JPS5834573A - Liquid fuel cell - Google Patents

Liquid fuel cell

Info

Publication number
JPS5834573A
JPS5834573A JP56130292A JP13029281A JPS5834573A JP S5834573 A JPS5834573 A JP S5834573A JP 56130292 A JP56130292 A JP 56130292A JP 13029281 A JP13029281 A JP 13029281A JP S5834573 A JPS5834573 A JP S5834573A
Authority
JP
Japan
Prior art keywords
fuel
ion exchange
cathode
anode
exchange membranes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56130292A
Other languages
Japanese (ja)
Other versions
JPS6224909B2 (en
Inventor
Hidejiro Kawana
川名 秀治郎
Kazuo Iwamoto
岩本 一男
Tatsuo Horiba
達雄 堀場
Kazunori Fujita
一紀 藤田
Koki Tamura
弘毅 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56130292A priority Critical patent/JPS5834573A/en
Priority to US06/380,773 priority patent/US4390603A/en
Priority to EP82105839A priority patent/EP0068508B1/en
Priority to DE8282105839T priority patent/DE3273441D1/en
Publication of JPS5834573A publication Critical patent/JPS5834573A/en
Publication of JPS6224909B2 publication Critical patent/JPS6224909B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the voltage of a liquid fuel cell, and enhance the fuel utilizing efficiency of the battery by interposing between the anode and the cathode, either a layer prepared by stacking a plural number of ion exchange membranes, or a layer prepared by stacking an ion exchange membrane and a fuel-permeation preventing membrane. CONSTITUTION:A multi-layered film 1 prepared by stacking a plural number of ion exchange membranes prevents any direct contact between a cathode 7 and an anode 8. It also prevents any fuel contained in an anolyte chamber 2 from reaching to the cathode 7 through the anode 8. Air entering from an air inlet 5 is exhausted from an air outlet 6. Oxygen gas contained in an air chamber 4 reacts with hydrogen ions in the cathode 7 to produce water. Fuel undergoes reaction in the anode 8 to produce gas, which is exhausted from an exhaust hole 3. Hydrogen ions produced in the anode 8 reach to the cathode 7 through the ion exchange membranes. At this point, the chemical energy of the fuel is converted into electric energy. By stacking a plural pieces of ion exchange membranes as mentioned above, the fuel preventing effect and the fuel utilizing efficiency can be enhanced.

Description

【発明の詳細な説明】 本発明は液体燃料電池に関する。[Detailed description of the invention] The present invention relates to liquid fuel cells.

従来のメタノール、ヒドラジン、アルデヒドなどの液体
を燃料とする燃料電池においては、カソードとアノード
の分離及び燃料が直接カソードに達するのを防止するこ
とを目的としてアノードとカソードの間に1枚のイオン
交換膜を用いる構造のものがある。しかも、この場合、
イオン交換膜の燃料阻止効果は小さく、液体燃料はイオ
ン交換膜を透過して、空気極で空気中の酸素と反応する
ため、燃料の利用効率が低下し、又、空気極電位の低下
すなわち電池電圧が低下するという欠点がある。
In conventional fuel cells that use liquid fuels such as methanol, hydrazine, and aldehydes, an ion exchange plate is used between the anode and the cathode to separate the cathode and anode and prevent the fuel from reaching the cathode directly. There are structures that use membranes. Moreover, in this case,
The fuel blocking effect of the ion exchange membrane is small, and the liquid fuel passes through the ion exchange membrane and reacts with oxygen in the air at the air electrode, resulting in a decrease in fuel utilization efficiency and a decrease in the air electrode potential, i.e., the battery The disadvantage is that the voltage drops.

本発明は、イオン交換膜を重ねていくに従い、電気抵抗
は重ね枚数に比例して増加するが、燃料阻止効果は膜の
重ね枚数の2乗に逆比例、すなわち重ねるに従い、燃料
阻止効果は急激に増加することを利用したもので、その
目的は燃料が空気極上で酸素と直接反応することによる
電池電圧の低下及び燃料の浪費を防止することにある。
In the present invention, as the ion exchange membranes are stacked, the electrical resistance increases in proportion to the number of stacked membranes, but the fuel blocking effect is inversely proportional to the square of the number of stacked membranes, that is, as the membranes are stacked, the fuel blocking effect rapidly increases. The purpose of this is to prevent a drop in cell voltage and waste of fuel due to direct reaction of fuel with oxygen on the air electrode.

電池の電圧は、カソードの電位と、アノードの電位の差
である(第5図)。すなわち電池電圧を高めるにはカソ
ード電位を上げるかアノード電位を下げることが必要で
あるが、第4図に示したごとく、燃料がカソードに接触
すると、カソード電位が低下する。すなわち電池電圧が
低下する。そこで電池電圧の低下防止には燃料がカソー
ドに接触しないように隔膜で仕切ることが必要となるが
、隔膜は電気抵抗があるので、抵抗による電圧降下が存
在する。
The voltage of a battery is the difference between the potential of the cathode and the potential of the anode (Figure 5). That is, to increase the cell voltage, it is necessary to raise the cathode potential or lower the anode potential, but as shown in FIG. 4, when the fuel comes into contact with the cathode, the cathode potential decreases. In other words, the battery voltage decreases. Therefore, in order to prevent a drop in battery voltage, it is necessary to use a diaphragm to prevent the fuel from coming into contact with the cathode, but since the diaphragm has electrical resistance, there is a voltage drop due to the resistance.

本発明は、膜を重ね合わせることによる電気抵抗の増加
に起因する電池電圧の低下値よりも、重ね合わせによる
燃料透過阻11−1に起因する電池電圧の上昇値が優る
ことを実験により確認し、複数枚重ね合わせたイオン交
換膜層又はイオン交換膜と燃料透過阻止性の膜との積層
を燃料電池のアノードとカソードの間に介在せしめるこ
とで、電池電圧の上昇ケはかり、さらに燃料利用効率を
高めたものである。
The present invention has confirmed through experiments that the increase in battery voltage due to fuel permeation inhibition 11-1 caused by overlapping membranes is superior to the decrease in battery voltage due to an increase in electrical resistance due to overlapping membranes. By interposing a stack of multiple ion exchange membrane layers or a stack of an ion exchange membrane and a fuel permeation blocking membrane between the anode and cathode of the fuel cell, the cell voltage can be increased and the fuel utilization efficiency can be improved. It is an enhanced version of

以下本発明の詳細な説明する。イオン交換膜を複数枚重
ね合わせた複層膜1はカソード7とアノード8が直接接
触するのを防止すると共に、アノライト室2中の燃料が
アノードを通ってカソード7に達するのを防止している
。空気入口から入った空気は出口6から排出きれる。空
気室4中の酸素ガスはカソードで水素イオンと反応して
水を生ずる。燃料はアノードで反応してガスを発生し排
出口3から排出される。アノードで生成した水素イオン
はイオン交換膜を通ってカソードに達する。この時、燃
料の化学エネルギーが電気エネルギーに変換される。イ
オン交換膜を複数枚重ねることによって、燃料阻止効果
を増大し燃料利用効率を向上することができる。筆者等
は特に液体撚Q:イオン交換膜を透過する液体燃料 P:透過係数 S:イオン交換膜面積 T:経過時間 ΔC:イオン交換膜両側の燃料濃度差 N:イオン交換膜重ね枚数 料としてメタノールを選びメタノール透過量とイオン交
換膜重ね枚数との関係を測定した。使用したイオン交換
膜はDI pont de Nemours社製Naf
ion425である。実験の結果、(1)式又は第2図
に示すごとく、メタノール(燃料)透過量はイオン交換
膜を重ね合わせるにしたがい膜枚数の2乗に逆比例して
小さくなることを確認した。一方電気抵抗は枚数に比例
して増加する。メタノールがカソード(空気極)に達す
ると、酸素と反応するため、空気極電位が低下するが電
池電圧低下へのメタノールの寄与を第3図Aに示す。膜
の枚数を増やすにしたがい電池電圧の低下は減少してい
るが、これは第2図に示したごとくイオン交換膜はメタ
ノールがカソードに達するのを防止しているためである
。電池電圧低下の原因としては他に、イオン交換膜抵抗
によるものが考えら汎る。膜抵抗による電池電圧の降下
は第3図Bに示すごとく、重ね枚数に比例して増大する
。電池電圧の低下の主な原因は上に述べた2つが考えら
れるが、この両者による電池電圧の低下値は第3図Cで
あられされる。Nafion425’に用いた場合はイ
オン交換膜を2枚重ねて使用した場合、電池電圧の低下
がもつとも小さいことを実験的に確認した。もちろん、
他のイオン交換膜を用いた場合の最適イオン交換膜使用
枚数はNafion425の場合と異なることがありう
る。
The present invention will be explained in detail below. A multilayer membrane 1 made by stacking a plurality of ion exchange membranes prevents the cathode 7 and anode 8 from coming into direct contact, and also prevents the fuel in the anode chamber 2 from reaching the cathode 7 through the anode. . Air entering from the air inlet can be exhausted from the outlet 6. Oxygen gas in the air chamber 4 reacts with hydrogen ions at the cathode to produce water. The fuel reacts at the anode to generate gas, which is discharged from the discharge port 3. Hydrogen ions generated at the anode pass through an ion exchange membrane and reach the cathode. At this time, the chemical energy of the fuel is converted into electrical energy. By stacking a plurality of ion exchange membranes, the fuel blocking effect can be increased and the fuel utilization efficiency can be improved. The authors particularly focused on liquid twist Q: liquid fuel permeating through the ion exchange membrane P: permeability coefficient S: ion exchange membrane area T: elapsed time ΔC: difference in fuel concentration on both sides of the ion exchange membrane N: methanol as the number of stacked ion exchange membranes. The relationship between the amount of methanol permeation and the number of stacked ion exchange membranes was measured. The ion exchange membrane used was Naf manufactured by DI Pont de Nemours.
ion425. As a result of the experiment, it was confirmed that the amount of methanol (fuel) permeated decreases in inverse proportion to the square of the number of membranes as the ion exchange membranes are piled up, as shown in equation (1) or Figure 2. On the other hand, electrical resistance increases in proportion to the number of sheets. When methanol reaches the cathode (air electrode), it reacts with oxygen, causing the air electrode potential to drop. Figure 3A shows the contribution of methanol to the battery voltage drop. As the number of membranes increases, the drop in battery voltage decreases, but this is because the ion exchange membrane prevents methanol from reaching the cathode, as shown in Figure 2. Another possible cause of battery voltage drop is ion exchange membrane resistance. As shown in FIG. 3B, the drop in battery voltage due to membrane resistance increases in proportion to the number of stacked layers. The two main causes of the battery voltage drop are considered to be the two mentioned above, and the values of the battery voltage drop due to both are shown in FIG. 3C. When used in Nafion 425', it was experimentally confirmed that when two ion exchange membranes were stacked, the drop in battery voltage was minimal. of course,
When using other ion exchange membranes, the optimum number of ion exchange membranes to be used may be different from that of Nafion 425.

本発明に関する複層膜は必ずしもイオン交換膜のみから
成っている必要はなく、他のメタノール阻止効果を有す
る膜状物質との組合せ(重ね合せ)でもよい。
The multilayer membrane according to the present invention does not necessarily have to consist only of ion exchange membranes, but may also be combined (superimposed) with other membranous substances having a methanol blocking effect.

本発明によれは、メタノールが空気極に達する量を減少
することができるので、電池電圧の低下を抑え、燃料の
利用効率を高めることができる。
According to the present invention, since the amount of methanol reaching the air electrode can be reduced, a drop in battery voltage can be suppressed and fuel utilization efficiency can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る燃料電池の断面模式図、第2図は
膜のメタノール透過量及び膜の電気抵抗とイオン交換膜
重ね枚数との関係を示す図、第3図は電池電圧の低下量
と、低下原因である膜抵抗とメタノール透過による電池
電圧低下の大きさとイオン交換膜重ね枚数との関係図で
ある。第4図はメタノールによるカソード電位の低下を
表わすグラフ、第5図は電池電圧と、カソード及びアノ
ード電位の関係を示す線図である。 1・・・イオン交換膜、2・・・アノライト室、3・・
・ガス排出口、4・・・空気室、訃・・空気入口、6・
・・空気両口、7・・・カソード責空気極)、8・・・
アノード(燃料極)、A・・・メタノールを原因とする
電池電圧の低下、B・・・イオン交換膜の電気抵抗によ
る電池電圧の低下、C・・・AとBを加算した電池電圧
低下量矛 Z 図 イオン丈J更Ii臭!−#2本(収 イオン丈J更膜里ね、秩、E 第 lJ−図 第 5 図
Figure 1 is a schematic cross-sectional view of the fuel cell according to the present invention, Figure 2 is a diagram showing the relationship between the amount of methanol permeation through the membrane, the electrical resistance of the membrane, and the number of stacked ion exchange membranes, and Figure 3 is the decrease in cell voltage. FIG. 4 is a relationship diagram between the amount of ion exchange membranes, the membrane resistance which is the cause of the decrease, the magnitude of the battery voltage decrease due to methanol permeation, and the number of stacked ion exchange membranes. FIG. 4 is a graph showing a decrease in cathode potential due to methanol, and FIG. 5 is a diagram showing the relationship between battery voltage and cathode and anode potentials. 1...Ion exchange membrane, 2...Anolyte chamber, 3...
・Gas exhaust port, 4...Air chamber, End...Air inlet, 6.
・Both air ports, 7...Cathode (air electrode), 8...
Anode (fuel electrode), A... Decrease in battery voltage due to methanol, B... Decrease in battery voltage due to electrical resistance of the ion exchange membrane, C... Amount of battery voltage drop that is the sum of A and B. Spear Z Diagram Ion Length J Sara Ii Odor! - #2 books (Yuion length J Saramezato, Chichi, E No. 1J-Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 1、液体燃料と電解液との混合物に接して配置された燃
料極と、その反対側に配置されたイオン交換膜と電解液
、及びその電解液と接して配置された酸化剤極とを有す
るものにおいて、該イオン交換膜は密着積層した複数枚
のイオン交換膜又はイオン交換膜と燃料透過阻止性の膜
とからなることを特徴とする液体燃料電池。
1. It has a fuel electrode placed in contact with a mixture of liquid fuel and electrolyte, an ion exchange membrane and electrolyte placed on the opposite side, and an oxidizer electrode placed in contact with the electrolyte. A liquid fuel cell characterized in that the ion exchange membrane is composed of a plurality of closely stacked ion exchange membranes or an ion exchange membrane and a fuel permeation blocking membrane.
JP56130292A 1981-06-30 1981-08-21 Liquid fuel cell Granted JPS5834573A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56130292A JPS5834573A (en) 1981-08-21 1981-08-21 Liquid fuel cell
US06/380,773 US4390603A (en) 1981-06-30 1982-05-21 Methanol fuel cell
EP82105839A EP0068508B1 (en) 1981-06-30 1982-06-30 Methanol fuel cell
DE8282105839T DE3273441D1 (en) 1981-06-30 1982-06-30 Methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130292A JPS5834573A (en) 1981-08-21 1981-08-21 Liquid fuel cell

Publications (2)

Publication Number Publication Date
JPS5834573A true JPS5834573A (en) 1983-03-01
JPS6224909B2 JPS6224909B2 (en) 1987-05-30

Family

ID=15030820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130292A Granted JPS5834573A (en) 1981-06-30 1981-08-21 Liquid fuel cell

Country Status (1)

Country Link
JP (1) JPS5834573A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345979U (en) * 1990-09-13 1991-04-26
US6740434B2 (en) 1993-10-12 2004-05-25 California Institute Of Technology Organic fuel cell methods and apparatus
JP2008507087A (en) * 2004-07-14 2008-03-06 アーケマ・インコーポレイテッド Multi-layer polymer electrolyte membrane
KR100899665B1 (en) 2007-01-17 2009-05-27 한국과학기술연구원 Fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240410U (en) * 1988-09-12 1990-03-19

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345979U (en) * 1990-09-13 1991-04-26
US6740434B2 (en) 1993-10-12 2004-05-25 California Institute Of Technology Organic fuel cell methods and apparatus
US6821659B2 (en) 1993-10-12 2004-11-23 California Institute Of Technology Organic fuel cell methods and apparatus
JP2008507087A (en) * 2004-07-14 2008-03-06 アーケマ・インコーポレイテッド Multi-layer polymer electrolyte membrane
KR100899665B1 (en) 2007-01-17 2009-05-27 한국과학기술연구원 Fuel cell

Also Published As

Publication number Publication date
JPS6224909B2 (en) 1987-05-30

Similar Documents

Publication Publication Date Title
US4390603A (en) Methanol fuel cell
US4129685A (en) Fuel cell structure
JP3673243B2 (en) Fuel cell stack
JP3700642B2 (en) Fuel cell
JP2002042823A (en) Fuel cell
JPH041469B2 (en)
JPH08273687A (en) Supply gas humidifier of fuel cell
JPH0425673B2 (en)
JP2007287509A (en) Fuel cell stack
JP2015090788A (en) Solid oxide fuel battery
JP2002252021A (en) Fuel cell
JP2010205723A (en) Mea for fuel cell and fuel cell stack containing this
JP2015511755A (en) Unit cell for solid oxide fuel cell and solid oxide fuel cell using the same
JP2003203669A (en) Fuel cell stack
JP3447875B2 (en) Direct methanol fuel cell
JPS5834573A (en) Liquid fuel cell
JP2003331905A (en) Fuel cell with polymer electrolyte
JP2007026856A (en) Fuel cell stack
JP2000277128A (en) Solid polymer type fuel cell
JPH06338342A (en) Cell stack structure for solid high polymer electrolytic fuel cell
JPH08138696A (en) Fuel cell
JP2006147503A (en) Fuel cell stack
JP3423241B2 (en) Cell unit for fuel cell and fuel cell
JP2005251604A (en) Fuel cell stack
JP2003017091A (en) Solid polymer fuel cell