JPS5835278A - Heat driven engine - Google Patents

Heat driven engine

Info

Publication number
JPS5835278A
JPS5835278A JP13443481A JP13443481A JPS5835278A JP S5835278 A JPS5835278 A JP S5835278A JP 13443481 A JP13443481 A JP 13443481A JP 13443481 A JP13443481 A JP 13443481A JP S5835278 A JPS5835278 A JP S5835278A
Authority
JP
Japan
Prior art keywords
temperature
cooling
phase
heating
driven engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13443481A
Other languages
Japanese (ja)
Inventor
Masanori Kanda
神田 正宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13443481A priority Critical patent/JPS5835278A/en
Publication of JPS5835278A publication Critical patent/JPS5835278A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To prolong the life of an element by setting the transformation temperature and heating/cooling temperature of the energy conversion element made of a profile memory alloy so that both heating and cooling temperature are kept equal to or more than the martensite reverse transformation temperature. CONSTITUTION:Both cooling and heating sides of an energy conversion element made of a profile memory alloy of a heat driven engine are kept at or above the martensite reverse transformation completing temperature Af, thereby only an austenite phase (host phase) d and a stress inducing martensite phase c appear along the driving cycle and a heat elastic martensite phase (a) due to cooling does not appear. Accordingly, the matching disturbance due to a unistrain change from d to (a) during a temperature drop is made small, and only transformations between d and c occur during the deformation or profile recovery process (uni-stress process) of the element, thus the matching disturbance is made small and the life of the element can be prolonged.

Description

【発明の詳細な説明】 本発明は形状記憶合金をエネルギー変換素子とした熱駆
動エンジンに関するものであるっ従東、形状記憶合金を
エネルギー変換素子(以下駆動素子という)としだ熱駆
動エンジンは温泉、地熱等の自然発生熱エネルギーや原
子力発電所、火力発電所、化学プラント等から排出され
る温廃水の熱エネルギーを加熱源、水を冷却源とするよ
うな低温度差、エネルギーから機械又は電気エネルギー
を回収するこ々金主に目的として開発された。
Detailed Description of the Invention The present invention relates to a thermally driven engine using a shape memory alloy as an energy conversion element. , natural thermal energy such as geothermal heat, thermal energy of hot waste water discharged from nuclear power plants, thermal power plants, chemical plants, etc. as a heating source and water as a cooling source, low temperature difference, energy to machinery or electricity It was developed for the purpose of recovering energy.

この熱駆動エンジンの、駆動素子を構成する形状記憶合
金は以下の特異な性質を有する。即ち、■ 形状記憶効
果。
The shape memory alloy that constitutes the driving element of this thermally driven engine has the following unique properties. Namely, ■ Shape memory effect.

■ 変0蒙弾性効果。■ Flat elasticity effect.

■ マルテンサイト変態温度範囲をコントロール可能。■ The martensitic transformation temperature range can be controlled.

これらの性質について詳しく説明を行なう。第1、図は
形状記憶合金の応力−歪曲線の一例である。
These properties will be explained in detail. The first figure is an example of a stress-strain curve of a shape memory alloy.

(Mf点はマルテンサイト変態終了温度を示しAf点は
マルテンサイト逆変態終了温度を示す。)前記した■形
状記憶効果とは第1図の曲線aによって示すようにMf
点以下の温度では変形応力は小さく、かつ応力除荷した
ときに永久歪(ε)が残留するがAz点以上に加熱する
と元の形に戻る性質である。又、前記した■変態擬弾性
効果とは第1図の曲1bによって示すようにAf点以上
の@度で数パーセント以上の変形を与えても除荷すれば
元の形に戻る性質である。前記■及び■の性質はマルテ
ンサイト変轢に起因するものである。このマルテンサイ
ト変態が行なわれる温度は常温付近にあり、かつマルテ
ンサイト正変態(母相からマルテンサイト相への変態)
とマルテンサイト逆変態(マルテンサイト相から母相へ
の変軸)のヒステリシスは十数℃と小さい。又前記変態
温度は形状記憶合金の組成加工の調節により一100℃
〜+100℃の範囲でコントロールできるものである。
(The Mf point indicates the end temperature of martensitic transformation, and the Af point indicates the end temperature of martensite reverse transformation.)
At temperatures below the Az point, the deformation stress is small, and when the stress is removed, permanent strain (ε) remains, but when heated above the Az point, it returns to its original shape. Furthermore, the above-mentioned (2) transformation pseudoelastic effect is the property that even if a deformation of several percent or more is applied at degrees above the Af point, the material returns to its original shape when the load is removed, as shown by track 1b in FIG. The above properties (1) and (2) are due to martensite transformation. The temperature at which this martensitic transformation occurs is around room temperature, and the martensitic normal transformation (transformation from the parent phase to the martensitic phase)
The hysteresis of martensitic reverse transformation (change axis from martensitic phase to parent phase) is as small as a dozen degrees Celsius. The transformation temperature can be adjusted to -100°C by adjusting the composition of the shape memory alloy.
It can be controlled within the range of ~+100°C.

熱駆動エンジンは以上述べた3つの性質を利用している
A thermally driven engine takes advantage of the three properties mentioned above.

第2図に従来の熱駆動エンジンの原理図−を示す。FIG. 2 shows a principle diagram of a conventional heat-driven engine.

形状記憶合金からなる駆動素子1が2っのプーリー2に
掛は渡される。前記駆動素子1の加熱側Cでの形状回復
応力と冷却側dでの変形応力との差が前記2つのプーリ
ー2間に掛は渡された通常のベルト3(歯車でもよい)
によって伝達され、前記2つのプーリー2は同一方向に
回転する。
A drive element 1 made of a shape memory alloy is passed between two pulleys 2. The difference between the shape recovery stress on the heating side C and the deformation stress on the cooling side d of the drive element 1 is a normal belt 3 (a gear may be used) that is passed between the two pulleys 2.
The two pulleys 2 rotate in the same direction.

第3図は第2図の熱駆動エンジンの駆動素子lの駆動サ
イクルを表わす。1駆動素子はMf点以下の温度゛(冷
却側)で変形を受けAf点以上の温度(加熱側)での形
状回復によって駆動力を発生する0 第4図は上記第3図O駆動サイクルに沿った駆動素子の
原子構造変化をモデル化したものである。
FIG. 3 represents the drive cycle of the drive element l of the thermally driven engine of FIG. 1 The driving element is deformed at a temperature below the Mf point (cooling side) and generates a driving force by recovering its shape at a temperature above the Af point (heating side). Figure 4 shows the O drive cycle shown in Figure 3 above. This is a model of changes in the atomic structure of the drive element along the

駆動サイクルを経過することにより素子の原子構造は同
図の如く変化する。即ち同図(a)の熱弾性マルテンサ
イト構造(低温相)→同図(b)の変形マルテンサイト
構造→同図(C)の応力誘起マルテンサイト構造→同図
(d)のオーステナイト構造(母相−高温相)→同図(
a)の熱弾性マルテンサイト構造(低温相)→・・・と
いう構造変化のサイクルを操返す。
As the drive cycle passes, the atomic structure of the element changes as shown in the figure. That is, the thermoelastic martensite structure (low temperature phase) in Figure (a) → the deformed martensite structure in Figure (b) → the stress-induced martensite structure in Figure (C) → the austenite structure (matrix) in Figure (d). phase - high temperature phase) → same figure (
The cycle of structural changes from a) thermoelastic martensitic structure (low temperature phase) to... is repeated.

(a)→(b)は冷却側での変形、(b)→(c)は昇
温時の等歪変化、(c) →(d)はJJII 勢側で
の形状回復、(d)→(a)は降温時の等歪変化による
。この駆動サイクルにおいて素子寿命の点で問題となる
のは、(a)→(b)の過程での双晶変形に伴う双晶界
面の移動による内部歪或いは不純物の影響による双晶間
の整合性の乱れ、及び(d)→(a)の過程での変@歪
の熱サイクルを経“Cの蓄積である。これらの現象は駆
動素子の寿命を著しく縮める原因となるものである〇 本発明は以上の従来点に鑑皐なされたものであり従来の
熱駆動エンジンとは異なる相変化を利用し、′もって長
寿命のエンジンを得んとするものである。
(a) → (b) is deformation on the cooling side, (b) → (c) isostrain change during heating, (c) → (d) is shape recovery on the JJII side, (d) → (a) is due to the isostrain change when the temperature is lowered. In this drive cycle, problems in terms of device life include internal strain due to the movement of the twin interface due to twin deformation in the process (a) → (b), or consistency between twins due to the influence of impurities. This is the accumulation of C through the thermal cycle of disturbance and change @ strain in the process of (d) → (a). These phenomena are the cause of significantly shortening the life of the drive element. The present invention has been made in consideration of the above-mentioned conventional points, and aims to obtain a long-life engine by utilizing a phase change different from that of conventional heat-driven engines.

以下、本発明に係わる熱駆動エンジンの実施例について
説明を行なう。
Embodiments of the thermally driven engine according to the present invention will be described below.

従来の熱駆動エンジンは駆動素子を冷却側でMf点以下
に冷却し、加熱側でAf点以上に加熱してエンジンを構
成していたことは1既に述べだが、本発明の熱駆動エン
ジンでは冷却側及び加熱側を共にAf点以上としたもの
である。第1表は従来のエンジン素子の変態点と本発明
に係わるT1Niエンジン素子の一実施例の変態点とを
示す。
As already mentioned, in the conventional thermally driven engine, the engine was constructed by cooling the drive element to below the Mf point on the cooling side and heating it above the Af point on the heating side, but in the thermally driven engine of the present invention, the driving element is cooled to below the Mf point and heated to above the Af point on the heating side. Both the side and the heating side are set to be above the Af point. Table 1 shows the transformation points of a conventional engine element and an embodiment of a T1Ni engine element according to the present invention.

第  l  表 同表の如〈従来のエンジン素子の変態点を20〜50℃
下げてエンジン素子を構成すれば、従来の熱源と同じ熱
源(例えば80〜90℃の熱水)にてエンジンを構成で
きる。第5図は第1表に示した本発明に係tっるT1N
iエンジン素子の応力−歪曲線の測定例であるが、Af
点以上の僅かな温度差でも充分な形状回復応力差を有し
従来の熱駆動エンジンに比較しても遜色ない、駆動力を
得ることができることを示している。
As shown in Table I, the transformation point of conventional engine elements is 20 to 50°C.
If the engine element is constructed by lowering the temperature, the engine can be constructed using the same heat source as a conventional heat source (for example, hot water at 80 to 90° C.). FIG. 5 shows T1N according to the present invention shown in Table 1.
This is an example of measuring the stress-strain curve of an i-engine element.Af
This shows that even with a slight temperature difference of more than a point, there is a sufficient shape recovery stress difference, and it is possible to obtain a driving force comparable to that of conventional thermally driven engines.

第6図は本発明に係わる熱駆動エンジンの一実幅例の駆
動サイクルを示すものである。同図の如く駆動サイクル
に沿って現出する相はオーステナイト相(母相)と応力
誘起マルテンサイト相のみであり、従来のエンジンの如
く冷却によって生ずる熱弾性マルテンサイト相はない。
FIG. 6 shows a driving cycle of an example of a thermally driven engine according to the present invention. As shown in the figure, the only phases that appear along the drive cycle are an austenite phase (mother phase) and a stress-induced martensite phase, and there is no thermoelastic martensite phase that is generated by cooling as in conventional engines.

その為従来の駆動サイクルに比べ相変態に伴う母相、マ
ルテンサイト相聞の整合性の乱れは少なくなる0即ち駆
動素子の変形あるいは形状回復過程(等応力過程)では
オーステナイト相二応力誘起マルテンサイト相の変轢の
みであるから整合性の乱れは少ない。
Therefore, compared to the conventional drive cycle, there is less disturbance in the consistency between the parent phase and martensite due to phase transformation.In other words, during the deformation or shape recovery process (equal stress process) of the drive element, there is an austenite phase, a stress-induced martensite phase, and a stress-induced martensite phase. Since there is only a change in , there is little disturbance in consistency.

つまりオーステナイト相は熱的に安定であり、又応力誘
起マルテンサイト相は応力によってのみ誘起されるので
応力に対して安定である・。更に応力誘起マルテンサイ
ト相は応力除荷によって熱的に安定なオーステナイト相
に変わるだけでありオーステナイト相と応力誘起マルテ
ンサイト相聞の整合性は極めて良く保たれる。
In other words, the austenite phase is thermally stable, and the stress-induced martensitic phase is induced only by stress, so it is stable against stress. Furthermore, the stress-induced martensite phase only changes to the thermally stable austenite phase by stress unloading, and the consistency between the austenite phase and the stress-induced martensite phase is maintained extremely well.

又、等歪状轢での昇温、降温過程では応力誘起マルテン
サイト相或いはオーステナイト相内でそれぞれの温度に
安定な結晶の配列形態をとるだけであり、相変態を行な
う場合の様な原子の再配列を行なうものでなく、従って
変態歪に相当するような内部歪の蓄債がない。よって駆
動素子の長寿命化を得るものである。
In addition, during the temperature rising and cooling process in the isostrictive track, the crystals only form a stable crystal arrangement at each temperature within the stress-induced martensite phase or austenite phase, and the atoms do not change as in the case of phase transformation. There is no rearrangement, and therefore there is no accumulation of internal strain that corresponds to metamorphic strain. Therefore, the life of the drive element can be extended.

第2表は第5図に示した特性のエンジン素子を用・ハて
熱駆動エンジンを構成した時の熱的条件、素子形態及び
性能を表わし、従来のものと対比して示しているΩ同表
に示される結宋によれば同−取量の駆動素子を用いた場
合における、従来の熱駆動エンジンと本発明の熱駆動エ
ンジンの性能は、本発明のものは出力で約Aにン°ウン
しているが寿命で約14倍と大巾にアップしており、駆
動素子の回収エネルギーは従来のものに比べ約3.5倍
にアップしている。
Table 2 shows the thermal conditions, element form, and performance when a thermally driven engine is constructed using engine elements with the characteristics shown in Figure 5, and shows the Ω equivalents in comparison with conventional ones. According to the results shown in the table, the performance of the conventional thermally driven engine and the thermally driven engine of the present invention when using the same amount of driving elements is that the thermally driven engine of the present invention has an output of approximately A. However, the lifespan has been significantly increased by about 14 times, and the energy recovered by the drive element has increased by about 3.5 times compared to the conventional one.

第2表 ここで、従来の熱駆動エンジンの駆動源は工場部廃水の
様な加熱源と水等の冷却源を用いていたが、これらの2
つの熱媒体は比較的入手が容易なものであり、換言すれ
ばこの熱媒体が容易に入手できる程度の@度で駆動がで
きる;とが熱駆動エンジンにとっては極めて重要な要素
である。本発明の熱駆動エンジンは熱媒体として工場部
廃水の様な加熱源に駆動素子を浸漬し、一方冷却(d空
冷にて行なうことができる。即ち空冷熱駆動エンジンを
可能とするものでちる。この空冷熱駆動エンジンは冷水
がf要であるのでその流水経路もイく要となり、エンジ
ンを安価に製造できるものである)以上説明した如く、
駆動素子を高温相のみで稼動させる本発明の熱駆動エン
ジンは駆動素子の長寿命化、熱駆動エンジンの空冷化と
それに伴う装置全体の簡略化、エンジンの使用条件の広
域化等の著しい効果を発揮する。
Table 2Here, the drive source of conventional heat-driven engines uses a heating source such as factory wastewater and a cooling source such as water, but these two
This heating medium is relatively easy to obtain, and in other words, it is possible to drive the engine at temperatures as low as this heating medium is easily available; this is an extremely important element for a thermally driven engine. The thermally driven engine of the present invention can be achieved by immersing the drive element in a heating source such as industrial waste water as a heat medium, while cooling (d-air cooling), ie, making an air-cooled thermally driven engine possible. Since this air-cooled heat-driven engine requires cold water, the water flow path is also important, and the engine can be manufactured at low cost.) As explained above,
The thermally driven engine of the present invention, in which the driving element is operated only in the high temperature phase, has significant effects such as extending the life of the driving element, air cooling the thermally driving engine and thereby simplifying the entire device, and expanding the operating conditions of the engine. Demonstrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は形状記憶合金の6力−歪曲線、第2図は熱駆動
エンジンの原理図、第3図は熱駆動エンジンの駆動サイ
クルの説明図、第4図は駆動素子の原子構造の説明図、
第5図は本発明に係る形状記憶合金素子の応力−歪曲線
、第6図は本発明に1系る熱°Jj11勅エンジフェン
ジンイクルの説明図を示す0 図中、1:駆動素子、2:プーリー、3:通常のベルト
。 代理人 弁理士 福 士 愛 彦 −m−◆ 盈(%J (c〕                      
              (d)第4図 0 第5図 第 6 図
Figure 1 is the six force-strain curve of the shape memory alloy, Figure 2 is a diagram of the principle of a thermally driven engine, Figure 3 is an illustration of the drive cycle of a thermally driven engine, and Figure 4 is an explanation of the atomic structure of the drive element. figure,
FIG. 5 shows a stress-strain curve of a shape memory alloy element according to the present invention, and FIG. 6 shows an explanatory diagram of a thermal engine engine engine according to the present invention. In the figure, 1: drive element; 2: Pulley, 3: Regular belt. Agent Patent Attorney Aihiko Fuku-m-◆ Ei (%J (c)
(d) Figure 4 0 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、形状記憶合金をエネルギー変換素子としだ熱駆動エ
ンジンにおいて、加熱@妾及び冷却温度が共にマルテン
サイト逆変態点以上になるように素子の変態点及び加熱
冷却温度が設定されてなることを特徴とする熱駆動エン
ジン。 2、加熱源を熱水、冷却源を空気としたことを特徴とす
る鏑1項記載の熱駆動エンジン。 3 駆動サイクルの少なくとも一部にオーステナイト相
域における温度変化による弾性係数変化部分があること
を特徴とする第1項記載の熱駆動エンジン。
[Claims] 1. In a heat-driven engine using a shape memory alloy as an energy conversion element, the transformation point and heating/cooling temperature of the element are set so that both the heating and cooling temperatures are equal to or higher than the martensitic reverse transformation point. A thermally driven engine characterized by: 2. The heat-driven engine according to item 1, characterized in that the heating source is hot water and the cooling source is air. 3. The thermally driven engine according to item 1, wherein at least a portion of the drive cycle includes a portion where the elastic coefficient changes due to temperature change in the austenite phase region.
JP13443481A 1981-08-26 1981-08-26 Heat driven engine Pending JPS5835278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13443481A JPS5835278A (en) 1981-08-26 1981-08-26 Heat driven engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13443481A JPS5835278A (en) 1981-08-26 1981-08-26 Heat driven engine

Publications (1)

Publication Number Publication Date
JPS5835278A true JPS5835278A (en) 1983-03-01

Family

ID=15128277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13443481A Pending JPS5835278A (en) 1981-08-26 1981-08-26 Heat driven engine

Country Status (1)

Country Link
JP (1) JPS5835278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270937A1 (en) * 2001-06-22 2003-01-02 Toki Corporation Kabushiki Kaisha Shape memory alloy actuator and method of designing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270937A1 (en) * 2001-06-22 2003-01-02 Toki Corporation Kabushiki Kaisha Shape memory alloy actuator and method of designing the same
US6746552B2 (en) 2001-06-22 2004-06-08 Toki Corporation Kabushiki Kaisha Shape memory alloy actuator and method of designing the same

Similar Documents

Publication Publication Date Title
Cheng et al. Continuous rotating bending NiTi sheets for elastocaloric cooling: Model and experiments
Yuan et al. Numerical study of a double-effect elastocaloric cooling system powered by low-grade heat
JPS5835278A (en) Heat driven engine
Tobushi et al. Mechanical analysis of a solar-powered solid state engine
CN106368918B (en) A kind of displacement drive enlarger and application
Sprackling et al. What is thermal physics?
Chinnappa Solar operation of ammonia-water multistage air conditioning cycles in the tropics
JPS6260985A (en) Twin crank type shape-memory heat engine
Romanescu et al. Performance analysis of an autonomous system used to guide the solar panels
JPS5899575A (en) Valve
CN85104151B (en) Producing method for dual-direction driving element of temp.-control blind of space craft
Uchil et al. Simple thermal actuator using R-phase transformation of Nitinol
KR100693584B1 (en) Heat treatment method for the shape memory alloy and shape memory alloy treated by the method
Mohamed et al. COMMENTS ON"" EFFICIENCY OF THE SOLID-STATE ENGINE MADE WITH NITINOL MEMORY MATERIAL""
JPH0639201Y2 (en) Multi-stage hot water flasher with heater for ships
CN2136574Y (en) Electric collecting bar ventilator
JPS63312955A (en) Manufacture of ni-ti alloy-type thermosensitive working element material excellent in heat cycle life
SU377347A1 (en) METHOD OF THERMAL TREATMENT OF INVARNARY ALLOYS
Biancardi et al. A unique Rankine-cycle heat pump system
JPS5944507B2 (en) heat driven engine
Sumathy et al. Experimental studies on heat transfer in the flat-plate collector of a solar pump
JPS62113871A (en) Engine employing shape memory alloy
CN117156940A (en) Method for optimizing thermoelectric performance by utilizing heterogeneous thermoelectric material
Labrosse et al. The thermal evolution of the Earth
JPS6332374Y2 (en)