JPS5835452A - Measurement of thermal diffusivity - Google Patents

Measurement of thermal diffusivity

Info

Publication number
JPS5835452A
JPS5835452A JP13332681A JP13332681A JPS5835452A JP S5835452 A JPS5835452 A JP S5835452A JP 13332681 A JP13332681 A JP 13332681A JP 13332681 A JP13332681 A JP 13332681A JP S5835452 A JPS5835452 A JP S5835452A
Authority
JP
Japan
Prior art keywords
time
specimen
temperature
sample
elapsed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13332681A
Other languages
Japanese (ja)
Other versions
JPS6351500B2 (en
Inventor
Tadahiko Azumi
安積 忠彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIGAKU DENKI KK
Rigaku Denki Co Ltd
Original Assignee
RIGAKU DENKI KK
Rigaku Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIGAKU DENKI KK, Rigaku Denki Co Ltd filed Critical RIGAKU DENKI KK
Priority to JP13332681A priority Critical patent/JPS5835452A/en
Publication of JPS5835452A publication Critical patent/JPS5835452A/en
Publication of JPS6351500B2 publication Critical patent/JPS6351500B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Abstract

PURPOSE:To obtain values for which no correction is needed by taking as a reference time a certain time point at which a specified time has elapsed from the time point at which the irradiation of rays was started and obtaining peak diffusion by measuring the time until the temperature of the other area of a specimen reaches a certain ratio to the maximum value and the thickness of the specimen. CONSTITUTION:The strength is given by a function of time f(t') and a radiant ray of time width gamma is irradiated at one face of a specimen 1 that is plate- shaped, and the time point which has elapsed by the time given by the quantion Isince starting the irradiation is made the reference point. From the time elapsed until the temperature of the other face of the specimen 1 measured by a thermocouple junction 3 becomes a certain rate to the maximum value and the thickness l of the specimen, the heat diffusivity is to be obtained.

Description

【発明の詳細な説明】 板状試料の一方のIIを例えばレーザ光のような輻射線
で瞬間的に照射して他方の面の温度1郷を観測し、その
温度が最大値の例えげ8分の1に達するまての時間と上
記試料の厚みと良よって、熱拡散率を11企することが
できる。このようなフラッシュ法熱拡散率測定において
、試料表面の温度が異状に上昇することなく、シかも裏
面に適当な温度上昇を生ずるようにするために醪、輻射
線の照射時間を大きくしなければならな−が、この場合
はその波形並びに試料裏面の温度が最大値の2分のIK
達するまでの時間に応じて測定値に補正を加える必要が
あ島4#Mh、従って仁の捕正量が装置毎に相違するだ
けでなく、更に測定毎に相違するから、補正の操作が極
めて煩雑であった。本発明はこのような欠点を除失して
、測定毎に補正を行う必要のなφ方法を提供するもので
、以下これにつ−て評絖する。
[Detailed description of the invention] One side II of the plate-shaped sample is instantaneously irradiated with radiation such as a laser beam, the temperature of the other side is observed at 1, and the temperature is the maximum value. The thermal diffusivity can be estimated to be 11 depending on the time taken to reach 1/2 and the thickness of the sample. In such flash method thermal diffusivity measurements, it is necessary to increase the irradiation time of the moromi and radiation in order to generate an appropriate temperature rise on the back side without causing an abnormal rise in temperature on the surface of the sample. However, in this case, the waveform and the temperature on the back side of the sample are half of the maximum value.
It is necessary to make corrections to the measured values according to the time it takes to reach 4#Mh, so the amount of particles captured not only differs from device to device, but also from measurement to measurement, making the correction operation extremely difficult. It was complicated. The present invention eliminates these drawbacks and provides a φ method that does not require correction for each measurement, and will be evaluated below.

第1図のように例え社円板状をなした試料1の一方のw
iに矢印怠で示したようにレーザ光を均一な強度をもっ
て瞬間的に照射し、他方のIIK添着した熱電対接点S
によってその温度上昇を測定する。11!怠図は時間−
と上記レーず光の強度り並びに試料1の下面の温度Tの
関係を示した曲線−および−を示したもので、第1図に
曲S−を拡大して示しである。第を図における曲Heの
極大値を戸とすると1w1曲線がり、に達する時刻をI
宇また試料1の厚さをI、定数をに・とすると、上記試
料の熱拡散率111は 五〇を示し丸亀のて、試料を照射する輻射線の時間幅を
τとLlまたtYを−とすると自横軸にFl、にをとっ
である。水平線ムは第2図における曲線aの時間幅tが
極めて小さ一場合で、上記1.に関係なく K、はO,
13aaの一定値を有する。また曲線B、0゜D、Hは
何れも時間幅てが比較的大暑−場合で、輻射S−の波形
をそれぞれ第S図の三角波h l’l矩形波dおよび三
角波−と仮定Llものである。このように定数1.瞠輻
射IIAの波形に関係なく、はぼ直線的に変化し、かつ
力、が0のとflは0・1388の値を有する0従って
上記直線の傾きをりとするとか成立し、qτを9とする
と(1)式からま光試料を照射する輻射線の波g−をI
σ)とすると、第2図に示した試料裏面の温度上昇曲線
−はおける時間−の原点は輻射線の波形−の立上り点で
あるが、その原点を前記時間りだけ遅らせ九とすると、
(番)式は と表わされる。この(・8)式をテーラ−展開してとな
るようにすると、1次の項が消えることがわかる。すな
わち上記(6)式て与えられるりは波形aの重心の位置
に相当するものである。このような位置管時間軸の原点
として曲線−の値がその極大値pの6となる時間を観測
すると、前記第(3)式から明らかなように、波形as
O形に関係なく定数に、を常r: o、zsaaと置(
ことがで愈る−1にお(6)式t)2次以降の項のため
に多少の誤差を生ずるが一惇が%の怠倍以狐の範囲にお
いてその鏡差は1〜24以下であることが計算によって
判明している・以上説明したように本発明は、試料裏面
の温度上昇曲Sを観測する時間軸の原点をへ験試料の表
面に照射する輻射線の立上り時点から第(6)式で与え
られる時間りだけ遅らせるものて、これによって測定@
に補正を加える必要がなく、前記1’!(1)式の定数
!・を常に一定の値とすることができるから、測定が極
めて容易である。かつ試料管照射する輻射線の時間幅を
着しく小さくする必要も除かれるから、試料を厚(して
その表11に充分大きなエネルギを与えることにより裏
面の温度上昇を大龜くして、精密な測定を行うことがc
lする。を先試料裏面の温度層W!曲線を利用して試料
よりの輻射等による熱損失あるーは入射エネにギの分布
に対する補正を行うこともあるが、このような場合にも
時間軸の原点を上述のよらに設定することによって、厳
密な補正管行うことがで自る0
As shown in Figure 1, one w of sample 1, which is shaped like a disk,
As shown by the arrow in i, laser light is irradiated instantaneously with uniform intensity, and the other IIK-attached thermocouple contact S
The temperature rise is measured by 11! Lazy diagram is time.
1 shows curves showing the relationship between the intensity of the laser beam and the temperature T of the lower surface of the sample 1. FIG. 1 shows an enlarged view of the curve S-. If the maximum value of the song He in the figure is the door, then the 1w1 curve curves, and the time when it reaches I is
In addition, if the thickness of sample 1 is I, and the constant is Then, the horizontal axis is Fl and . The horizontal line M corresponds to the case where the time width t of the curve a in FIG. 2 is extremely small. Regardless of K, is O,
It has a constant value of 13aa. In addition, curves B, 0°D, and H are all obtained when the time width is relatively hot, and the waveforms of the radiation S- are assumed to be the triangular wave h, l'l rectangular wave d, and triangular wave Ll in Figure S, respectively. be. In this way, the constant 1. Regardless of the waveform of the radiation IIA, it changes almost linearly, and when the force is 0, fl has a value of 0.1388. Then, from equation (1), the wave g of the radiation irradiating the optical sample is I
σ), the origin of the temperature rise curve on the back side of the sample shown in Fig. 2 is the rising point of the radiation waveform, but if the origin is delayed by the aforementioned time and set to 9, then
The formula (number) is expressed as. It can be seen that when this equation (.8) is expanded by Taylor, the first-order term disappears. That is, the value given by equation (6) above corresponds to the position of the center of gravity of waveform a. If we observe the time when the value of the curve - reaches its maximum value p of 6 as the origin of the time axis of the position tube, as is clear from equation (3) above, the waveform as
Regardless of the O type, always set r: o, zsaa as a constant (
(6) t) There will be some error due to the quadratic and later terms in -1, but since the error is %, the mirror difference is 1 to 24 or less in the range of %. It has been found through calculations that there is a 6) Delay by the time given by the formula, and measure by this @
There is no need to add correction to the above 1'! (1) Constant of formula!・can always be kept at a constant value, making measurement extremely easy. In addition, since it is not necessary to carefully reduce the time width of the radiation irradiating the sample tube, it is possible to increase the temperature of the back surface by giving a sufficiently large amount of energy to the front surface of the sample, thereby making it possible to perform precise measurements. It is c
I do it. The temperature layer on the back of the sample W! The curve may be used to compensate for the distribution of heat loss due to radiation from the sample, etc., in the incident energy, but in such cases, by setting the origin of the time axis as described above, , it is possible to perform a strict correction tube at 0

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の構成を示した図
、第R図は試料を照射する輻射線の強度曲線並びに試料
裏面の温度曲線の一例、第3図は試料を照射する輻射線
の強度曲線、第4図は定数weを示した線図である。な
お図にむ−て、IFi試料、j!け試料の表面を照射す
るレーず光を示した矢印、Sは熱気対接点である。 特許出願人 理学電機株式金社
Fig. 1 is a diagram showing the configuration of an apparatus for carrying out the method of the present invention, Fig. R is an example of the intensity curve of the radiation irradiating the sample and the temperature curve on the back side of the sample, and Fig. 3 is an example of the radiation intensity curve irradiating the sample. Line intensity curve, FIG. 4 is a diagram showing the constant we. In addition, the IFi sample, j! The arrow S indicates the laser light irradiating the surface of the sample, and S is the point of contact with the hot air. Patent applicant: Rigaku Denki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 強度が時間c′の関数/(1)で与叉られて時間幅が時
間だけ経過した時点を基準時点として上記試料の他方の
園の温度がその最大値に対して一定の割合となるまでの
時間と該試料の厚みと良よってその熱拡散率を求めるこ
とを特徴とす為熱拡散率測定法
The intensity is given by the function of time c'/(1) and the time width has elapsed as the reference point, and the temperature in the other garden of the above sample becomes a constant ratio to its maximum value. Thermal diffusivity measurement method is characterized by determining the thermal diffusivity based on time and the thickness and quality of the sample.
JP13332681A 1981-08-27 1981-08-27 Measurement of thermal diffusivity Granted JPS5835452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13332681A JPS5835452A (en) 1981-08-27 1981-08-27 Measurement of thermal diffusivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13332681A JPS5835452A (en) 1981-08-27 1981-08-27 Measurement of thermal diffusivity

Publications (2)

Publication Number Publication Date
JPS5835452A true JPS5835452A (en) 1983-03-02
JPS6351500B2 JPS6351500B2 (en) 1988-10-14

Family

ID=15102087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13332681A Granted JPS5835452A (en) 1981-08-27 1981-08-27 Measurement of thermal diffusivity

Country Status (1)

Country Link
JP (1) JPS5835452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950009A (en) * 2014-03-28 2015-09-30 杭州远方光电信息股份有限公司 Thermal resistance analysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950009A (en) * 2014-03-28 2015-09-30 杭州远方光电信息股份有限公司 Thermal resistance analysis method
CN104950009B (en) * 2014-03-28 2018-11-20 杭州远方光电信息股份有限公司 A kind of thermal resistance analysis method

Also Published As

Publication number Publication date
JPS6351500B2 (en) 1988-10-14

Similar Documents

Publication Publication Date Title
Markham et al. Bench top Fourier transform infrared based instrument for simultaneously measuring surface spectral emittance and temperature
Gauthier et al. Theoretical and experimental studies of laser-produced plasmas driven by high-intensity femtosecond laser pulses
JP3252155B2 (en) Thermal diffusivity measurement method by thermoreflectance method
Smith et al. A calorimeter for high-power CW lasers
Doyle et al. Implementation of a system of optical calibration based on pyroelectric radiometry
Lunney et al. Time-resolved X-ray diffraction from silicon during pulsed laser annealing
JPS5835452A (en) Measurement of thermal diffusivity
Lewis et al. Characteristics of ion flows from laser irradiated plane targets
Bruneteau et al. Experimental Investigation of the Production and Containment of a Laser‐Produced Plasma
RU2343465C1 (en) Method of noncontact nondestructive control of materials thermophysical properties
Blevin et al. Development of a scale of optical radiation
Ballestrín et al. Calibration of high-heat-flux sensors in a solar furnace
Hansen et al. Specular reflection from mercury vapor
Krankenhagen et al. Cooling-down of thermal thick probes after flash excitation–A measure for the real energy density?
Krankenhagen et al. Determination of the spatial energy distribution generated by means of a flash lamp
Noguchi et al. Heating curves of solids obtained by a solar furnace
Gaudin et al. Time-resolved investigation of nanometer scale deformations induced by a high flux x-ray beam
Schubnell et al. Simultaneous measurement of irradiation, temperature and reflectivity on hot irradiated surfaces
JPS5823892B2 (en) Heat capacity measurement method
Tabor et al. An instrument for measuring absorptivities for solar radiation
Miyake et al. Thermal Effusivity Calibration Procedure for Thermal Microscope.
Davies Skin simulants for studies of protection against intense thermal radiation
Kılınç et al. Influences of sensor protective coating on laser energy calibration results
Zhang et al. Measurement of infrared absorption coefficients of molten glasses
JP3940800B2 (en) Thermal diffusion coefficient wide-angle single-point measurement using general-purpose nanoscale measurement technology