KR102556853B1 - Carbon Dioxide Removing System From Exhaust Gases - Google Patents

Carbon Dioxide Removing System From Exhaust Gases Download PDF

Info

Publication number
KR102556853B1
KR102556853B1 KR1020220089156A KR20220089156A KR102556853B1 KR 102556853 B1 KR102556853 B1 KR 102556853B1 KR 1020220089156 A KR1020220089156 A KR 1020220089156A KR 20220089156 A KR20220089156 A KR 20220089156A KR 102556853 B1 KR102556853 B1 KR 102556853B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
exhaust gas
receiving
tank
precipitation tank
Prior art date
Application number
KR1020220089156A
Other languages
Korean (ko)
Inventor
홍원방
박무신
홍정환
장인영
박성수
Original Assignee
홍원방
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍원방 filed Critical 홍원방
Priority to KR1020220089156A priority Critical patent/KR102556853B1/en
Priority to PCT/KR2023/010175 priority patent/WO2024019449A1/en
Application granted granted Critical
Publication of KR102556853B1 publication Critical patent/KR102556853B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1462Removing mixtures of hydrogen sulfide and carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1431Pretreatment by other processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Geology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

본 발명은 배기가스 배출원에서 배출되는 배기가스를 유입받아 배기가스로부터 더스트을 제거하는 집진장치; 상기 집진장치를 통과한 배기가스를 유입받아 수산화나트륨 수용액을 포함하는 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 처리가스를 배출하는 이산화탄소 흡수조; 상기 이산화탄소 흡수조로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 1차 침전조; 상기 1차 침전조로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 회수하는 2차 침전조;를 포함하는 것을 특징으로 하는 배기가스로부터 이산화탄소 제거시스템에 관한 것이다. The present invention includes a dust collector for receiving exhaust gas discharged from an exhaust gas source and removing dust from the exhaust gas; a carbon dioxide absorption tank receiving the exhaust gas that has passed through the dust collector, reacting with the carbon dioxide absorbent containing sodium hydroxide solution to remove carbon dioxide and sulfur oxides from the exhaust gas, and discharging processed gas; a primary precipitation tank receiving the reaction liquid from the carbon dioxide absorption tank and precipitating foreign substances by a flocculation reaction with a coagulant; It relates to a system for removing carbon dioxide from exhaust gas, characterized in that it comprises a; secondary precipitation tank for recovering calcium carbonate by reacting the reaction liquid introduced from the primary precipitation tank with calcium oxide.

Description

배기가스로부터 이산화탄소 제거시스템{Carbon Dioxide Removing System From Exhaust Gases}Carbon Dioxide Removing System From Exhaust Gases

본 발명은 발전소 등의 배기가스로부터 이산화탄소를 제거하고 고순도의 탄산칼슘을 제공할 수 있는 시스템에 관한 것이다. The present invention relates to a system capable of removing carbon dioxide from exhaust gases such as power plants and providing high-purity calcium carbonate.

화석연료를 사용하는 발전소 등에서는 연소후 배가스에 대량의 CO2가 포함되어 있다. 이때 고온의 연소과정으로 인한 NOx 발생은 탈질설비(SCR or SNCR)로써 제거하고 있으며, 또한 상대적으로 값비싼 LNG 발전의 경우는 제외하더라도, 우선 연료로 사용하는 화석연료의 종류에 따라 연료중의 황 성분으로 인해 연소후 SOx가 발생하고, Ash 및 중금속을 포함하는 Dust는 전기집진장치(EP)에서 제거하고 있다. In power plants using fossil fuels, a large amount of CO 2 is included in flue gas after combustion. At this time, NOx generation due to the high-temperature combustion process is removed with a denitrification facility (SCR or SNCR), and even if the case of relatively expensive LNG power generation is excluded, the sulfur in the fuel depends on the type of fossil fuel used as fuel. Due to the components, SOx is generated after combustion, and dust containing ash and heavy metals is removed by an electric precipitator (EP).

SOx의 대기중 배출 억제를 위해 대규모 탈황 설비(FGD)를 운용하고 있으며, 거대한 흡수탑으로부터 석회석을 흡수제로 이용하여 황성분을 CaSO4의 형태로 제거하고 있다. 이러한 배가스 중에는 발생되어 제거되는 SOx의 100배가 넘는 CO2(366ton/hr, 500MWH 발전소 1기 기준)를 포함하고 있는데 그대로 대기중으로 배출하고 있는 실정이다.(260만ton/년, 366*24시간*300일 기준)A large-scale desulfurization facility (FGD) is operated to suppress the emission of SOx into the atmosphere, and sulfur components are removed in the form of CaSO 4 from a huge absorption tower using limestone as an absorbent. Among these flue gases, CO 2 (366 ton/hr, based on one 500 MWH power plant) is more than 100 times greater than the SOx generated and removed, which is being emitted into the atmosphere as it is (2.6 million ton/year, 366*24 hours*). 300 days)

이와 같은 거대한 량의 CO2를 제거 또는 저감하기 위해서는 석회석과 같은 흡수제 방식으로는 시설 및 운전이 규모에서부터 불가능 할 것이고 폐수발생 역시 막대할 것으로 예측된다. In order to remove or reduce such a huge amount of CO 2 , it is predicted that the facility and operation will be impossible from the scale and the generation of wastewater will be enormous with an absorbent method such as limestone.

따라서 경제성과 규모에서 실현 가능한 시설로부터 이산화탄소에 대해 우수한 흡착능과 저비용의 CO2 탈기 또는 수월한 형태의 자원 전환이 가능한 흡착제 개발이 요구되어지며, 또한 흡착제의 순환 시스템이 가능 하도록 하여 추가 약제비를 최소화 하고 폐수 발생을 억제하는 것이 바람직하다. Therefore, it is required to develop an adsorbent capable of excellent adsorption capacity for carbon dioxide and low-cost CO 2 degassing or easy resource conversion from a feasible facility in terms of economic feasibility and scale. It is desirable to suppress the occurrence.

이러한 CO2자원 순환 시스템은 연료중 포함되어 있는 각종 성분들에 의해 EP에서 대부분 제거한다 하여도 배가스 중에는 중금속을 포함하는 Dust나 황산화물로 오염되어 있고, 따라서 포집한 이산화탄소의 자원 전환을 꾀할 때 각종 불순물들이 제거될 수 있도록 순도 문제를 해결해야 한다. Even though most of the CO 2 resource circulation system is removed from the EP by various components contained in the fuel, the exhaust gas is contaminated with dust or sulfur oxides containing heavy metals. Purity issues must be addressed so that impurities can be removed.

대한민국 특허등록 제10-1415865호Republic of Korea Patent Registration No. 10-1415865

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 배기가스 중 황산화물은 물론 이산화탄소도 효율적으로 제거가 가능하며 고순도의 탄산칼슘이 결과물로 도출될 수 있는 시스템을 제공하고자 함이다. The present invention has been made to solve the above problems, and is intended to provide a system capable of efficiently removing sulfur oxides as well as carbon dioxide from exhaust gas and producing high-purity calcium carbonate as a result.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 배기가스로부터 이산화탄소 제거시스템(이하, “본 발명의 시스템”이라함)은, 배기가스 배출원에서 배출되는 배기가스를 유입받아 배기가스로부터 더스트을 제거하는 집진장치; 상기 집진장치를 통과한 배기가스를 유입받아 수산화나트륨 수용액을 포함하는 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 처리가스를 배출하는 이산화탄소 흡수조; 상기 이산화탄소 흡수조로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 1차 침전조; 상기 1차 침전조로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 회수하는 2차 침전조;를 포함하는 것을 특징으로 한다. A system for removing carbon dioxide from exhaust gas according to the present invention (hereinafter referred to as "the system of the present invention") for achieving the above object is a dust collector that removes dust from the exhaust gas by receiving the exhaust gas discharged from the exhaust gas source. Device; a carbon dioxide absorption tank receiving the exhaust gas that has passed through the dust collector, reacting with the carbon dioxide absorbent containing sodium hydroxide solution to remove carbon dioxide and sulfur oxides from the exhaust gas, and discharging processed gas; a primary precipitation tank receiving the reaction liquid from the carbon dioxide absorption tank and precipitating foreign substances by a flocculation reaction with a coagulant; It is characterized by including; a secondary precipitation tank for receiving the reaction solution from the primary precipitation tank and reacting with calcium oxide to recover calcium carbonate.

하나의 예로 상기 집진장치 전단에는 배기가스 배출원에서 배출되는 배기가스를 유입받아 배기가스로부터 질소산화물을 제거하여 배출하는 질소산화물 제거부가 더 포함되는 것을 특징으로 한다. As an example, a nitrogen oxide removal unit receiving exhaust gas discharged from an exhaust gas source and removing nitrogen oxides from the exhaust gas is further included at a front end of the dust collector.

하나의 예로 상기 이산화탄소 흡수조를 통해 배출되는 처리가스는 열교환기를 거쳐 외부로 배출됨을 특징으로 한다. As an example, the processing gas discharged through the carbon dioxide absorption tank is discharged to the outside through a heat exchanger.

하나의 예로 상기 이산화탄소 흡수제에는 일라이트 추출물이 포함되는 것을 특징으로 한다. As an example, the carbon dioxide absorbent is characterized in that an illite extract is included.

하나의 예로 사붕산나트륨이 더 포함되는 것을 특징으로 한다. One example is characterized in that sodium tetraborate is further included.

하나의 예로 물유리가 더 포함되는 것을 특징으로 한다. One example is characterized in that water glass is further included.

하나의 예로 과산화수소가 더 포함되는 것을 특징으로 한다. One example is characterized in that hydrogen peroxide is further included.

앞서 설명한 바와 같이, 본 발명은 이산화탄소 및 황산화물을 동시에 처리할 수 있는 이산화탄소 흡수제를 사용하여 탈황설비 없이 또는 탈황설비에 부하없이 효율적으로 시스템을 운용할 수 있는 장점이 있다. As described above, the present invention has an advantage in that the system can be efficiently operated without a desulfurization facility or without a load on the desulfurization facility by using a carbon dioxide absorbent capable of simultaneously treating carbon dioxide and sulfur oxides.

또한 포집된 이산화탄소를 불순물이 없는 고순도의 탄산칼슘으로 회수할 수 있도록 함으로써 그 자체로도 제지, 건설, 제강 등 산업 전반에 걸쳐 수요처의 제한 없이 사용할 수 있는 장점이 있다. In addition, by allowing the collected carbon dioxide to be recovered as high-purity calcium carbonate without impurities, it has the advantage that it can be used by itself throughout the industry, such as papermaking, construction, and steelmaking, without limiting the demand.

도 1은 본 발명의 시스템을 나타내는 블록도이고,
도 2는 본 발명에 적용되는 이산화탄소 흡수제의 이산화탄소 흡수 메커니즘을 나타내는 그림이고,
도 3은 황산화물의 제거에 관한 실험결과를 나타내는 그래프이고,
도 4는 이산화탄소의 제거에 관한 실험결과를 나타내는 그래프이다.
1 is a block diagram showing the system of the present invention;
2 is a diagram showing the carbon dioxide absorption mechanism of the carbon dioxide absorbent applied to the present invention,
Figure 3 is a graph showing the experimental results on the removal of sulfur oxides,
4 is a graph showing experimental results regarding the removal of carbon dioxide.

아래에서는 본 발명에 따른 양호한 실시 예를 상세히 설명한다.In the following, preferred embodiments according to the present invention will be described in detail.

본 발명의 시스템(1)은 도 1에서 보는 바와 같이 배기가스 배출원(2)에서 배출되는 배기가스를 유입받아 배기가스로부터 더스트을 제거하는 집진장치(4); 상기 집진장치(4)를 통과한 배기가스를 유입받아 수산화나트륨 수용액을 포함하는 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 처리가스를 배출하는 이산화탄소 흡수조(7); 상기 이산화탄소 흡수조(7)로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 1차 침전조(8); 상기 1차 침전조(8)로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 회수하는 2차 침전조(9);를 포함하는 것을 특징으로 한다. As shown in FIG. 1, the system 1 of the present invention includes a dust collector 4 for receiving exhaust gas discharged from an exhaust gas emission source 2 and removing dust from the exhaust gas; a carbon dioxide absorption tank (7) receiving the exhaust gas passing through the dust collector (4), removing carbon dioxide and sulfur oxides from the exhaust gas by reacting with a carbon dioxide absorbent containing sodium hydroxide solution, and discharging processed gas; a primary precipitation tank (8) receiving the reaction solution from the carbon dioxide absorption tank (7) and precipitating foreign substances by coagulant reaction with the coagulant; It is characterized in that it includes; a secondary precipitation tank (9) for receiving the reaction solution from the primary precipitation tank (8) and reacting with calcium oxide to recover calcium carbonate.

이에 더하여 상기 집진장치(4) 전단에는 배기가스 배출원(2)에서 배출되는 배기가스를 유입받아 배기가스로부터 질소산화물을 제거하여 배출하는 질소산화물 제거부(3)가 더 포함되는 것을 특징으로 한다.In addition, a nitrogen oxide removal unit 3 receiving the exhaust gas discharged from the exhaust gas emission source 2 and removing and discharging nitrogen oxides from the exhaust gas is further included at the front end of the dust collector 4.

상기 배출원(2)은 발전소 등으로 각종 오염물질로서 질소산화물, 황산화물, 이산화탄소가 혼합된 배기가스를 배출하는 장소, 설비 등을 통칭하는 개념이다.The emission source 2 is a concept that collectively refers to a place, facility, etc. that emits exhaust gas mixed with nitrogen oxides, sulfur oxides, and carbon dioxide as various pollutants such as a power plant.

상기 질소산화물 제거부(3)는 배출원(2)에서 배출되는 배기가스로부터 질소산화물을 제거토록 하는 구성으로 상기 질소산화물 제거부(3)에서는 다양한 공지기술의 적용에 의해 배기가스로부터 질소산화물을 제거하여 배출토록 하는 바, 예로 SCR탈질기술이 적용될 수 있다. The nitrogen oxide removal unit 3 is configured to remove nitrogen oxides from the exhaust gas discharged from the emission source 2, and the nitrogen oxide removal unit 3 removes nitrogen oxides from the exhaust gas by applying various known technologies. to be discharged, for example, SCR denitrification technology can be applied.

상기 집진장치(4)는 상기 질소산화물 제거부(3)를 통과한 배기가스를 유입받아 배기가스로부터 더스트을 제거하는 장치로서 전기집진에 의해 배기가스에서 더스트이 제거되도록 하는 것이다. 상기 더스트는 입자성 오염물질, ash, 중금속 등을 포함하는 개념이다. The dust collector 4 receives the exhaust gas that has passed through the nitrogen oxide removal unit 3 and removes dust from the exhaust gas, and removes dust from the exhaust gas by electric dust collection. The dust is a concept including particulate contaminants, ash, heavy metals, and the like.

도 1에서 도시된 탈황부(5)는 배기가스로부터 황산화물을 제거토록 하는 구성으로 본 발명의 시스템(1)에 있어서는 이하에서 설명하는 이산화탄소 흡수조(7)에서 황산화물과 이산화탄소의 동시 제거가 가능한 이산화탄소 흡수제를 사용함에 따라 상기 탈황부(5)를 선택적으로 바이패스 시킬 수 있어 시스템의 간소화 및 탈황부(5)의 부하를 제어할 수 있게 되는 것이다. The desulfurization unit 5 shown in FIG. 1 is configured to remove sulfur oxides from exhaust gas, and in the system 1 of the present invention, simultaneous removal of sulfur oxides and carbon dioxide in the carbon dioxide absorption tank 7 described below is performed. By using a possible carbon dioxide absorbent, the desulfurization unit 5 can be selectively bypassed, thereby simplifying the system and controlling the load of the desulfurization unit 5.

이러한 탈황부(5)에서 황산화물의 제거는 다양한 공지기술이 존재하므로 그 상세 설명은 생략한다. Since there are various known techniques for removing sulfur oxides in the desulfurization unit 5, a detailed description thereof will be omitted.

상기 열교환기(6)는 탈황부(5)를 거치거나 이산화탄소 흡수조(7)를 거친 처리가스를 통과시키면서 열교환이 이루어지도록 하는 것으로 상기 열교환기(6)의 경우도 다양한 공지 기술이 존재하는 바, 그 상세 설명은 생략한다. The heat exchanger 6 allows heat exchange while passing the processed gas through the desulfurization unit 5 or the carbon dioxide absorption tank 7, and various known technologies exist in the case of the heat exchanger 6. , its detailed description is omitted.

상기 이산화탄소 흡수조(7)는 상기 집진장치(4)를 통과한 배기가스를 유입받아 수산화나트륨 수용액을 포함하는 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 상기 열교환기(6)로 처리가스를 배출하는 구성에 해당한다. The carbon dioxide absorption tank 7 receives the exhaust gas that has passed through the dust collector 4 and reacts with the carbon dioxide absorbent containing sodium hydroxide solution to remove carbon dioxide and sulfur oxides from the exhaust gas, and the heat exchanger 6 Corresponds to a configuration in which processing gas is discharged into the furnace.

상기 이산화탄소 흡수조(7)는 상기에서 언급한 바와 같이 이산화탄소와 황산화물을 동시에 제거하는 이산화탄소 흡수제를 적용함에 따라 상기 탈황부(5)를 거치지 않은 배기가스가 유입되도록 할 수 있는 것은 물론 도면에 도시된 바는 없으나 탈황부(5)를 거친 배기가스를 유입하여 반응이 이루어지도록 할 수 있다. As mentioned above, the carbon dioxide absorbing tank 7 uses a carbon dioxide absorbing agent that simultaneously removes carbon dioxide and sulfur oxides, so that exhaust gas that has not passed through the desulfurization unit 5 can flow in, as shown in the drawing. Although it has not been done, the reaction can be performed by introducing the exhaust gas that has passed through the desulfurization unit 5.

상기 이산화탄소 흡수제는 수산화나트륨 수용액, 일라이트 추출물을 포함하는 것을 특징으로 한다.The carbon dioxide absorbent is characterized by comprising an aqueous solution of sodium hydroxide and an illite extract.

상기 수산화나트륨 수용액은 고온, 고농도의 이산화탄소 및 COS(탄화수소, O2, SOx)가 포함된 혼합 가스도 동시에 제거될 수 있도록 하는 점에 특징이 있다. 즉 발전소 배기가스 등에서 황산화물(SOx)은 물론 이산화탄소도 동시에 흡수되도록 하는 것이다. The sodium hydroxide aqueous solution is characterized in that a mixture gas containing high-temperature, high-concentration carbon dioxide and COS (hydrocarbon, O 2 , SOx) can be simultaneously removed. That is, sulfur oxides (SOx) as well as carbon dioxide are simultaneously absorbed from power plant exhaust gas.

상기 수산화나트륨 수용액이 황산화물과 이산화탄소를 제거하는 원리는 하기 반응식과 같다. 즉, 삼산화황(아황산)과 이산화황은 하기에서 보는 바와 같이 각각 수산화나트륨과 반응하여 무수 황산나트륨과 아황산나트륨으로 추출됨으로써 제거된다. The principle of removing sulfur oxides and carbon dioxide from the sodium hydroxide aqueous solution is shown in the following reaction formula. That is, sulfur trioxide (sulfurous acid) and sulfur dioxide are removed by reacting with sodium hydroxide and being extracted with anhydrous sodium sulfate and sodium sulfite, respectively, as shown below.

그리고 이산화탄소는 하기 반응식과 같이 수산화나트륨과 반응하여 탄산나트륨을 생성함으로써 제거된다. 또한 생성된 탄산나트륨은 여분의 황산화물과 반응하여 황산화물 제거 효과를 더 증대시킬 수 있고, 아울러 생산되는 이산화탄소는 수산화나트륨에 의하여 제거되게 된다.And carbon dioxide is removed by reacting with sodium hydroxide to produce sodium carbonate as shown in the following reaction formula. In addition, the generated sodium carbonate reacts with excess sulfur oxides to further increase the sulfur oxide removal effect, and the produced carbon dioxide is removed by sodium hydroxide.

1) 2NaOH + SO3 = Na2SO4 + H2O1) 2NaOH + SO 3 = Na 2 SO 4 + H 2 O

2) 2NaOH + SO2 = Na2SO3 + H2O2) 2NaOH + SO 2 = Na 2 SO 3 + H 2 O

3) 2NaOH + CO2 = Na2CO3 + H2O3) 2NaOH + CO 2 = Na 2 CO 3 + H 2 O

4) NaOH + CO2 = NaHCO3 4) NaOH + CO 2 = NaHCO 3

상기 일라이트는 {K0.75[Al1.75(Mg·Fe2+)0.25](Si3.50Al0.50)O10(OH)2}로 표현되는 대한민국 영동지방에서 대량으로 매장되어 있는 것이 밝혀진 광물이다. 백운모에 비하여 층전하가 낮고, 그 전하는 4면체판의 Al3+과 Si4+의 동형치환감소에 기인한다. 8면체판에서 약간의 동형치환이 일어난다. The illite is a mineral that is found to be buried in large quantities in the Yeongdong region of Korea, represented by {K 0.75 [Al 1.75 (Mg Fe 2 +) 0.25 ] (Si 3.50 Al 0.50 ) O 10 (OH) 2 }. The layer charge is lower than that of muscovite mica, and the charge is due to isomorphic substitution reduction of Al 3+ and Si 4+ in the tetrahedral plate. Some isomorphic substitutions occur in the octahedral plate.

일라이트는 층간에 존재하는 K+에 의한 강한 결합력으로 비팽창성이며 층간격은 10Å이다. 따라서 액상에서 추출되어 전체 양이온 전하를 띠게 되고 킬레이션 결합 화합물로 변환되기 쉬운 광물이며 본 발명에서는 이런 금속 이물을 추출하기 용이하도록 미분화 일라이트를 사용하는 것이 타당하다. Illite is non-expandable due to the strong bonding force by K + existing between layers, and the layer spacing is 10 Å. Therefore, it is a mineral that is extracted from the liquid phase, has a total cationic charge, and is easily converted into a chelation compound, and in the present invention, it is appropriate to use undifferentiated illite to easily extract such a metal foreign material.

이러한 일라이트로부터 추출한 추출물은 산화칼륨 등 여러 종의 금속 산화물이 포함된 추출액으로서 액상에서 킬레이션 결합화합물로 변환되기 쉬운 광물을 제공하여 반응 증진제로 작용하게 되는 것이다. 즉 상기 수산화나트륨 수용액의 SOx를 포함하는 이산화탄소 흡수에 있어 일라이트 추출물이 더 첨가되어 흡수효율을 높게 하는 것이다. The extract extracted from illite is an extract containing various metal oxides such as potassium oxide, and serves as a reaction enhancer by providing minerals that are easily converted into chelation compounds in a liquid phase. That is, in the absorption of carbon dioxide containing SOx in the sodium hydroxide aqueous solution, the illite extract is further added to increase the absorption efficiency.

반응 증진제로써 일라이트 추출액의 수산화나트륨과 반응식은 하기에서 보는 바와 같다. 일라이트의 주요성분에 대해서만 기재하였고 그외 Ca, Fe, Mg, Mn, Ti 및 P2O5와 같은 미량 성분들의 산화물들도 액상에서 안정한 금속 킬레이션 화합물을 형성하는데 높은 기여를 한다.The reaction formula with sodium hydroxide of illite extract as a reaction enhancer is as shown below. Only the main components of illite have been described, and oxides of minor components such as Ca, Fe, Mg, Mn, Ti and P 2 O 5 also contribute to the formation of stable metal chelation compounds in the liquid phase.

1) 2NaOH + SiO2 = Na2O.SiO2 + H2O1) 2NaOH + SiO 2 = Na 2 O. SiO 2 + H 2 O

2) 2NaOH + K2O = Na2O + 2KOH2) 2NaOH + K 2 O = Na 2 O + 2KOH

3) Na2O + Al2O3 + H2O = 2NaAlO2 + H2O3) Na 2 O + Al 2 O 3 + H 2 O = 2NaAlO 2 + H 2 O

상기 일라이트 추출물은 일라이트 분말을 40 내지 100℃로 가열된 물에 첨가하고 교반하여 제조되는 것을 특징으로 한다. 즉 가열된 물에 일라이트 분말을 첨가하여 교반하면서 고형물을 침전시키고 상등액을 분리 및 여과하여 수득할 수 있는 것이다. The illite extract is characterized in that it is prepared by adding illite powder to water heated to 40 to 100 ° C and stirring. That is, it can be obtained by adding illite powder to heated water to precipitate solids while stirring, and separating and filtering the supernatant.

이에 더하여 본 발명에서는 상기 이산화탄소 흡수제에 사붕산나트륨(Na2B4O7·10H2O) 및 물유리(Na2SiO3)가 더 포함되는 예를 제시한다. In addition, the present invention provides an example in which the carbon dioxide absorbent further includes sodium tetraborate (Na 2 B 4 O 7 .10H 2 O) and water glass (Na 2 SiO 3 ).

수산화나트륨 수용액에 일라이트 추출물에 더하여 사붕산나트륨 및 물유리가 더 포함되도록 하는 것이다. 이렇게 사붕산나트륨 및 물유리가 더 첨가되어 이산화탄소와 흡수제 성분이 직접적으로 반응하기 때문에 반응속도가 훨씬 빠르고 물질 이동 계수도 커지게 된다. In addition to the illite extract, the sodium hydroxide aqueous solution is to further include sodium tetraborate and water glass. As sodium tetraborate and water glass are further added in this way, carbon dioxide and the absorbent component react directly, so the reaction rate is much faster and the mass transfer coefficient is increased.

더욱이 사붕산나트륨 및 물유리는 점도가 높기 때문에 흡수된 기체상태의 이산화탄소가 빠져나가지 못하고 액체상태로 빠르게 녹아들어가면서 탄산으로 반응하게 되어 이산화탄소 흡수율을 배가시키도록 하는 것이다. Moreover, since sodium tetraborate and water glass have high viscosities, absorbed gaseous carbon dioxide cannot escape and quickly melts into a liquid state and reacts with carbonic acid, thereby doubling the absorption rate of carbon dioxide.

이에 더하여 본 발명에서는 반응촉진형 첨가제로 과산화수소(H2O2)가 더 첨가된 예를 제시하고 있다. In addition to this, the present invention suggests an example in which hydrogen peroxide (H 2 O 2 ) is further added as a reaction-promoting additive.

수산화나트륨 수용액에서 사붕산나트륨 및 과산화수소의 반응식은 하기와 같다. The reaction formula of sodium tetraborate and hydrogen peroxide in aqueous sodium hydroxide solution is as follows.

1) Na2B4O7 + H2O = Na2O + 2B2O3 1) Na 2 B 4 O 7 + H 2 O = Na 2 O + 2B 2 O 3

2) 2NaOH + H2O2 = Na2O + H2O + 0.5O2 2) 2NaOH + H 2 O 2 = Na 2 O + H 2 O + 0.5O 2

따라서 이산화탄소 흡수 메커니즘은 도 1 및 하기 반응식과 같다. Therefore, the carbon dioxide absorption mechanism is shown in FIG. 1 and the following reaction formula.

1) CO2(g) + CO2(aq) + Na2O + 2OH- = CO2(g) + CO3-- + 2NaOH = CO2(aq) + CO3--1) CO 2 (g) + CO 2 (aq) + Na 2 O + 2OH- = CO 2 (g) + CO 3 -- + 2NaOH = CO 2 (aq) + CO 3 --

2) CO3-- + H2O + CO2(aq) = 2HCO3-2) CO 3 -- + H 2 O + CO 2 (aq) = 2HCO 3 -

3) CO2(aq) + OH- = HCO3-3) CO 2 (aq) + OH- = HCO 3 -

4) HCO3- + OH- = CO3-- + H2O4) HCO 3 - + OH- = CO 3 - + H 2 O

상기 1차 침전조(8)는 상기 이산화탄소 흡수조(7)로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 구성으로 반응액으로부터 중금속, ash, SS 등 이물질이 응집에 의해 제거되도록 함으로써 후단의 2차 침전조(9)에서 수득되는 탄산칼슘의 순도를 높이도록 하는 것이며, 도면에 도시된 바는 없으나 반응액을 재생시 불순물이 없는 재생 이산화탄소 흡수제가 재생되도록 하기 위한 것이다. The primary precipitation tank 8 receives the reaction solution from the carbon dioxide absorption tank 7 and precipitates foreign substances by coagulant reaction with the coagulant, so that foreign substances such as heavy metals, ash, and SS are removed from the reaction solution by coagulation. This is to increase the purity of the calcium carbonate obtained in the secondary precipitation tank 9 at the rear, and although not shown in the figure, it is to regenerate a regenerated carbon dioxide absorbent without impurities when regenerating the reaction solution.

상기 응집제는 그 종류를 한정하지 않으며, 예로 수산화칼슘(Ca(OH)2)이 적용될 수 있다. The type of coagulant is not limited, and for example, calcium hydroxide (Ca(OH) 2 ) may be applied.

상기 2차 침전조(9)는 상기 1차 침전조(8)로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 회수하는 구성에 해당한다. The secondary precipitation tank 9 corresponds to a configuration in which calcium carbonate is recovered by receiving the reaction solution from the primary precipitation tank 8 and reacting with calcium oxide.

상기 2차 침전조(9)에서 반응액에서 탄산으로 존재하는 포집된 이산화탄소의 당량수에 맞춰 CaO를 투입함으로써 유용한 자원인 고순도 고부가가치 침강성 탄산칼슘이 제조되도록 하는 것이다. 또한 이렇게 1차 침전조(8) 및 2차 침전조(9)를 거치면서 이물질은 물론 포집된 이산화탄소가 제거된 반응액은 재생 이산화탄소 흡수제로 재이용이 가능하게 되는 것이다. In the secondary precipitation tank 9, CaO is added according to the equivalent number of carbon dioxide captured as carbonic acid in the reaction solution so that high-purity, high-value-added precipitated calcium carbonate, which is a useful resource, is produced. In addition, the reaction solution from which foreign substances and captured carbon dioxide are removed through the primary precipitation tank 8 and the secondary precipitation tank 9 can be reused as a regenerated carbon dioxide absorbent.

이산화탄소 저감목적을 달성하기 위해서도 추가 시설의 규모나 흡수제와 같은 비용 및 운전 편의성을 고려해야 되며 투입되는 에너지 비용도 중요한 항목 중의 하나이다. 따라서 본 발명에 따르면 제공된 이산화탄소 흡수제의 비용은 이산화탄소의 화학흡수 반응 후 다시 탄산칼슘으로 침전시켜 흡수력을 회복시키는 메커니즘을 가지면서, 도면에 도시된 바는 없으나 순환 시스템을 통해 배관 및 흡수탑에서의 약간의 손실 외에는 없게 되고, 상기 2차 침전조(9)에서 CaO 투입시 발생하는 희석열에 의해 탄산칼슘 침전 후 여액의 온도가 60℃ 이상으로 유지되는 등 열에너지 손실도 거의 없이 오히려 발열반응이 전개된다. 물론 탄산칼슘은 60℃ 이상의 고온에서도 알카리성 물에 대한 용해도가 거의 없고, 다만 온도에 따르는 침전물의 Size나 결정형에 영향을 줄 뿐이다. In order to achieve the purpose of reducing carbon dioxide, costs such as the size of additional facilities or absorbents and operational convenience must be considered, and the cost of energy input is also one of the important items. Therefore, the cost of the carbon dioxide absorbent provided according to the present invention has a mechanism for recovering the absorption capacity by precipitating calcium carbonate again after the chemical absorption reaction of carbon dioxide, but not shown in the drawings, but slightly in the piping and absorption tower through the circulation system. There is no loss except for the loss of, and there is almost no heat energy loss, such as the temperature of the filtrate being maintained at 60 ° C or higher after calcium carbonate precipitation by the heat of dilution generated when CaO is added in the secondary precipitation tank 9. Rather, an exothermic reaction develops. Of course, calcium carbonate has almost no solubility in alkaline water even at a high temperature of 60 ℃ or higher, but only affects the size or crystal form of the precipitate according to the temperature.

도면에 도시된 바는 없으나 상기 2차 침전조(9)에서 수득한 탄산칼슘의 일부분은 상기 탈황부(5)에 보내 황산화물 제거에 사용할 수 있으며, 고부가가치 침강형 제품 외에도, 이렇게 수득한 탄산칼슘이 매우 높은 불순물이 없는 순도를 가지므로 그 자체로도 제지, 건설, 제강 등 산업 전반에 걸쳐 수요처의 제한 없이 사용할 수 있고, 소결과정을 통해 고순도의 이산화탄소와 소석회를 제조하여 자원 재활용 할 수 있다. 또한 이와 같은 순수한 탄산칼슘은 자연계의 영향이 없는 오염없는 자원으로써 최소한 폐광 매립 등에 활용 할 수도 있다. Although not shown in the drawing, a portion of the calcium carbonate obtained in the secondary precipitation tank 9 can be sent to the desulfurization unit 5 to be used to remove sulfur oxides, and in addition to high value-added precipitated products, the calcium carbonate thus obtained Since it has a very high impurity-free purity, it can be used by itself throughout the industry, such as papermaking, construction, and steelmaking, without restrictions on demand sources, and can be recycled as resources by producing high-purity carbon dioxide and slaked lime through the sintering process. In addition, such pure calcium carbonate can be used at least in landfills of abandoned mines as a pollution-free resource that is not affected by the natural world.

또한 본 발명의 시스템(1)은 이산화탄소를 직접 포집 후 저장이나 재활용 하는 것도 아닌, 대규모 시설도 불필요하면서 폐수발생이 없거나 요인이 적고, 탄산과 1:1 반응에 의해 매우 낮은 용해도의 탄산칼슘이 빠른 속도로 전량 침전됨으로써 작은 규모의 침전조에서 전환 에너지 비용도 오히려 탄산칼슘 발열반응으로 열에너지가 획득되며, 도면에 도시된 바는 없으나 성능을 회복한 이산화탄소 흡수제의 순환으로 추가적인 약제비 등 운전 경비도 최소화가 예상되어진다. 역시 전환 산물로써 고순도의 침강형 탄산칼슘은 시장 규모와 가격 등에도 높은 부가가치를 예상해볼 수 있다.In addition, the system (1) of the present invention does not directly capture and then store or recycle carbon dioxide, does not require large-scale facilities, does not generate wastewater or has few factors, and produces calcium carbonate of very low solubility by a 1: 1 reaction with carbonic acid quickly. As the entire amount is precipitated at a high rate, the conversion energy cost in a small-scale sedimentation tank is rather converted into heat energy by the exothermic reaction of calcium carbonate. It becomes. High-purity precipitated calcium carbonate, also a conversion product, can be expected to have high added value in terms of market size and price.

이하 실험 예에 의거 상기 이산화탄소 흡수제의 바람직한 실시 예를 설명한다. A preferred embodiment of the carbon dioxide absorbent will be described based on experimental examples below.

1,000Mesh로 분쇄된 Yellow상의 일라이트 1,350g을 60℃로 가열된 RO수 15L에 투입하여 30분간 교반하였다. 그 다음 사붕산나트륨 150g을 투입하여 10분간 교반하여 잘 녹인 후(약 10℃ 온도 강하) 수산화나트륨 300g을 천천히 투입 교반하여 희석열에 의해 반응액 온도가 70℃가되면 물유리 300g을 투입하고 1시간동안 교반하였다. 1,350 g of yellow-phase illite pulverized with 1,000 mesh was added to 15 L of RO water heated to 60 ° C and stirred for 30 minutes. Then, 150 g of sodium tetraborate was added and stirred for 10 minutes to dissolve well (temperature drop of about 10 ° C), and then 300 g of sodium hydroxide was slowly added and stirred. Stir.

반응액 온도가 자연 강하되어 상온이 될때까지 교반하여 주었다. 상온에서 교반을 멈추고 overnight 정치하여 상등액을 여과하여 흡착제를 제조하였다. The temperature of the reaction solution naturally dropped and was stirred until it reached room temperature. Stirring was stopped at room temperature and allowed to stand overnight, and the supernatant was filtered to prepare an adsorbent.

325Mesh로 분쇄된 Yellow상의 일라이트 540g을 60℃로 가열된 RO수 6L에 넣어 30분간 교반하였다. 사붕산나트륨 300g을 투입하고 30분간 교반하여 (반응액 약 20℃ 온도강하) 자연상태에서 반응액 온도가 40℃이하가 되었을 때 수산화나트륨900g을 천천히 투입 교반하여 희석열에 의해 반응액 온도가 80℃가되면 물유리 300g을 투입하고 1시간동안 교반하였다. 540 g of illite of the yellow phase pulverized with 325 mesh was put into 6 L of RO water heated to 60 ° C. and stirred for 30 minutes. Add 300g of sodium tetraborate and stir for 30 minutes (temperature drop of about 20℃ in the reaction solution). When it was, 300 g of water glass was added and stirred for 1 hour.

반응액온도가 자연 강하되어 60℃아래로 떨어지고 난 다음 과산화수소 90g을 투입한 뒤 반응액이 상온이 될때까지 교반하여 주었다. 상온에서 교반을 멈추고 overnight 정치하여 상등액을 여과하여 흡착제를 제조하였다. After the temperature of the reaction solution naturally dropped to below 60 ° C, 90 g of hydrogen peroxide was added and stirred until the reaction solution reached room temperature. Stirring was stopped at room temperature and allowed to stand overnight, and the supernatant was filtered to prepare an adsorbent.

<배기가스 분석장비> <Exhaust gas analysis equipment>

NOVA 9K(MRU Emission Monitoring System, Germany)를 사용하였고, 각 측정 대상에 대한 센서, 측정범위 및 분해능은 하기에서 보는 바와 같다. NOVA 9K (MRU Emission Monitoring System, Germany) was used, and the sensor, measurement range, and resolution for each measurement object are as follows.

- O2(E.C) : 0 ~ 21 Vol% / 0.2%- O 2 (EC) : 0 ~ 21 Vol% / 0.2%

- CO2(NDIR) : 0 ~ 40 Vol% / 0.3%- CO 2 (NDIR) : 0 ~ 40 Vol% / 0.3%

- SO2(E.C) : 0 ~ 2,000 ppm / 5ppm- SO 2 (EC) : 0 ~ 2,000 ppm / 5ppm

* E.C : 전기화학식 센서, NDIR : 비분산적외선 센서* E.C: electrochemical sensor, NDIR: non-dispersive infrared sensor

<배기가스 분석방법><Exhaust gas analysis method>

-. SO2 분석-. SO 2 analysis

메세타 해리 화목난로에 착화탄을 넣고 점화한 뒤 5분후 갈탄을 1Kg 올려 연소를 시작하였다. 약 15분이 지난 뒤 실시예 1에서 제조한 액상형 탈황촉매 100g 을 고르게 분사 받은 갈탄 3Kg을 더 올리고 본격적으로 연소를 시작하였다.Ignition coal was put in the meseta dissociation firewood stove and ignited, and after 5 minutes, lignite was raised by 1Kg to start combustion. After about 15 minutes, 3 kg of lignite, which had been evenly sprayed with 100 g of the liquid desulfurization catalyst prepared in Example 1, was further raised and combustion was started in earnest.

연통으로 배기되는 배가스 중의 일부를 흡입하기 위해 연통 중간부에 구멍을 뚫고 실리콘 호스를 연결한 뒤 실리콘으로 틈새를 완전 밀폐하고 다이아프램 펌프를 통해 배가스를 흡입하여 플로우메터를 35L/분으로 조정하고 실험장치 중 반응조에 가스트랩 어뎁터의 In-Let 관으로 불어넣어 주었다. 가스트랩 어뎁터의 Out-Let 관으로 배출되는 배가스를 NOVA 9K에 연결해 주고 SO2의 량을 측정하였다. In order to suck in some of the exhaust gas exhausted through the flue, make a hole in the middle of the flue, connect a silicone hose, completely seal the gap with silicone, and inhale the exhaust gas through a diaphragm pump to adjust the flow meter to 35L/min and experiment. The reactor was blown into the reactor through the In-Let pipe of the gas trap adapter. The exhaust gas discharged through the Out-Let pipe of the gas trap adapter was connected to NOVA 9K, and the amount of SO 2 was measured.

-. CO2 분석-. CO 2 analysis

N2 Bombe와 Heating 장치가 부착된 CO2 Bombe를 준비한 뒤 각각 N2 30L/분, CO2 5L/분으로 Flow Meter를 조정하여 Y자 어뎁터를 통해 기체를 혼합하여 가스트랩 어뎁터의 In-Let 관을 통해 반응조에 불어 넣어 주었다. 가스트랩 어뎁터의 Out-Let 에서 CO2 농도를 측정하고, 다시 실시예 2에서 제조한 CO2 화학흡착제 1L를 Dropping Funnel을 통해 반응조에 투입한 뒤 CO2 농도를 측정하였다.After preparing an N 2 bombe and a CO 2 bombe with a heating device, adjust the flow meter to 30L/min of N 2 and 5L/min of CO 2 , respectively, and mix the gas through the Y-shaped adapter to in-let pipe of the gas trap adapter. was blown into the reactor through The CO 2 concentration was measured at the Out-Let of the gas trap adapter, and 1 L of the CO 2 chemical adsorbent prepared in Example 2 was introduced into the reaction tank through the dropping funnel, and then the CO 2 concentration was measured.

<실험예 1> SOx 제거능 측정<Experimental Example 1> SOx removal performance measurement

화목난로에서 갈탄 연소후 상기 실험장치를 통해 배가스중 SOx 발생량을 측정하고 SOx 저감량을 측정하였다. After burning lignite in a firewood stove, the amount of SOx generated in exhaust gas was measured and the amount of SOx reduction was measured through the above experimental device.

실험결과가 도 2에 도시되고 있는 바, 그래프에서 보는 바와 같이 개략 37분에서 91분까지 실시예 1의 흡수제의 작용에 의해 SOx 저감능이 발현됨을 알 수 있다. The experimental results are shown in FIG. 2, and as shown in the graph, it can be seen that the SOx reducing ability is expressed by the action of the absorbent of Example 1 from approximately 37 minutes to 91 minutes.

<실험예 2> CO2 제거능 측정<Experimental Example 2> CO 2 Removal Ability Measurement

상기 실험장치에서 N2 Bombe 와 CO2 Bombe를 통해 14% CO2 Gas를 주 Reactor에 투입되도록 맞춘뒤 실시예 2에서 제조한 CO2 화학흡수제 1L를 넣고 투입되는 Gas를 통과하도록 한 뒤 CO2 저감량을 측정하였다.In the above experimental device, 14% CO 2 Gas was injected into the main reactor through N 2 Bombe and CO 2 Bombe, and then 1L of CO 2 chemical absorbent prepared in Example 2 was put in and passed through the input gas to reduce CO 2 was measured.

실험결과가 도 3에 도시되고 있는 바, 그래프상에 첫 번째 하강곡선이 실시예 2가 주입되어 CO2가 저감되고 있는 것을 나타내고 CO2의 저감이 이루어지던 중 상승곡선은 반응기의 뚜껑을 열어 외기가 유입되도록 함으로써 CO2가 상승되도록 한 뒤에 본 발명에서 언급한 바는 없으나 기 사용된 실시예 2의 흡수제를 재생한 재생 흡수제를 투입한 결과 다시 CO2의 저감이 이루어짐을 알 수 있다. As the experimental results are shown in FIG. 3, the first descending curve on the graph indicates that Example 2 is injected and CO 2 is reduced, and while the CO 2 is reduced, the rising curve shows that the lid of the reactor is opened and the outside air is released. Although not mentioned in the present invention after CO 2 is increased by allowing the inflow, it can be seen that CO 2 is reduced again as a result of introducing a regenerated absorbent obtained by regenerating the previously used absorbent of Example 2.

<실험예 3> CaCO3 제조 및 CO2 흡수제의 재생 <Experimental Example 3> Production of CaCO 3 and Regeneration of CO 2 Absorbent

실험예 2에서 CO2를 흡수한 흡수제 1L(용액 온도 32℃)를 2L Beaker에 옮기고 교반해 주면서 CaO(assay 90%) 62.16g을 투입하였다.(용액 온도 62℃로 상승) 투입과 동시에 흰색 고체가 석출되면서 회갈색의 CaO 입자가 빠르게 녹아들어간 뒤 고체를 여과하고 열풍건조하여 흰색의 CaCO3 100.1g 을 얻었다. 여액은 다시 실험예 2의 CO2 흡수 재생액으로 사용하였다. In Experimental Example 2, 1L of the absorbent that absorbed CO 2 (solution temperature: 32°C) was transferred to a 2L Beaker, and 62.16 g of CaO (assay 90%) was added while stirring. As was precipitated, grayish brown CaO particles were rapidly dissolved, and then the solid was filtered and dried with hot air to obtain 100.1 g of white CaCO 3 . The filtrate was again used as the CO 2 absorption regeneration solution of Experimental Example 2.

이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기 실시예에 한정되지 않음은 물론이며, 본 발명이 속하는 분야에서 통상의 기술적 지식을 가진 자에 의해 상기 기재된 내용으로부터 다양한 수정 및 변형이 가능할 수 있음은 물론이다.As described above, although the present invention has been described with limited embodiments and drawings, the present invention is not limited to the above embodiments, of course, from the above description by a person having ordinary technical knowledge in the field to which the present invention belongs. Of course, various modifications and variations may be possible.

1 : 본 발명의 시스템 2 : 배출원
3 : 질소산화물 제거부 4 : 집진장치
5 : 탈황부 6 : 열교환기
7 : 이산화탄소 흡수조 8 : 1차 침전조
9 : 2차 침전조
1: system of the present invention 2: emission source
3: nitrogen oxide removal unit 4: dust collector
5: desulfurization unit 6: heat exchanger
7: carbon dioxide absorption tank 8: primary sedimentation tank
9: 2nd sedimentation tank

Claims (7)

배기가스 배출원에서 배출되는 배기가스를 유입받아 배기가스로부터 더스트을 제거하는 집진장치;
상기 집진장치를 통과한 배기가스를 유입받아 수산화나트륨 수용액; 일라이트 분말을 40 내지 100℃로 가열된 물에 첨가하여 교반하여 제조되는 일라이트 추출물; 흡수된 기체상태의 이산화탄소가 빠져나가지 못하고 액체상태로 녹아들어가면서 탄산으로 반응하게 되어 이산화탄소 흡수율을 배가시키는 사붕산나트륨 및 물유리; 과산화수소를 포함하여 구성되되, 일라이트 분말을 40 내지 100℃로 가열된 물에 투입하여 교반한 후에, 순차적으로 사붕산나트륨을 투입하여 교반하고, 수산화나트륨을 투입하여 교반하며, 물유리를 투입하여 교반하고, 과산화수소를 투입하여 교반한후 상등액을 여과하여 제조되는 이산화탄소 흡수제와 반응에 의해 배기가스로부터 이산화탄소 및 황산화물을 제거하고 처리가스를 배출하는 이산화탄소 흡수조;
상기 이산화탄소 흡수조로부터 반응액을 유입받아 응집제와 응집반응에 의해 이물질을 침전시키는 1차 침전조;
상기 1차 침전조로부터 반응액을 유입받아 산화칼슘과 반응시켜 탄산칼슘을 회수하는 2차 침전조;
를 포함하는 것을 특징으로 하는 배기가스로부터 이산화탄소 제거시스템.
a dust collector for receiving the exhaust gas discharged from the exhaust gas source and removing dust from the exhaust gas;
A sodium hydroxide aqueous solution by receiving the exhaust gas passing through the dust collector; an illite extract prepared by adding illite powder to water heated to 40 to 100° C. and stirring; Sodium tetraborate and water glass, which doubles the absorption rate of carbon dioxide by reacting with carbonic acid while the absorbed gaseous carbon dioxide cannot escape and melts into a liquid state; It is composed of hydrogen peroxide, but the illite powder is added to water heated to 40 to 100 ° C. and stirred, then sodium tetraborate is sequentially added and stirred, sodium hydroxide is added and stirred, and water glass is added and stirred a carbon dioxide absorption tank for removing carbon dioxide and sulfur oxides from the exhaust gas by reacting with the carbon dioxide absorbent prepared by adding hydrogen peroxide, stirring, and filtering the supernatant, and discharging the treated gas;
a primary precipitation tank receiving the reaction liquid from the carbon dioxide absorption tank and precipitating foreign substances by a flocculation reaction with a coagulant;
a second precipitation tank receiving the reaction solution from the first precipitation tank and reacting with calcium oxide to recover calcium carbonate;
Carbon dioxide removal system from exhaust gas, characterized in that it comprises a.
제 1항에 있어서,
상기 집진장치 전단에는 배기가스 배출원에서 배출되는 배기가스를 유입받아 배기가스로부터 질소산화물을 제거하여 배출하는 질소산화물 제거부가 더 포함되는 것을 특징으로 하는 배기가스로부터 이산화탄소 제거시스템.
According to claim 1,
The system for removing carbon dioxide from exhaust gas, characterized in that the front end of the dust collector further includes a nitrogen oxide removal unit for receiving exhaust gas discharged from an exhaust gas emission source and removing and discharging nitrogen oxides from the exhaust gas.
제 1항에 있어서,
상기 이산화탄소 흡수조를 통해 배출되는 처리가스는 열교환기를 거쳐 외부로 배출됨을 특징으로 하는 배기가스로부터 이산화탄소 제거시스템.
According to claim 1,
Carbon dioxide removal system from exhaust gas, characterized in that the processing gas discharged through the carbon dioxide absorption tank is discharged to the outside through a heat exchanger.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020220089156A 2022-07-19 2022-07-19 Carbon Dioxide Removing System From Exhaust Gases KR102556853B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220089156A KR102556853B1 (en) 2022-07-19 2022-07-19 Carbon Dioxide Removing System From Exhaust Gases
PCT/KR2023/010175 WO2024019449A1 (en) 2022-07-19 2023-07-17 System for removal of carbon dioxide from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220089156A KR102556853B1 (en) 2022-07-19 2022-07-19 Carbon Dioxide Removing System From Exhaust Gases

Publications (1)

Publication Number Publication Date
KR102556853B1 true KR102556853B1 (en) 2023-07-19

Family

ID=87425645

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220089156A KR102556853B1 (en) 2022-07-19 2022-07-19 Carbon Dioxide Removing System From Exhaust Gases

Country Status (2)

Country Link
KR (1) KR102556853B1 (en)
WO (1) WO2024019449A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020034205A (en) * 2000-07-31 2002-05-08 오하시 미츠오 Method of treating combustion gas and treating appartus
KR100934551B1 (en) * 2007-11-30 2009-12-29 김병준 How to remove sulfur oxides and carbon dioxide
KR101076140B1 (en) * 2011-03-28 2011-10-21 정훈 Liquid carbon dioxide produced by reaction of calcium hydroxide and calcium carbonate using rigid exhaust gas to remove sulfur compounds and the device
KR101322370B1 (en) * 2013-04-08 2013-10-29 극동환경화학 주식회사 Apparatus and method for collecting carbon dioxide of exhaust gas using combustion byproducts and absorption liquid
KR20140083180A (en) * 2012-12-24 2014-07-04 재단법인 포항산업과학연구원 Method and apparatus for removing carbon dioxide and SOx from flue gas
KR101415865B1 (en) 2013-04-01 2014-07-09 한국과학기술연구원 A novel absorbent for sulphur dioxide and sulfurous acid supported by polymer
JP2017039105A (en) * 2015-08-21 2017-02-23 株式会社神戸製鋼所 Gas treatment system and gas treatment method
JP2018501082A (en) * 2014-10-28 2018-01-18 インターサージカル アクチェンゲゼルシャフト Chemical absorbent
KR101864999B1 (en) * 2017-09-18 2018-06-05 이철 A catalyst for desulfurization, a method for producing the same, and a desulfurization method using the same
JP2019076810A (en) * 2017-10-20 2019-05-23 三菱重工エンジニアリング株式会社 Acidic gas removal device and acidic gas removal method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020034205A (en) * 2000-07-31 2002-05-08 오하시 미츠오 Method of treating combustion gas and treating appartus
KR100934551B1 (en) * 2007-11-30 2009-12-29 김병준 How to remove sulfur oxides and carbon dioxide
KR101076140B1 (en) * 2011-03-28 2011-10-21 정훈 Liquid carbon dioxide produced by reaction of calcium hydroxide and calcium carbonate using rigid exhaust gas to remove sulfur compounds and the device
KR20140083180A (en) * 2012-12-24 2014-07-04 재단법인 포항산업과학연구원 Method and apparatus for removing carbon dioxide and SOx from flue gas
KR101415865B1 (en) 2013-04-01 2014-07-09 한국과학기술연구원 A novel absorbent for sulphur dioxide and sulfurous acid supported by polymer
KR101322370B1 (en) * 2013-04-08 2013-10-29 극동환경화학 주식회사 Apparatus and method for collecting carbon dioxide of exhaust gas using combustion byproducts and absorption liquid
JP2018501082A (en) * 2014-10-28 2018-01-18 インターサージカル アクチェンゲゼルシャフト Chemical absorbent
JP2017039105A (en) * 2015-08-21 2017-02-23 株式会社神戸製鋼所 Gas treatment system and gas treatment method
KR101864999B1 (en) * 2017-09-18 2018-06-05 이철 A catalyst for desulfurization, a method for producing the same, and a desulfurization method using the same
JP2019076810A (en) * 2017-10-20 2019-05-23 三菱重工エンジニアリング株式会社 Acidic gas removal device and acidic gas removal method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemical Engineering Journal 255 (2014) 705-715(2014.07.01.)* *

Also Published As

Publication number Publication date
WO2024019449A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
CA2721677C (en) Capture and sequestration of carbon dioxide in flue gases
US7371357B2 (en) Process for removal of pollutants
US9895661B2 (en) Process and device for desulphurization and denitration of flue gas
AU2008310755B2 (en) Coal fired flue gas treatment and process
EP2990089B1 (en) Acidic gas removal using dry sorbent injection
JP2004261658A (en) Method for absorbing/fixing carbon dioxide in combustion exhaust gas
WO2020225689A1 (en) System and method for carbon capture
CN109482049B (en) Dry desulfurization, denitrification and purification integrated process for coke oven flue gas
CN210523360U (en) Processing system for waste salt resourceful treatment
CN112403186A (en) Method for cooperatively treating multi-pollutant flue gas and recovering ammonium ferrous sulfite
WO2015097674A1 (en) Method for carbonating industrial and urban waste and regenerating reagents
EP4163266A1 (en) Method for separating and recovering co2 in cement production exhaust gas, and co2 separation and recovery device
KR102556853B1 (en) Carbon Dioxide Removing System From Exhaust Gases
CN210523361U (en) Waste salt resourceful treatment processing system
CN109126435B (en) Double-alkali flue gas desulfurization process
KR102556854B1 (en) Resource Circulation System
KR102556855B1 (en) A Carbon Dioxide Absorbent
CN211770757U (en) Tail gas purification and waste heat utilization device of hot blast stove for active carbon desorption
KR102556856B1 (en) Carbon dioxide absorbent and method for producing desul
Kawatra et al. Capture and sequestration of carbon dioxide in flue gases
WO2024128745A1 (en) Method for production of clean hydrogen
CN210522218U (en) Tail gas treatment system for waste salt resourceful treatment
WO1994021965A1 (en) Recycling processes using fly ash
KR20240094849A (en) Process for production of clean hydrogen
JPH09236389A (en) Waste gas treatment apparatus of dl type sintering machine and treatment method

Legal Events

Date Code Title Description
AMND Amendment
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant