JPS5836621A - Desulfurizing method for waste gas of pulverized coal firing boiler - Google Patents

Desulfurizing method for waste gas of pulverized coal firing boiler

Info

Publication number
JPS5836621A
JPS5836621A JP56136828A JP13682881A JPS5836621A JP S5836621 A JPS5836621 A JP S5836621A JP 56136828 A JP56136828 A JP 56136828A JP 13682881 A JP13682881 A JP 13682881A JP S5836621 A JPS5836621 A JP S5836621A
Authority
JP
Japan
Prior art keywords
powder
pulverized coal
boiler
waste gas
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56136828A
Other languages
Japanese (ja)
Inventor
Hayamizu Ito
伊東 速水
Yoshitaka Kajihata
梶畠 賀敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP56136828A priority Critical patent/JPS5836621A/en
Publication of JPS5836621A publication Critical patent/JPS5836621A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Chimneys And Flues (AREA)

Abstract

PURPOSE:To desulfurize the waste gas of pulverized coal firing boilers at high degrees with improved utilization rate of Ca and good economy by blowing the powder of a Ca-base alkali adsorbent into said boilers and using part of the powder of the adsorbent after adsorption of SOx cyclically. CONSTITUTION:The SOx produced by the combustion of pulverized coal in a pulverized coal firing boiler 1 is caused to react with the Ca-base alkali adsorbent supplied through an adsorbent supplying pipe 2 and a transfer pipe 3 for circulating powder in the boiler, whereby the concn. of the SOx in the waste gas is decreased. The waste gas is conducted to a high temp. electric dust precipitator 5 whereby the adsorbent powder and flyash powder in the waste gas are removed. After the gas is passed through a dry type denitrator 6 and an electric preheater 7, the pressure thereof is increased with an induced draft fan 8 and the pressurized gas is discharged through a chimney 10. The powder captured with the precipitator 5 is discharged through a removal pipe 11, and part thereof is blown through a piping 3 into the boiler 1. The remaining part is discharged through a discharging pipe 12 and is used for reclamation of land or for other effective applications.

Description

【発明の詳細な説明】 本発明は一徽粉炭焚きボイラ排ガスの乾式脱硫方法、詳
しくはCa系アルカリ吸収剤を循環使用することにより
、Ca利用率を高くすることができる経済性に優れた脱
硫方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a dry desulfurization method for exhaust gas from a Yihui pulverized coal-fired boiler. It is about the method.

微粉炭焚きボイラ排ガスの脱硫には一現在一般に、湿式
法が採用されており、とくに石灰石−石膏法は既に確立
された技術となっている。しか1゜この方法は、脱硫装
置費が高価である。多量の用水確保が必要である。排水
処理が必要である。などの欠点を有している。しかも今
後はますます用水確保が難しく、排水規制も厳しくなる
と予想され、新たに大容量微粉炭焚きボイラを推進する
ためには、大きな問題となりつつある。このような状況
から、乾式法が再び注目され、経済性に優れた乾式脱硫
方法の開発が望まれている。
At present, wet methods are generally used for desulfurization of exhaust gas from pulverized coal-fired boilers, and the limestone-gypsum method in particular has become an established technology. However, this method requires an expensive desulfurization equipment. It is necessary to secure a large amount of water. Wastewater treatment is required. It has drawbacks such as: Moreover, it is expected that securing water will become increasingly difficult and wastewater regulations will become stricter in the future, which is becoming a major problem in promoting new large-capacity pulverized coal-fired boilers. Under these circumstances, the dry method is attracting attention again, and the development of an economical dry desulfurization method is desired.

乾式脱硫法の一つとして、ボイラ内に炭酸カルシウム粉
末、水酸化カルシウム粉末またはこれらの混合物などか
らなるCa系アルhり吸収剤を吹き込む方法は従来から
公知である。しかしこの方法では第1図に示すように、
高い脱硫性能を得るためにはCa/Sモル比(吸収剤吹
込量mo1/発生SO1量mat)を高くしなければな
らず(循環比=0の白丸をプロットした実線の曲線参照
)、大量の吸収剤を必要とするとともに、Ca利用率(
SOxと反応し九〇aの割合)が低く(白丸をプロット
した破線の曲線参照)、経済性に劣っており、実用上採
用は困難であった。なお第1図については後で詳細に説
明する。
As one of the dry desulfurization methods, a method of injecting a Ca-based alkaline hydroxide absorbent made of calcium carbonate powder, calcium hydroxide powder, or a mixture thereof into a boiler is conventionally known. However, with this method, as shown in Figure 1,
In order to obtain high desulfurization performance, it is necessary to increase the Ca/S molar ratio (absorbent injection amount mo1/generated SO1 amount mat) (see the solid curve plotting the white circle with circulation ratio = 0), and a large amount of In addition to requiring an absorbent, the Ca utilization rate (
The rate of reaction with SOx (90a) was low (see the broken line curve plotted with white circles), and it was poor in economic efficiency, making it difficult to adopt it in practice. Note that FIG. 1 will be explained in detail later.

本発明者らは、上記乾式脱硫技術について鋭意研究を重
ねた結果、集じん装置で捕集されたCa系アルカリ吸収
剤がなおSOx吸収能を有することを見い出すとともに
、風力分級器のような分級装置によりCa系アルカリ吸
収剤とフライアッシュとが分離できることを知見し、経
済的、技術的に優れた脱硫方法を発明するに至った。
As a result of intensive research on the above dry desulfurization technology, the present inventors discovered that the Ca-based alkaline absorbent collected by a dust collector still has SOx absorption ability, and that It was discovered that a Ca-based alkaline absorbent and fly ash could be separated using a device, and an economically and technically superior desulfurization method was invented.

すなわち本発明は、WI粉炭焚きボイラ内にCa系アル
カリ吸収剤の粉末を吹き込んだ後、イオウ酸化物を吸収
したCa系アルカリ吸収剤粉末をフライアッシュととも
に集じん装置で捕集する脱硫方法において、この集じん
装置で捕集された粉体の一部を前記微粉炭焚きボイラ内
に再び吹き込んでCa系アルカリ吸収剤を循環使用する
ことによυ、Ca利用率を上げることができる脱硫方法
を提供せんとするものである。また循環量が多くなると
、微粉炭焚きボイラ内のばいじん濃度が高くなり、ボイ
ラチューブの摩耗、閉塞などのトラブルが発生し易くな
るので、これを避けるために集、じん装置で捕集された
粉体を分級装置でフライアッシュ含有量の多い粗粉と、
フライアッシュ含有量の少ない細粉とに分離し、細粉の
一部を微粉炭焚きボイラ内に再び吹き込むことにより、
フライアッシュ循環量を減少させることができる脱硫方
法をも提供せんとするものである。
That is, the present invention provides a desulfurization method in which Ca-based alkali absorbent powder is blown into a WI pulverized coal-fired boiler, and then the Ca-based alkali absorbent powder that has absorbed sulfur oxide is collected together with fly ash by a dust collector. A desulfurization method that can increase the Ca utilization rate by blowing a part of the powder collected by this dust collector back into the pulverized coal-fired boiler and recycling the Ca-based alkaline absorbent. This is what we intend to provide. In addition, when the amount of circulation increases, the concentration of soot and dust inside the pulverized coal-fired boiler increases, making it more likely that troubles such as boiler tube wear and blockage will occur. The body is separated into coarse powder with high fly ash content using a classification device.
By separating it into fine powder with low fly ash content and blowing part of the fine powder back into the pulverized coal-fired boiler,
It is also an object of the present invention to provide a desulfurization method that can reduce the amount of fly ash circulation.

以下1本発明の構成を図面に基づいて説明する。Hereinafter, the configuration of the present invention will be explained based on the drawings.

第1図は本発明の方法を実施する装置の一例を示してい
る。微粉炭焚きボイラ1内で微粉炭の燃焼により発生し
たイオウ酸化物は、吸収剤粉末供給管2.循環粉体移送
管3により供給される炭酸カルシウム粉末−水酸化力V
シウム粉末またはこれらの混合物などからなるCa系ア
ルカリ吸収剤とボイラ1内で反応し一部ガス中のイオウ
酸化物濃度は低減される。ボイラ1かちの排ガスは排ガ
ス煙道4により高温電気集じん機5に導びかれ、排ガス
中の吸収剤、フライアッシュなどの粉体は除去される。
FIG. 1 shows an example of an apparatus for carrying out the method of the invention. Sulfur oxides generated by combustion of pulverized coal in the pulverized coal-fired boiler 1 are transferred to the absorbent powder supply pipe 2. Calcium carbonate powder supplied by circulating powder transfer pipe 3 - hydration power V
It reacts with a Ca-based alkali absorbent made of ium powder or a mixture thereof in the boiler 1, and the concentration of sulfur oxides in the gas is partially reduced. Exhaust gas from one boiler is led to a high-temperature electrostatic precipitator 5 through an exhaust gas flue 4, and powders such as absorbent and fly ash in the exhaust gas are removed.

粉体が除去された排ガスは乾式脱硝装置6.空気予熱器
7を通過した後、誘引7アン8で昇圧され、清浄ガス煙
道9を通って煙突10から排出される。高温電気集じん
機5で捕集された粉体は捕集粉体取出管11から抜き出
され、一部は循環粉体移送管6を通って再びボイラ1内
に吹き込まれ、残部は処理粉体抜出管12により抜き出
されて埋立処分または有効利用される。
The exhaust gas from which the powder has been removed is sent to a dry denitrification device6. After passing through the air preheater 7, the pressure is increased by the induction 7-amp 8, and the air is discharged from the chimney 10 through the clean gas flue 9. The powder collected by the high-temperature electrostatic precipitator 5 is extracted from the collected powder extraction pipe 11, a part of which is blown into the boiler 1 again through the circulating powder transfer pipe 6, and the remainder is used as treated powder. The body is extracted through the body extraction pipe 12 and disposed of in a landfill or put to effective use.

つぎに本発明の他の実施態様を第8図に基づいて説明す
る。高温電気集じん機5で捕集された粉体は捕集粉体取
出管11から抜き出され、風力分級器のような分級装置
16に導びかれ、フライアッシュ含有量の多い粗粉とフ
ライアッシュ含有量の少ない細粉とに分離される。フラ
イアッシュ含有量の少ない細粉は細粉取出管14により
抜き出され一一部は循環粉体移送管6を通って再びボイ
ラ1に吹き込まれ、残部は粗粉取出管15から抜き出さ
れた粗粉とともに、処理粉体取出管12により抜き出さ
れて、埋立処分または有効利用される。他の構成は第2
図の場合と同様である。
Next, another embodiment of the present invention will be described based on FIG. The powder collected by the high-temperature electrostatic precipitator 5 is extracted from the collected powder extraction pipe 11 and guided to a classification device 16 such as a wind classifier, where it is separated into coarse powder with a high fly ash content and fly ash. It is separated into fine powder with low ash content. The fine powder with a low fly ash content was extracted by the fine powder extraction pipe 14, a part of it was blown into the boiler 1 again through the circulating powder transfer pipe 6, and the remaining part was extracted from the coarse powder extraction pipe 15. Together with the coarse powder, it is extracted through the treated powder extraction pipe 12 and disposed of in a landfill or put to effective use. Other configurations are second
This is the same as the case shown in the figure.

以下、実施例および比較例について説明する。Examples and comparative examples will be described below.

実施例 灰分15重量憾、イオウ分1.2重量幅の石炭を燃焼さ
せ、吸収剤として消石灰粉末(平均粒径6μ)をボイラ
内に吹き込み、集じん装置捕集粉体の一部をボイラ内に
再び循環して脱硫テストを実施した。脱硫テストとして
は、 Ca/Sモル比8゜循環比1.1で分級しない場
合、Ca/Sモル比8゜循環比1.1で分級する場合−
〇 a / Sモル比3.循環比5.5で分級しない場
合、Ca/Sモル比3.循環比5.5で分級する場合に
ついて行なった。結果を次表ノテストNa8. NcL
k IIJo、5− N[1,6に示す。
Example: Coal having an ash content of 15% by weight and a sulfur content of 1.2% by weight was combusted, slaked lime powder (average particle size 6 μm) was blown into the boiler as an absorbent, and part of the powder collected by the dust collector was blown into the boiler. The desulfurization test was then carried out by circulating the water again. The desulfurization tests were as follows: Ca/S molar ratio 8°, circulation ratio 1.1, no classification, Ca/S molar ratio 8°, circulation ratio 1.1, classification -
〇 a/S molar ratio 3. When the circulation ratio is 5.5 and no classification is performed, the Ca/S molar ratio is 3. This was carried out for the case of classification at a circulation ratio of 5.5. The results are shown in the table below: Test Na8. NcL
k IIJo, 5-N [shown in 1,6.

なおCa/Sモル比は新しく供給する水酸化カルシウム
のモル数と、水酸化カルシウムを吹き込オないときにボ
イラより発生するイオウ酸化物のモル数との比を、循環
比は循環使用するカルシウム化合物のモル数と、新しく
供給する水酸化カルシウムのモル数との比を、脱硫率は
水酸化カルシウムを吹き込まないときに発生するイオウ
酸化物のうち、水酸化カルシウムを吹き込むことにより
除去される割合を一〇a利用率は新たに供給された水酸
化カルシウムのうちイオウ酸化物と反応した割合をいう
、また木実雄側においては1分級装置として風力分級器
を用い1分級径は10μであった。
Note that the Ca/S molar ratio is the ratio of the number of moles of newly supplied calcium hydroxide to the number of moles of sulfur oxide generated from the boiler when calcium hydroxide is not blown into the boiler, and the circulation ratio is the ratio of the number of moles of calcium hydroxide that is newly supplied to the number of moles of sulfur oxide generated from the boiler when calcium hydroxide is not blown into the boiler. The desulfurization rate is the ratio of the number of moles of the compound to the number of moles of newly supplied calcium hydroxide. 10a Utilization rate refers to the proportion of newly supplied calcium hydroxide that reacts with sulfur oxide, and on Kino's side, a wind classifier was used as a classification device, and the diameter of one classification was 10μ. .

比較例 実施例で用いた石炭と同じ石炭を燃焼させ一吸収剤とし
て消石灰粉末(平均粒径6μ)をボイラ内に吹き込み、
集じん装置捕集粉体を循環することなしに脱硫テストを
実施した。その結果を次表のテスト陽2に示す。なおテ
スト陶、1は吸収剤を投入しない場合の排ガス中のSO
,濃度および集じん機入口ばいじん濃度を示したもので
ある。
Comparative Example The same coal used in the example was burned, and slaked lime powder (average particle size 6μ) was blown into the boiler as an absorbent.
Desulfurization tests were conducted without circulating the powder collected by the dust collector. The results are shown in Test 2 in the following table. In addition, for test ceramics, 1 is the SO in exhaust gas when no absorbent is added.
, concentration and dust concentration at the dust collector inlet.

(以下余白) 上表におけるCa/Sモル比、脱硫率、Ca利用率の関
係をグラフに表わしたのが第1図である。
(The following is a blank space) FIG. 1 is a graph showing the relationship among the Ca/S molar ratio, desulfurization rate, and Ca utilization rate in the above table.

白丸をプロットした曲線は循環比=0の場合(テストN
112)を示し、白丸を半分塗りつぶした点をプロット
した曲線は循環比−1,1の場合(テストN11B 、
 4 )を示し、黒丸をプロットした曲線は循環比=5
.5の場合(テス)No、5 、6 )を示している0
表および第1図から明ちかなように、本発明の方法を用
いれば循環をしない従来法に比べてCa/Sモル比を小
さくしても、脱硫率を高くとることができ、かつCa利
用率を大幅に向上させることができ、また分級装置で分
級する場合は集じん機入口ばいじん濃度を低くすること
ができることがわかる。
The curve plotting white circles is for circulation ratio = 0 (test N
112), and the curve plotting the half-filled white circle is for the circulation ratio -1,1 (test N11B,
4), and the curve plotting the black circle indicates the circulation ratio = 5
.. In the case of 5 (Tess) No, 5, 6) 0 indicates
As is clear from the table and FIG. 1, the method of the present invention can achieve a high desulfurization rate even if the Ca/S molar ratio is small compared to the conventional method that does not involve circulation, and can utilize Ca. It can be seen that the dust concentration at the entrance of the dust collector can be lowered when classifying with a classifier.

以上説明したように1本発明の方法によれば。As explained above, according to the method of the present invention.

高脱硫率を得ることができかつ用水を全く必要としない
ので排水処理の必要もない利点に加えて。
In addition to the advantages that high desulfurization efficiency can be obtained and no water is required, there is no need for wastewater treatment.

吸収剤を循環使用するためCa利用率を高くとることが
でき、とくに脱硫装置を設置する必要がないことと相俟
って経済性に優れているという利点を有する。また分級
装置により分級する場合は一ボイラ内のばいじん濃度を
低くすることができるという効果を奏する。
Since the absorbent is used repeatedly, a high Ca utilization rate can be obtained, and there is no need to particularly install a desulfurization device, which has the advantage of being excellent in economical efficiency. Furthermore, when classifying with a classifier, it is possible to reduce the soot and dust concentration within one boiler.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例および比較例の結果を示すもので、Ca
/Sモル比、脱硫率、Ca利用率の関係を示すグ′97
.第2図は本発明の方法を実施する装置の一例ン示す系
統的説明図、第3図は本発明の方法を実施する装置の他
の例を示す系統的説明図である。 1・・・微粉炭焚きボイラ、2・・・吸収剤粉末供給管
。 3・・・循環粉体移送管、4・・・排ガス煙道、5・・
電気集じん機、6・・・乾式脱硝装置、7・・・空気予
熱器。 8・・・誘引ファン、9・・・清浄ガス煙道、10・・
煙突。 11・・・捕集粉体取出管、12・・・処理粉体抜出管
。 16・・・分級装置−14・・・細粉取出管、15・・
粗粉取出管
Figure 1 shows the results of Examples and Comparative Examples.
/S molar ratio, desulfurization rate, and Ca utilization rate graph '97
.. FIG. 2 is a systematic explanatory diagram showing one example of the apparatus for implementing the method of the present invention, and FIG. 3 is a systematic explanatory diagram showing another example of the apparatus for implementing the method of the present invention. 1...Pulverized coal-fired boiler, 2...Absorbent powder supply pipe. 3... Circulating powder transfer pipe, 4... Exhaust gas flue, 5...
Electrostatic precipitator, 6... Dry denitrification device, 7... Air preheater. 8... Induction fan, 9... Clean gas flue, 10...
chimney. 11... Collection powder extraction pipe, 12... Processed powder extraction pipe. 16...Classifying device-14...Fine powder removal pipe, 15...
Coarse powder removal pipe

Claims (1)

【特許請求の範囲】 1gjt粉次焚きボイラ内にCa系アルカリ吸収剤の粉
末を7吹き込んだ後、イオウ酸化物を吸収したCa系ア
ルカリ吸収剤粉末をフライアッシュとともに集じん装置
で捕集する脱硫方法において、この集じん装置で捕集さ
れた粉体の一部を前記微粉炭焚きボイラ内に再び吹き込
むことを特徴とする微粉炭焚きボイラ排ガスの脱硫方法
。 2 微粉炭焚きボイラ内にCa系アルカリ吸収剤の粉末
を吹き込んだ後、イオウ酸化物を吸収したCa系アルカ
リ吸収剤粉末をフライアッシュとともに集じん装置で捕
集する脱硫方法において、この集じん装置で捕集された
粉体を分級装置で粗粉と細粉とに分離し、細粉の一部を
前記微粉炭焚きボイラ内に再び吹き込むことを特徴とす
る微粉炭焚きボイラ排ガスの脱硫方法。
[Claims] Desulfurization in which Ca-based alkali absorbent powder is injected into a 1 gjt powder-fired boiler for 7 hours, and then the Ca-based alkali absorbent powder that has absorbed sulfur oxide is collected together with fly ash in a dust collector. A method for desulfurizing exhaust gas from a pulverized coal-fired boiler, characterized in that a part of the powder collected by the dust collector is blown into the pulverized coal-fired boiler again. 2. In a desulfurization method in which Ca-based alkali absorbent powder is injected into a pulverized coal-fired boiler and then the Ca-based alkali absorbent powder that has absorbed sulfur oxide is collected together with fly ash by a dust collector, this dust collector A method for desulfurizing exhaust gas from a pulverized coal-fired boiler, characterized in that the collected powder is separated into coarse powder and fine powder by a classifier, and a part of the fine powder is blown into the pulverized coal-fired boiler again.
JP56136828A 1981-08-31 1981-08-31 Desulfurizing method for waste gas of pulverized coal firing boiler Pending JPS5836621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56136828A JPS5836621A (en) 1981-08-31 1981-08-31 Desulfurizing method for waste gas of pulverized coal firing boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56136828A JPS5836621A (en) 1981-08-31 1981-08-31 Desulfurizing method for waste gas of pulverized coal firing boiler

Publications (1)

Publication Number Publication Date
JPS5836621A true JPS5836621A (en) 1983-03-03

Family

ID=15184446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56136828A Pending JPS5836621A (en) 1981-08-31 1981-08-31 Desulfurizing method for waste gas of pulverized coal firing boiler

Country Status (1)

Country Link
JP (1) JPS5836621A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025531A (en) * 1983-07-21 1985-02-08 Hitachi Zosen Corp Dry purification of exhaust gas
JPS61159030U (en) * 1985-03-26 1986-10-02
JPS62200106A (en) * 1986-02-27 1987-09-03 Hitachi Zosen Corp Furnace desulfurizing method
JPS62200107A (en) * 1986-02-27 1987-09-03 Hitachi Zosen Corp Furnace desulfurizing method
JP2007291312A (en) * 2005-07-14 2007-11-08 Idemitsu Kosan Co Ltd Method of inhibiting elution of harmful trace elements and elution inhibitor for adding to coal for use in the inhibiting method
JP2015230149A (en) * 2014-06-06 2015-12-21 三菱日立パワーシステムズ株式会社 Boiler system and power generation plant with the same
CN105485701A (en) * 2016-01-15 2016-04-13 华北电力大学 Coal-fired power generation system deeply and integrally provided with system for desulfurizing and decarburizing calcium-based sorbent in sequence

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6025531A (en) * 1983-07-21 1985-02-08 Hitachi Zosen Corp Dry purification of exhaust gas
JPS61159030U (en) * 1985-03-26 1986-10-02
JPS6333619Y2 (en) * 1985-03-26 1988-09-07
JPS62200106A (en) * 1986-02-27 1987-09-03 Hitachi Zosen Corp Furnace desulfurizing method
JPS62200107A (en) * 1986-02-27 1987-09-03 Hitachi Zosen Corp Furnace desulfurizing method
JPH0246846B2 (en) * 1986-02-27 1990-10-17 Hitachi Shipbuilding Eng Co
JP2007291312A (en) * 2005-07-14 2007-11-08 Idemitsu Kosan Co Ltd Method of inhibiting elution of harmful trace elements and elution inhibitor for adding to coal for use in the inhibiting method
JP2015230149A (en) * 2014-06-06 2015-12-21 三菱日立パワーシステムズ株式会社 Boiler system and power generation plant with the same
US9851101B2 (en) 2014-06-06 2017-12-26 Mitsubishi Hitachi Power Systems, Ltd. Boiler system and power plant including the same
CN105485701A (en) * 2016-01-15 2016-04-13 华北电力大学 Coal-fired power generation system deeply and integrally provided with system for desulfurizing and decarburizing calcium-based sorbent in sequence
CN105485701B (en) * 2016-01-15 2017-10-10 华北电力大学 With the coal generating system of calcium-base absorbing agent order decarbonization desulfurization system Deep integrating

Similar Documents

Publication Publication Date Title
CA2199454C (en) Flue gas desulfurization method and apparatus
AU2007258119B2 (en) Integrated dry and wet flue gas cleaning process and system
US7655202B2 (en) Coal fired flue gas treatment and process
CA1248735A (en) Method and apparatus for dry desulfurization of exhaust gas
US4853194A (en) Method for treating exhaust gas
TWI795750B (en) Apparatus and method for combustion exhaust gas purification
CN105169943A (en) Integrated system for coke oven flue gas desulfurization and denitrification and waste heat recovery
US4867955A (en) Method of desulfurizing combustion gases
CN205127750U (en) Desulphurization of exhaust gas denitration of coke oven flue and waste heat recovery's integrated system
EP0406263A1 (en) Method for cleaning gases.
EP0182791A1 (en) Process for treating flue gas with alkali injection and electron beam
KR920003768B1 (en) Method and system for purifying exhaust gas
JPS5836621A (en) Desulfurizing method for waste gas of pulverized coal firing boiler
CN108373936A (en) A kind of flue gas purification system and method for the gasification of fire coal coupled biological matter
JP4530965B2 (en) Recovery method of valuable materials from bed material ash
CN208136188U (en) A kind of flue gas purification system of fire coal coupled biological matter gasification
KR102556853B1 (en) Carbon Dioxide Removing System From Exhaust Gases
GB2107207A (en) Flue gas desulphurisation
JPS61157328A (en) Purification of exhaust gas by dry dolomite method
CN101748283B (en) Method and equipment for recovering gold from gold jewelry polishing powder
WO1994021965A1 (en) Recycling processes using fly ash
JP2846399B2 (en) Desulfurization in boiler furnace and flue
CN111318158B (en) Flue gas desulfurization and dust removal system and method
JPH0389916A (en) In-furnace desulfurization process
JPH0549853A (en) Method for stack gas desulfurization method and device therefor