and then aqueous sodium hydroxide solution (Na
By adding OH5Qf/25Gsg H,O) 140-, a blue gel-like solution (-about 7) was obtained. Add 4 titanium dioxide powder (average particle size 2 microns) to this solution.
02 was added and thoroughly stirred to obtain a uniform dispersion. While thoroughly stirring this dispersion, add 250g of sodium borohydride aqueous solution (NaBH, 5f/2S OsgH,O).
When Id was added, the gel-like part disappeared and a gray powder was produced. Next, the powder is taken out in a furnace.

水及び湯を用いて洗浄し、65℃で乾燥することKよ#
)44.54fのニッケル被覆二酸化チタン粉末を得た
。収率98%。被覆粉末中の二酸化チタン/ニッケル重
量比: 88 / 12゜上記で得られたニッケル被覆
二酸化チタン粉末を圧力1トン/−にてプレスで円盤状
に成形し。
Wash with water and hot water and dry at 65℃.
) 44.54f of nickel-coated titanium dioxide powder was obtained. Yield 98%. Titanium dioxide/nickel weight ratio in coated powder: 88/12° The nickel-coated titanium dioxide powder obtained above was pressed into a disk shape at a pressure of 1 ton/-.

アルゴン気体ふん囲気下で1200℃で1時間焼成した
ところ、均質な表面状態を持つ強固た焼成物が得られた
When fired at 1200° C. for 1 hour under an argon atmosphere, a strong fired product with a homogeneous surface condition was obtained.

特許出願人   川 角 真 六 代理人 弁理士柳川泰男Patent applicant Shinro Kawakami Agent: Patent attorney Yasuo Yanagawa

Claims (1)

【特許請求の範囲】 1、卑金属化合物、非金属性のアンモニウム塩。 及びアンモニア水又は力性アルカリを含む−5−10の
ゲル状水性溶i!にセラミックス基2体粉末が均一に分
散されている分散液に還元剤を攪拌下に加えることを特
徴とする卑金属被覆粉末の製造法。 1 非金属性のアンモニウム塩が塩化アンモニウムであ
ることを特徴とする特許請求の範囲第1項記載の製造法
。 3、非金属性のアンモニウム塩の含有量が卑金属化合物
の卑金属に対して尚量以上かつ当量の3倍以下の量であ
ることを特徴とする特許請求の範囲第1項記載の製造法
。 4、卑金属が周期律表第4周期の遷移金属であることを
特徴とする特許請求の範囲第1項記載の製造法。 1 基体物質粉末の平均粒径が1ミクロン以下であるこ
とを特徴とする特許請−求の範囲第1項記載OII造法
[Claims] 1. Base metal compound, nonmetallic ammonium salt. -5-10 gel-like aqueous solution containing ammonia water or aqueous alkali! A method for producing a base metal-coated powder, which comprises adding a reducing agent to a dispersion liquid in which two ceramic base powders are uniformly dispersed, while stirring. 1. The manufacturing method according to claim 1, wherein the nonmetallic ammonium salt is ammonium chloride. 3. The manufacturing method according to claim 1, characterized in that the content of the nonmetallic ammonium salt is at least an equivalent amount and at most three times the equivalent amount of the base metal of the base metal compound. 4. The manufacturing method according to claim 1, wherein the base metal is a transition metal in the fourth period of the periodic table. 1. The OII manufacturing method according to claim 1, wherein the average particle size of the base material powder is 1 micron or less.
JP13331481A 1981-08-27 1981-08-27 Production of powder coated with base metal Granted JPS5836627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13331481A JPS5836627A (en) 1981-08-27 1981-08-27 Production of powder coated with base metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13331481A JPS5836627A (en) 1981-08-27 1981-08-27 Production of powder coated with base metal

Publications (2)

Publication Number Publication Date
JPS5836627A true JPS5836627A (en) 1983-03-03
JPS6148585B2 JPS6148585B2 (en) 1986-10-24

Family

ID=15101779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13331481A Granted JPS5836627A (en) 1981-08-27 1981-08-27 Production of powder coated with base metal

Country Status (1)

Country Link
JP (1) JPS5836627A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237301A (en) * 1985-08-09 1987-02-18 Idemitsu Kosan Co Ltd Production of metal holding particle
JPH0368449A (en) * 1989-04-18 1991-03-25 Union Carbide Chem & Plast Co Inc Alkylene oxide catalyst having elevated activity and/or stability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237301A (en) * 1985-08-09 1987-02-18 Idemitsu Kosan Co Ltd Production of metal holding particle
JPH0368449A (en) * 1989-04-18 1991-03-25 Union Carbide Chem & Plast Co Inc Alkylene oxide catalyst having elevated activity and/or stability

Also Published As

Publication number Publication date
JPS6148585B2 (en) 1986-10-24

Similar Documents

Publication Publication Date Title
US4309457A (en) Process of producing multilayer-coated composite powder
EP2026924B1 (en) Process for making highly dispersible spherical silver powder particles and silver particles formed therefrom
US3894963A (en) High surface area catalyst bodies
JP3018655B2 (en) Manufacturing method of fine powder
JP4277803B2 (en) Method for producing metal fine powder
US4243728A (en) Double-metal-coated metal sulfide powder and process of producing the same
US5064791A (en) Method of preparing ceramic composite powders and the powders obtained thereby
JP4879473B2 (en) Flake copper powder, method for producing flake copper powder, and conductive slurry containing flake copper powder
JPS5836627A (en) Production of powder coated with base metal
JPS5837166A (en) Production of noble metal coated powder
US3966463A (en) Oxidation and sinter-resistant metal powders and pastes
WO1989004736A1 (en) Process for producing particulate metal powder
JPH02294416A (en) Production of platinum powder
CN109128143A (en) A kind of fine/nano tungsten-copper raw powder's production technology with core-shell structure
US4010025A (en) Oxidation and sinter-resistant metal powders and pastes
US4036634A (en) Oxidation and sinter-resistant metal powders
US5286688A (en) Rare earth oxide powder
CN106653410A (en) High-performance environment-friendly silver tin oxide electrical contact material and preparation method thereof
JP3613588B2 (en) Manufacturing method of electrical contact material
JPS59205433A (en) Preparation of composite sintered material of ceramic and metal
JP4057835B2 (en) Method for producing inorganic pigment
JPH0773671B2 (en) Ceramic composite powder and method for producing the same
JP3122148B2 (en) Method for producing palladium powder
JP2642892B2 (en) Method for producing whisker-containing metal oxide sintered body
JPS5835561B2 (en) Method for producing metal powder with excellent sinterability