JP3018655B2 - Manufacturing method of fine powder - Google Patents

Manufacturing method of fine powder

Info

Publication number
JP3018655B2
JP3018655B2 JP3270162A JP27016291A JP3018655B2 JP 3018655 B2 JP3018655 B2 JP 3018655B2 JP 3270162 A JP3270162 A JP 3270162A JP 27016291 A JP27016291 A JP 27016291A JP 3018655 B2 JP3018655 B2 JP 3018655B2
Authority
JP
Japan
Prior art keywords
powder
aqueous solution
group
mol
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3270162A
Other languages
Japanese (ja)
Other versions
JPH0578716A (en
Inventor
田 厚 生 千
川 卓 二 中
野 良 比 古 高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3270162A priority Critical patent/JP3018655B2/en
Publication of JPH0578716A publication Critical patent/JPH0578716A/en
Priority to US08/257,268 priority patent/US5435830A/en
Application granted granted Critical
Publication of JP3018655B2 publication Critical patent/JP3018655B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は微粉末の製造方法に関
し、特にたとえばSn粉,Pb粉,Zn粉,Ni粉,I
n粉,Sb粉,Cd粉,As粉,Pb−Sb−Sn粉,
Pb−Sb−As粉,Re粉,Mo粉,Se粉,Te
粉,Cu粉,CdS粉などの微粉末の製造方法に関す
る。ここで、Sn粉は、はんだ材料やセンサ材料などと
して用いられる。Pb粉は、はんだ材料,塗料用顔料材
料,成型材料,焼結材料,電池材料などとして用いられ
る。Zn粉は、防錆材料や電池材料などとして用いられ
る。Ni粉は、電極ペースト材料,電池や燃料電池の電
極材料などとして用いられる。In粉は、はんだ材料,
焼結材料,歯科用材料などとして用いられる。Sb粉
は、抵抗材料やセンサ材料などとして用いられる。Cd
粉は、触媒,粉末冶金材料,各種セラミック材料,Ni
−Cd電池材料などとして用いられる。As粉は、セン
サ材料などとして用いられる。Pb−Sb−Sn粉およ
びPb−Sb−As粉は、電池材料などとして用いられ
る。Re粉は、フィラメント材料や触媒などとして用い
られる。Mo粉は、粉末冶金材料や電子管用材料などと
して用いられる。Se粉は、光半導体や触媒などとして
用いられる。CdS粉は、太陽電池材料などとして用い
られる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fine powder, particularly, for example, Sn powder, Pb powder, Zn powder, Ni powder, and I powder.
n powder, Sb powder, Cd powder, As powder, Pb-Sb-Sn powder,
Pb-Sb-As powder, Re powder, Mo powder, Se powder, Te
The present invention relates to a method for producing fine powder such as powder, Cu powder, and CdS powder. Here, the Sn powder is used as a solder material, a sensor material, or the like. Pb powder is used as a solder material, a pigment material for paint, a molding material, a sintered material, a battery material, and the like. Zn powder is used as a rust preventive material, a battery material, and the like. Ni powder is used as an electrode paste material, an electrode material for batteries and fuel cells, and the like. In powder is a solder material,
Used as a sintering material, dental material, etc. Sb powder is used as a resistance material or a sensor material. Cd
Powder is catalyst, powder metallurgy material, various ceramic materials, Ni
-Used as a Cd battery material and the like. As powder is used as a sensor material or the like. Pb-Sb-Sn powder and Pb-Sb-As powder are used as battery materials and the like. Re powder is used as a filament material, a catalyst, or the like. Mo powder is used as a powder metallurgy material, a material for an electron tube, or the like. Se powder is used as an optical semiconductor, a catalyst, or the like. CdS powder is used as a solar cell material or the like.

【0002】[0002]

【従来の技術】従来の微粉末の製造方法としては、たと
えば機械的粉砕法,電解法、噴霧法,揮発凝集法,還元
法などがある。ここで、機械的粉砕法としては、スタン
プミル法,ボールミル法,渦流ミル法などがある。ま
た、電解法としては、湿式電解法,乾式電解法などがあ
る。さらに、噴霧法としては、ガス噴霧法,水噴霧法な
どがある。揮発凝集法は、たとえばZn粉末の製造など
に用いられる。また、還元法としては、高温還元法,塩
類溶液還元法などがある。高温還元法は、金属化合物を
高温下で還元性ガスで還元する方法である。また、塩類
還元法としては、金属塩溶液に金属粉を入れて微粉末を
置換析出させる方法,ヒドラジンなどによる還元法,次
亜リン酸ナトリウムやDMABなどによる還元法などが
ある。
2. Description of the Related Art Conventional fine powder production methods include, for example, a mechanical pulverization method, an electrolytic method, a spray method, a volatile coagulation method, and a reduction method. Here, the mechanical pulverization method includes a stamp mill method, a ball mill method, a vortex mill method and the like. Examples of the electrolytic method include a wet electrolytic method and a dry electrolytic method. Further, examples of the spraying method include a gas spraying method and a water spraying method. The volatile aggregation method is used, for example, for producing Zn powder. Examples of the reduction method include a high-temperature reduction method and a salt solution reduction method. The high-temperature reduction method is a method of reducing a metal compound with a reducing gas at a high temperature. Examples of the salt reduction method include a method in which a metal powder is put into a metal salt solution to displace and precipitate fine powder, a reduction method using hydrazine or the like, a reduction method using sodium hypophosphite, DMAB, or the like.

【0003】[0003]

【発明が解決しようとする課題】機械的粉砕法では、得
られる粉末が片状であり、かさ密度が小さい。また、粉
砕機の磨耗その他の原因による不純物の混入がある。さ
らに、金属や合金の粉砕中に粉末が酸化されやすい。ま
た、この方法は、粉塵公害の原因となりやすい。電解法
では、設備コストが大きくなり、また粉末が酸化しやす
い。噴霧法では、粉末の粒径が数10μmと大きく、ま
た設備コストが大きくなる。揮発凝集法は、Znなどの
蒸気圧の高い金属の粉末の製造に限定される。高温還元
法では、得られた粉末の粒径が大きく、また不純物が混
入しやすい。塩類溶液還元法のうち置換析出法では、置
換析出するために添加する金属粉が高価であり、また不
純物が混入する場合がある。さらに、粉末を析出させる
ための取扱が不便である。塩類溶液還元法のうちヒドラ
ジン,次亜リン酸ナトリウム,DMABなどの還元剤を
用いて粉末を沈澱させる方法では、還元できる金属が限
定され、また生成粉末中にリンやホウ素などが不純物と
して混入する場合がある。
In the mechanical pulverization method, the powder obtained is flaky and has a low bulk density. Further, impurities are mixed in due to wear of the pulverizer and other causes. Further, the powder is easily oxidized during grinding of the metal or alloy. In addition, this method is likely to cause dust pollution. In the electrolytic method, the equipment cost is increased and the powder is easily oxidized. In the spraying method, the particle size of the powder is as large as several tens of μm, and the equipment cost is increased. Volatile agglomeration is limited to the production of powders of metals with high vapor pressure, such as Zn. In the high-temperature reduction method, the particle size of the obtained powder is large and impurities are easily mixed. In the displacement precipitation method among the salt solution reduction methods, the metal powder added for the displacement precipitation is expensive, and impurities may be mixed. Furthermore, handling for precipitating the powder is inconvenient. In the salt solution reduction method in which the powder is precipitated using a reducing agent such as hydrazine, sodium hypophosphite, DMAB, etc., the metals that can be reduced are limited, and phosphorus and boron are mixed as impurities in the resulting powder. There are cases.

【0004】それゆえに、この発明の主たる目的は、安
全かつ簡単に粒径の小さい高純度微粉末を製造すること
ができ、公害が少なく、低コストの微粉末の製造方法を
提供することである。
[0004] Therefore, a main object of the present invention is to provide a low-cost, low-cost method for producing fine powder which can safely and easily produce high-purity fine powder having a small particle size. .

【0005】[0005]

【課題を解決するための手段】この発明は、元素周期率
表の6A族,7A族,1B族,2B族,3B族,4B
族,5B族,6B族および8族の金属または非金属の塩
である水溶性の化合物または水溶性錯体の水溶液を準備
するステップと、水溶液に三塩化チタンを添加し、三塩
化チタンの還元作用を用いて、金属粉末,金属および非
金属の2種類以上を含有する合金粉末または化合物粉末
のいずれかの微粉末を製造するステップを含む、微粉末
の製造方法である。この発明において、6A族の元素と
してMo、7A族の元素としてRe、1B族の元素とし
てCu,Ag,Au、2B族の元素としてZn,Cd、
3B族の元素としてIn、4B族の元素としてSn,P
b、5B族の元素としてSb,As,Bi、6B族の元
素としてTe,Se,S、8族の元素としてNi,R
u,Rh,Pd,Pt,Os,Irなどが含まれる。
の発明の微粉末の製造方法においては、水溶液の温度が
その溶液の沸点以下に設定される。 また、水溶液と三塩
化チタンとの反応が大気中または加圧中で行われる。
の発明の微粉末の製造方法で製造したSn粉,Pb粉ま
たはIn粉は、たとえば、はんだ材料として用いられ
る。 さらに、この発明の微粉末の製造方法で製造したP
b粉またはIn粉は、たとえば、焼結材料として用いら
れる。 また、この発明の微粉末の製造方法で製造したN
i粉は、たとえば、電極材料として用いられる。 さら
に、この発明の微粉末の製造方法で製造したCdS粉
は、たとえば、太陽電池材料として用いられる。
According to the present invention, there is provided a periodic table of the elements of groups 6A, 7A, 1B, 2B, 3B, 4B.
Preparing an aqueous solution of a water-soluble compound or complex that is a metal or non-metal salt of Group 5, 5B, 6B, and 8; and adding titanium trichloride to the aqueous solution to reduce titanium trichloride. A method for producing a fine powder of any one of an alloy powder or a compound powder containing two or more kinds of metal powder, metal and nonmetal by using the method. In the present invention, Mo as a Group 6A element, Re as a Group 7A element, Cu, Ag, Au as a Group 1B element, Zn, Cd as a Group 2B element,
In as a 3B group element, Sn and P as a 4B group element
b, Sb, As, Bi as group 5B elements, Te, Se, S as group 6B elements, Ni, R as group 8 elements
u, Rh, Pd, Pt, Os, Ir and the like. This
In the method for producing fine powder according to the invention of
It is set below the boiling point of the solution. Also, aqueous solution and trisalt
The reaction with titanium oxide is performed in the air or under pressure. This
Powder, Sn powder and Pb powder produced by the method for producing fine powder of the present invention.
Or In powder is used as a solder material, for example.
You. Further, the P powder produced by the method for producing fine powder of the present invention
b powder or In powder is used, for example, as a sintered material.
It is. Further, the N powder produced by the method for producing fine powder of the present invention is
The i powder is used, for example, as an electrode material. Further
CdS powder produced by the method for producing fine powder of the present invention
Is used, for example, as a solar cell material.

【0006】[0006]

【作用】金属や非金属の化合物または錯体が、三塩化チ
タンによって還元される。
The metal or nonmetal compound or complex is reduced by titanium trichloride.

【0007】[0007]

【発明の効果】この発明によれば、安全かつ簡単に粒径
の小さい高純度微粉末を製造することができる。しか
も、微粉末を製造する際に、粉塵公害などが発生せず、
低コストで微粉末を製造することができる。
According to the present invention, a high-purity fine powder having a small particle size can be produced safely and easily. Moreover, when producing fine powder, dust pollution does not occur,
Fine powder can be produced at low cost.

【0008】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description of the embodiments.

【0009】[0009]

【実施例】実施例1 まず、PbCl2 を準備した。このPbCl2 0.03
mol/Lに有機錯化剤としてのエチレンジアミン四酢
酸(EDTA)0.04mol/L、クエン酸0.10
mol/Lを加えてpH10に調整し、混合水溶液を得
た。この混合水溶液に還元剤としてTiCl3 0.03
mol/Lを添加し、混合水溶液の温度60℃で約10
分間攪拌した。このようにして、黒色の還元Pb粉末の
沈澱を得た。沈澱したPb粉末は、アルコールで脱水,
乾燥し、取り出した。得られたPb粉末の粒径は0.4
〜0.5μmであり、一般的にPb粉の製造に用いられ
ている機械的粉砕法や噴霧法で得られる粉粒に比べて、
均一で微細な粉粒を得ることができた。
Example 1 First, PbCl 2 was prepared. This PbCl 2 0.03
mol / L: 0.04 mol / L of ethylenediaminetetraacetic acid (EDTA) as an organic complexing agent, and 0.10 of citric acid
The pH was adjusted to 10 by adding mol / L to obtain a mixed aqueous solution. TiCl 3 0.03 as a reducing agent was added to this mixed aqueous solution.
mol / L, and about 10
Stirred for minutes. Thus, a precipitate of black reduced Pb powder was obtained. The precipitated Pb powder is dehydrated with alcohol,
Dried and removed. The particle size of the obtained Pb powder is 0.4
0.50.5 μm, compared to powder obtained by a mechanical pulverization method or a spray method generally used for the production of Pb powder,
Uniform and fine powder particles could be obtained.

【0010】実施例2 まず、SbCl3 を準備した。このSbCl3 0.04
mol/LにEDTA0.04mol/L、クエン酸
0.20mol/Lを加えて水溶液とした。この水溶液
に28%アンモニア水を加えてpH10に調整し、混合
水溶液を得た。この混合水溶液に還元剤としてTiCl
3 0.03mol/Lを添加し、混合水溶液の温度60
℃で約10分間攪拌した。このようにして、粒径0.5
μmの銀白色のSbの樹枝状粉末を得た。
Example 2 First, SbCl 3 was prepared. This SbCl 3 0.04
EDTA 0.04 mol / L and citric acid 0.20 mol / L were added to the mol / L to prepare an aqueous solution. The aqueous solution was adjusted to pH 10 by adding 28% aqueous ammonia to obtain a mixed aqueous solution. TiCl as a reducing agent is added to this mixed aqueous solution.
3 0.03 mol / L was added, and the temperature of the mixed aqueous solution was 60
The mixture was stirred at about 10 minutes. Thus, a particle size of 0.5
A silvery white Sb dendritic powder of μm was obtained.

【0011】実施例3 まず、InCl3 を準備した。このInCl3 0.04
mol/Lに有機錯化剤としてのニトリロ三酢酸(NT
A)0.10mol/L、クエン酸0.30mol/L
を加えて水溶液とした。この水溶液に28%アンモニア
水を加えてpH10に調整し、混合水溶液を得た。この
混合水溶液に還元剤としてTiCl3 0.04mol/
Lを添加し、混合水溶液の温度60℃で約10分間攪拌
した。このようにして、粒径0.8μmの銀白色のIn
粉末を得た。
Example 3 First, InCl 3 was prepared. This InCl 3 0.04
mol / L of nitrilotriacetic acid (NT) as an organic complexing agent
A) 0.10 mol / L, citric acid 0.30 mol / L
Was added to obtain an aqueous solution. The aqueous solution was adjusted to pH 10 by adding 28% aqueous ammonia to obtain a mixed aqueous solution. To this mixed aqueous solution, as a reducing agent, TiCl 3 0.04 mol /
L was added and the mixture was stirred at a temperature of 60 ° C. for about 10 minutes. Thus, silver-white In with a particle size of 0.8 μm
A powder was obtained.

【0012】実施例4 まず、CdCl2 を準備した。このCdCl2 0.04
mol/LにEDTA・2Na0.04mol/L、ク
エン酸0.10mol/Lを加えて水溶液とした。この
水溶液に28%アンモニア水を加えてpH10に調整し
た。pHを調整した水溶液に還元剤としてTiCl
3 0.04mol/Lを添加し、水溶液の温度80℃で
約10分間攪拌した。このようにして、粒径0.5μm
の銀白色のCd粉末を得た。
Example 4 First, CdCl 2 was prepared. This CdCl 2 0.04
EDTA · 2Na (0.04 mol / L) and citric acid (0.10 mol / L) were added to the mol / L to form an aqueous solution. The pH of the aqueous solution was adjusted to 10 by adding 28% aqueous ammonia. TiCl as a reducing agent in the pH adjusted aqueous solution
3 0.04 mol / L was added, and the mixture was stirred at a temperature of 80 ° C. for about 10 minutes. Thus, the particle size is 0.5 μm
A silver-white Cd powder was obtained.

【0013】実施例5 まず、NiCl2 を準備した。このNiCl2 0.04
mol/LにNTA0.10mol/L、酒石酸ナトリ
ウム0.10mol/Lを加えて水溶液とした。この水
溶液に28%アンモニア水を加えてpH10に調整し、
混合水溶液を得た。この混合水溶液に還元剤としてTi
Cl3 0.04mol/Lを添加し、混合水溶液の温度
80℃で約10分間攪拌した。このようにして、粒径
0.8μmの黒色のNi粉末を得た。
Example 5 First, NiCl 2 was prepared. This NiCl 2 0.04
An aqueous solution was prepared by adding 0.10 mol / L of NTA and 0.10 mol / L of sodium tartrate to the mol / L. This aqueous solution was adjusted to pH 10 by adding 28% aqueous ammonia,
A mixed aqueous solution was obtained. This mixed aqueous solution contains Ti as a reducing agent.
0.03 mol / L of Cl 3 was added, and the mixture was stirred at a temperature of 80 ° C. for about 10 minutes. Thus, black Ni powder having a particle size of 0.8 μm was obtained.

【0014】実施例6 まず、SnCl2 とPbCl2 とを準備した。これらの
SnCl2 0.04mol/LとPbCl2 0.02m
ol/LとにEDTA0.08mol/LとNTA0.
10mol/L、酒石酸0.30mol/Lを加えて水
溶液とした。この水溶液に28%アンモニア水を加えて
pH10に調整した。pHを調整した水溶液に還元剤と
してTiCl3 0.04mol/Lを添加し、混合水溶
液の温度80℃で約15分間攪拌した。このようにし
て、粒径1.0μmの黒色のSn−Pb粉末を得た。
Example 6 First, SnCl 2 and PbCl 2 were prepared. These SnCl 2 0.04 mol / L and PbCl 2 0.02 m
ol / L, EDTA 0.08 mol / L and NTA0.
10 mol / L and tartaric acid 0.30 mol / L were added to obtain an aqueous solution. The pH of the aqueous solution was adjusted to 10 by adding 28% aqueous ammonia. 0.04 mol / L of TiCl 3 was added as a reducing agent to the pH-adjusted aqueous solution, and the mixture was stirred at a temperature of 80 ° C. for about 15 minutes. Thus, a black Sn-Pb powder having a particle size of 1.0 μm was obtained.

【0015】実施例7 まず、ReCl2 を準備した。このReCl2 0.04
mol/LにEDTA・2Na0.04mol/L、酒
石酸ナトリウム0.30mol/Lを加えて水溶液とし
た。この水溶液に28%アンモニア水を加えてpH10
に調整した。pHを調整した水溶液に還元剤としてTi
Cl3 0.04mol/Lを添加し、水溶液の温度60
℃で約10分間攪拌した。このようにして、粒径1.0
μmの暗灰色のRe粉末を得た。
Example 7 First, ReCl 2 was prepared. This ReCl 2 0.04
EDTA · 2Na (0.04 mol / L) and sodium tartrate (0.30 mol / L) were added to the mol / L to form an aqueous solution. 28% ammonia water was added to this aqueous solution to adjust the pH to 10
Was adjusted. Ti as a reducing agent in the pH adjusted aqueous solution
0.03 mol / L of Cl 3 was added, and the temperature of the aqueous solution was adjusted to 60.
The mixture was stirred at about 10 minutes. Thus, a particle size of 1.0
A μm dark gray Re powder was obtained.

【0016】実施例8 まず、NaMoO4 を準備した。このNaMoO4 0.
04mol/Lに尿素0.08mol/L、クエン酸ナ
トリウム0.20mol/Lを加えて水溶液とした。こ
の水溶液に28%アンモニア水を加えてpH10に調整
した。pHを調整した水溶液に還元剤としてTiCl3
0.04mol/Lを添加し、水溶液の温度80℃で約
10分間攪拌した。このようにして、粒径0.8μmの
灰黒色のMo粉末を得た。
Example 8 First, NaMoO 4 was prepared. This NaMoO 40 .
An aqueous solution was prepared by adding 0.08 mol / L of urea and 0.20 mol / L of sodium citrate to 04 mol / L. The pH of the aqueous solution was adjusted to 10 by adding 28% aqueous ammonia. TiCl 3 as a reducing agent is added to the pH adjusted aqueous solution.
0.04 mol / L was added, and the mixture was stirred at a temperature of 80 ° C. for about 10 minutes. Thus, a gray-black Mo powder having a particle size of 0.8 μm was obtained.

【0017】実施例9 まず、SeCl4 を準備した。このSeCl4 0.04
mol/LにEDTA・2Na0.04mol/L、ク
エン酸ナトリウム0.20mol/Lを加えて水溶液と
した。この水溶液に28%アンモニア水を加えてpH1
0に調整し、混合水溶液を得た。この混合水溶液に還元
剤としてTiCl3 0.04mol/Lを添加し、混合
水溶液の温度80℃で約10分間攪拌した。このように
して、粒径0.8μmの暗赤色のSe粉末を得た。
Example 9 First, SeCl 4 was prepared. This SeCl 4 0.04
EDTA · 2Na (0.04 mol / L) and sodium citrate (0.20 mol / L) were added to the mol / L to form an aqueous solution. 28% aqueous ammonia was added to this aqueous solution to adjust the pH to 1
It was adjusted to 0 to obtain a mixed aqueous solution. 0.04 mol / L of TiCl 3 was added as a reducing agent to the mixed aqueous solution, and the mixture was stirred at a temperature of 80 ° C. for about 10 minutes. Thus, a dark red Se powder having a particle size of 0.8 μm was obtained.

【0018】実施例10 まず、TeCl2 を準備した。このTeCl2 0.04
mol/LにEDTA0.04mol/L、クエン酸
0.20mol/Lを加えて水溶液とした。この水溶液
に28%アンモニア水を加えてpH10に調整し、混合
水溶液を得た。この混合水溶液に還元剤としてTiCl
3 0.04mol/Lを添加し、混合水溶液の温度80
℃で約10分間攪拌した。このようにして、粒径0.8
μmの黒色のTe粉末を得た。
Example 10 First, TeCl 2 was prepared. This TeCl 2 0.04
EDTA 0.04 mol / L and citric acid 0.20 mol / L were added to the mol / L to prepare an aqueous solution. The aqueous solution was adjusted to pH 10 by adding 28% aqueous ammonia to obtain a mixed aqueous solution. TiCl as a reducing agent is added to this mixed aqueous solution.
3 0.04 mol / L was added, and the temperature of the mixed aqueous solution was 80
The mixture was stirred at about 10 minutes. Thus, a particle size of 0.8
A black Te powder of μm was obtained.

【0019】実施例11 まず、CuCl2 を準備した。このCuCl2 0.04
mol/LにEDTA0.06mol/L、クエン酸
0.20mol/Lを加えて水溶液とした。この水溶液
に28%アンモニア水を加えてpH10に調整し、混合
水溶液を得た。この混合水溶液に還元剤としてTiCl
3 0.04mol/Lを添加し、混合水溶液の温度80
℃で約10分間攪拌した。このようにして、粒径0.6
5μmの赤色のCu粉末を得た。
Example 11 First, CuCl 2 was prepared. This CuCl 2 0.04
EDTA 0.06 mol / L and citric acid 0.20 mol / L were added to the mol / L to prepare an aqueous solution. The aqueous solution was adjusted to pH 10 by adding 28% aqueous ammonia to obtain a mixed aqueous solution. TiCl as a reducing agent is added to this mixed aqueous solution.
3 0.04 mol / L was added, and the temperature of the mixed aqueous solution was 80
The mixture was stirred at about 10 minutes. Thus, a particle size of 0.6
A 5 μm red Cu powder was obtained.

【0020】実施例12 まず、CdCl2 とNa2 2 3 を準備した。これら
のCdCl2 0.08mol/LとNa2 2 3 0.
04mol/Lとにクエン酸0.34mol/L、ED
TA0.08mol/L、NTA0.20mol/Lを
加えて混合水溶液とした。この混合水溶液に還元剤とし
てTiCl3 0.04mol/Lを添加し、28%アン
モニア水を加えてpH10に調整した。そして、混合水
溶液の温度80℃で約30分間攪拌した。このようにし
て、粒径0.8μmの黄色のCdS粉末を得た。また、
同様な方法により、化合物半導体であるInSb合金粉
末なども作製することができる。
Example 12 First, CdCl 2 and Na 2 S 2 O 3 were prepared. These CdCl 2 0.08 mol / L and Na 2 S 2 O 3 0.
0.44 mol / L citric acid 0.34 mol / L, ED
A mixed aqueous solution was prepared by adding 0.08 mol / L of TA and 0.20 mol / L of NTA. 0.04 mol / L of TiCl 3 was added as a reducing agent to the mixed aqueous solution, and the pH was adjusted to 10 by adding 28% aqueous ammonia. Then, the mixture was stirred at a temperature of 80 ° C. for about 30 minutes. Thus, a yellow CdS powder having a particle size of 0.8 μm was obtained. Also,
In a similar manner, an InSb alloy powder or the like as a compound semiconductor can be manufactured.

【0021】このように、この発明の製造方法を用いれ
ば、安全かつ簡単に粒径の小さい高純度微粉末を得るこ
とができる。しかも、機械的粉砕法のように粉塵公害な
どが発生せず、しかも低コストで微粉末を製造すること
ができる。
As described above, by using the production method of the present invention, a high-purity fine powder having a small particle size can be obtained safely and easily. Further, unlike the mechanical pulverization method, dust pollution and the like do not occur, and fine powder can be produced at low cost.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22F 9/24 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) B22F 9/24

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 元素周期率表の6A族,7A族,1B
族,2B族,3B族,4B族,5B族,6B族および8
族の金属または非金属の塩である水溶性の化合物または
水溶性錯体の水溶液を準備するステップ、および前記水
溶液に三塩化チタンを添加し、前記三塩化チタンの還元
作用を用いて、前記金属粉末,前記金属および前記非金
属の2種類以上を含有する合金粉末または化合物粉末の
いずれかの微粉末を製造するステップを含む、微粉末の
製造方法。
1. Group 6A, 7A, 1B of the periodic table of elements
Groups 2B, 3B, 4B, 5B, 6B and 8
Preparing an aqueous solution of a water-soluble compound or a water-soluble complex that is a metal or nonmetal salt of group III, and adding titanium trichloride to the aqueous solution, and using the reducing action of the titanium trichloride to form the metal powder. , A method for producing a fine powder, comprising the step of producing a fine powder of either an alloy powder or a compound powder containing two or more of the metal and the non-metal.
【請求項2】 前記6A族の元素としてMo、前記7A
族の元素としてRe、前記1B族の元素としてCu,A
g,Au、前記2B族の元素としてZn,Cd、前記3
B族の元素としてIn、前記4B族の元素としてSn,
Pb、前記5B族の元素としてSb,As,Bi、前記
6B族の元素としてTe,Se,S、前記8族の元素と
してNi,Ru,Rh,Pd,Pt,Os,Irを含
む、請求項1に記載の微粉末の製造方法。
2. The element of Group 6A is Mo, and the element of Group 7A is Mo.
Re as a group III element and Cu, A as a group 1B group element
g, Au, Zn, Cd, and 3
In as a group B element, Sn as a 4B element.
Pb, Sb, As, Bi as the group 5B element, Te, Se, S as the group 6B element, and Ni, Ru, Rh, Pd, Pt, Os, Ir as the group 8 element. 2. The method for producing a fine powder according to 1.
【請求項3】 前記水溶液の温度がその溶液の沸点以下
である、請求項1または請求項2に記載の微粉末の製造
方法。
3. The method according to claim 1, wherein the temperature of the aqueous solution is equal to or lower than the boiling point of the solution.
【請求項4】 前記水溶液と前記三塩化チタンとの反応
が大気中または加圧中で行われる、請求項1ないし請求
項3のいずれかに記載の微粉末の製造方法。
4. The method for producing a fine powder according to claim 1, wherein the reaction between the aqueous solution and the titanium trichloride is performed in the air or under pressure.
【請求項5】 請求項1ないし請求項4のいずれかに記5. The method according to claim 1, wherein:
載の微粉末の製造方法で製造したSn粉,Pb粉またはPowder, Sn powder or Pb powder produced by the method for producing fine powder described above.
In粉を含む、はんだ材料。Solder material containing In powder.
【請求項6】 請求項1ないし請求項4のいずれかに記6. The method according to claim 1, wherein:
載の微粉末の製造方法で製造したPb粉またはIn粉をPb powder or In powder produced by the method for producing fine powder described above
含む、焼結材料。Including, sintered materials.
【請求項7】 請求項1ないし請求項4のいずれかに記7. The method according to claim 1, wherein:
載の微粉末の製造方法で製造したNi粉を含む、電極材Material containing Ni powder produced by the method for producing fine powder described above
料。Fees.
【請求項8】 請求項1ないし請求項4のいずれかに記8. The method according to claim 1, wherein:
載の微粉末の製造方法で製造したCdS粉を含む、太陽Including CdS powder produced by the method for producing fine powder described above,
電池材料。Battery material.
JP3270162A 1991-09-20 1991-09-20 Manufacturing method of fine powder Expired - Lifetime JP3018655B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3270162A JP3018655B2 (en) 1991-09-20 1991-09-20 Manufacturing method of fine powder
US08/257,268 US5435830A (en) 1991-09-20 1994-06-09 Method of producing fine powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270162A JP3018655B2 (en) 1991-09-20 1991-09-20 Manufacturing method of fine powder

Publications (2)

Publication Number Publication Date
JPH0578716A JPH0578716A (en) 1993-03-30
JP3018655B2 true JP3018655B2 (en) 2000-03-13

Family

ID=17482402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270162A Expired - Lifetime JP3018655B2 (en) 1991-09-20 1991-09-20 Manufacturing method of fine powder

Country Status (1)

Country Link
JP (1) JP3018655B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470306B2 (en) 2002-06-14 2008-12-30 Sumitomo Electric Industries, Ltd. Method for producing fine metal powder
US7850760B2 (en) 2004-04-30 2010-12-14 Sumitomo Electric Industries, Ltd. Process for production of chain metal powders, chain metal powders produced thereby, and anisotropic conductive film formed using the powders

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3597098B2 (en) * 2000-01-21 2004-12-02 住友電気工業株式会社 Alloy fine powder, method for producing the same, molding material using the same, slurry, and electromagnetic wave shielding material
CN1236509C (en) 2000-03-13 2006-01-11 佳能株式会社 Electrode material for rechargeable lithium cell, electrod structure body, cell, and production method thereof
JP4147761B2 (en) * 2001-10-15 2008-09-10 住友電気工業株式会社 Active material composite and battery using the same
JP4257566B2 (en) * 2001-11-06 2009-04-22 住友電気工業株式会社 Method for forming fine metal structure and ceramic package, multichip substrate and plasma display panel substrate using the same
JP3952743B2 (en) * 2001-11-08 2007-08-01 住友電気工業株式会社 Manufacturing method of fine metal parts
JP2004244485A (en) * 2003-02-13 2004-09-02 Sumitomo Electric Ind Ltd Heat transfer medium
JP2004244484A (en) * 2003-02-13 2004-09-02 Sumitomo Electric Ind Ltd Heat transfer medium
JP4254313B2 (en) * 2003-04-09 2009-04-15 住友電気工業株式会社 Conductive ink and method for producing the same
JP4441849B2 (en) * 2003-07-28 2010-03-31 住友電気工業株式会社 Powder for metallic luster paint, metallic luster paint using the same, and metallic luster coating film
JP4196350B2 (en) * 2004-09-21 2008-12-17 昭栄化学工業株式会社 Method for producing flaky silver powder
JP4218067B2 (en) * 2005-10-19 2009-02-04 昭栄化学工業株式会社 Method for producing rhenium-containing alloy powder
JP2009079239A (en) * 2007-09-25 2009-04-16 Sumitomo Electric Ind Ltd Nickel powder or alloy powder composed mainly of nickel, its manufacturing method, conductive paste and multilayer ceramic capacitor
CN104493194B (en) * 2014-12-01 2016-11-23 上海交通大学 Ag-Ag8snS6the preparation method of heterodimer nano material
JP6434868B2 (en) * 2015-07-01 2018-12-05 トヨタ自動車株式会社 Method for producing alloy particles containing Bi and Te
JP6815619B2 (en) * 2015-12-24 2021-01-20 三井金属鉱業株式会社 Manufacturing method of copper particles
JP6451679B2 (en) * 2016-03-24 2019-01-16 カシオ計算機株式会社 Method for producing copper nanoparticles
JP6955377B2 (en) * 2017-06-16 2021-10-27 三井金属鉱業株式会社 Copper particles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470306B2 (en) 2002-06-14 2008-12-30 Sumitomo Electric Industries, Ltd. Method for producing fine metal powder
US7850760B2 (en) 2004-04-30 2010-12-14 Sumitomo Electric Industries, Ltd. Process for production of chain metal powders, chain metal powders produced thereby, and anisotropic conductive film formed using the powders
US8038762B2 (en) 2004-04-30 2011-10-18 Sumitomo Electric Industries, Ltd. Process for production of chain metal powders, chain metal powers produced thereby, and anisotropic conductive film formed by using the powders

Also Published As

Publication number Publication date
JPH0578716A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
JP3018655B2 (en) Manufacturing method of fine powder
CN101011747B (en) Method of producing copper powder and copper powder
CN110997198B (en) Silver particles and method for producing same
JP4876979B2 (en) Joining member and joining method
CN107921543A (en) The manufacture method of high temperature sintering type conductive paste silver powder
JP3277823B2 (en) Production method of metal powder
JP2012525506A (en) Silver particles and method for producing the same
US5435830A (en) Method of producing fine powders
JP2012157870A (en) Solder powder and paste for solder using the same
US7909908B2 (en) Method of improving the weatherability of copper powder
CN112170858B (en) Preparation method of Mo-Ru brazing filler metal powder
JP2012157869A (en) Solder powder and paste for solder using the same
JP4135014B2 (en) Nickel powder and method for producing the same
Hsiao et al. Revealing the nucleation and growth mechanism of a novel solder developed from Sn-3.5 Ag-0.5 Cu nanoparticles by a chemical reduction method
CN108987707B (en) Phosphorus-copper negative electrode material for lithium ion battery and preparation method thereof
JPH06336601A (en) Production of nickel powder
US3713816A (en) Process for preparing tungsten-silica cermets
Watanabe et al. Size-and Shape-Controlled Syntheses of Colloidal Sn, Te, and Bi Nanocrystals
Tekaia-Elhsissen et al. Room-temperature synthesis of submicron platinum and palladium powders in glycols
CN115383343B (en) Sn-based lead-free composite solder based on core-shell structure reinforced phase reinforcement
JP2985553B2 (en) Hydrogen storage alloy powder and method for producing the same
JPH0428805A (en) Method for alloying powder
JP2555645B2 (en) Method for producing fine silver alloy powder
JPS6357703A (en) Production of fine metallic powder
US5102454A (en) Hydrometallurgical process for producing irregular shaped powders with readily oxidizable alloying elements

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 12