JPS6224909B2 - - Google Patents

Info

Publication number
JPS6224909B2
JPS6224909B2 JP56130292A JP13029281A JPS6224909B2 JP S6224909 B2 JPS6224909 B2 JP S6224909B2 JP 56130292 A JP56130292 A JP 56130292A JP 13029281 A JP13029281 A JP 13029281A JP S6224909 B2 JPS6224909 B2 JP S6224909B2
Authority
JP
Japan
Prior art keywords
ion exchange
fuel
positive electrode
battery voltage
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56130292A
Other languages
Japanese (ja)
Other versions
JPS5834573A (en
Inventor
Hidejiro Kawana
Kazuo Iwamoto
Tatsuo Horiba
Kazunori Fujita
Koki Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56130292A priority Critical patent/JPS5834573A/en
Priority to US06/380,773 priority patent/US4390603A/en
Priority to DE8282105839T priority patent/DE3273441D1/en
Priority to EP82105839A priority patent/EP0068508B1/en
Publication of JPS5834573A publication Critical patent/JPS5834573A/en
Publication of JPS6224909B2 publication Critical patent/JPS6224909B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 本発明は液体燃料電池に関する。[Detailed description of the invention] The present invention relates to liquid fuel cells.

従来のメタノール、ヒドラジン、アルデヒドな
どの液体を燃料とする燃料電池においては、正極
(酸化剤極又は空気極とも云う)と負極(燃料極
とも云う)の分離及び燃料が直接正極に達するの
を防止することを目的として負極と正極の間に1
枚のイオン交換膜を用いる構造のものがある。し
かし、この場合、イオン交換膜の燃料阻止効果は
小さく、液体燃料はイオン交換膜を透過して、正
極で空気中の酸素と反応するため、燃料の利用効
率が低下し、又、正極電位の低下すなわち電池電
圧が低下するという欠点がある。
In conventional fuel cells that use liquids such as methanol, hydrazine, and aldehydes as fuel, the positive electrode (also called the oxidizer electrode or air electrode) and the negative electrode (also called the fuel electrode) are separated and the fuel is prevented from directly reaching the positive electrode. 1 between the negative and positive electrodes for the purpose of
There is a structure that uses two ion exchange membranes. However, in this case, the fuel blocking effect of the ion exchange membrane is small, and the liquid fuel passes through the ion exchange membrane and reacts with oxygen in the air at the positive electrode, resulting in a decrease in fuel utilization efficiency and a decrease in positive electrode potential. There is a drawback that the voltage decreases, that is, the battery voltage decreases.

本発明は、イオン交換膜を重ねていくに従い、
電気抵抗は重ね枚数に比例して増加するが、燃料
阻止効果は膜の重ね枚数の2乗に逆比例、すなわ
ち重ねるに従い、燃料阻止効果は急激に増加する
ことを利用したもので、その目的は燃料が正極上
で酸素と直接反応することによる電池電圧の低下
及び燃料の浪費を防止することにある。
In the present invention, as ion exchange membranes are stacked,
Electrical resistance increases in proportion to the number of stacked membranes, but the fuel blocking effect is inversely proportional to the square of the number of stacked membranes; in other words, as the membranes are stacked, the fuel blocking effect increases rapidly.The purpose of this is to The purpose is to prevent a drop in cell voltage and waste of fuel due to direct reaction of fuel with oxygen on the positive electrode.

電池の電圧は、第5図にて明らかなように正極
の電位E1と、負極の電位E2の差である。すなわ
ち電池電圧を高めるには正極電位を上げるか負極
電位を下げることが必要であるが、第4図に示し
たごとく、燃料が正極に接触すると、正極電位が
低下する。すなわち電池電圧が低下する。そこで
電池電圧の低下防止には燃料が正極に接触しない
ように隔膜で仕切ることが必要となるが、隔膜は
電気抵抗があるので、抵抗による電圧降下が存在
する。
As is clear from FIG. 5, the voltage of the battery is the difference between the positive electrode potential E 1 and the negative electrode potential E 2 . That is, to increase the battery voltage, it is necessary to raise the positive electrode potential or lower the negative electrode potential, but as shown in FIG. 4, when the fuel comes into contact with the positive electrode, the positive electrode potential decreases. In other words, the battery voltage decreases. Therefore, in order to prevent a drop in battery voltage, it is necessary to use a diaphragm to prevent the fuel from coming into contact with the positive electrode, but since the diaphragm has electrical resistance, there is a voltage drop due to the resistance.

本発明は、膜を重ね合わせることによる電気抵
抗の増加に起因する電池電圧の低下値よりも、重
ね合わせによる燃料透過阻止に起因する電池電圧
の上昇値が優ることを実験により確認し、複数枚
重ね合わせたイオン交換膜層又はイオン交換膜と
燃料透過阻止性の膜との積層を燃料電池の負極と
正極の間に介在せしめることで、電池電圧の上昇
をはかり、さらに燃料利用効率を高めたものであ
る。
The present invention has confirmed through experiments that the increase in battery voltage due to the prevention of fuel permeation due to overlapping is superior to the decrease in battery voltage due to the increase in electrical resistance caused by overlapping membranes, and By interposing stacked ion exchange membrane layers or a laminated layer of an ion exchange membrane and a fuel permeation blocking membrane between the negative and positive electrodes of a fuel cell, the cell voltage is increased and fuel utilization efficiency is further improved. It is something.

以下本発明の実施例を説明する。第1図に示す
ようにイオン交換膜1を複数枚重ね合わせた複層
膜は正極7と負極8が直接接触するのを防止する
と共に、アノライト室2中の燃料が負極8を通つ
て正極7に達するのを防止している。空気入口5
から入つた空気は出口6から排出される。空気室
4中の酸素ガスは正極7で水素イオンと反応して
水を生ずる。燃料は負極8で反応してガスを発生
し排出口3から排出される。負極8で生成した水
素イオンはイオン交換膜1を通つて正極7に達す
る。この時、燃料の化学エネルギーが電気エネル
ギーに変換される。
Examples of the present invention will be described below. As shown in FIG. 1, a multilayer membrane made by stacking a plurality of ion exchange membranes 1 prevents direct contact between the positive electrode 7 and the negative electrode 8, and also prevents the fuel in the anorite chamber 2 from passing through the negative electrode 8 to the positive electrode 7. is prevented from reaching. Air inlet 5
The air entering from the outlet 6 is discharged from the outlet 6. Oxygen gas in the air chamber 4 reacts with hydrogen ions at the positive electrode 7 to produce water. The fuel reacts at the negative electrode 8 to generate gas, which is discharged from the discharge port 3. Hydrogen ions generated at the negative electrode 8 pass through the ion exchange membrane 1 and reach the positive electrode 7 . At this time, the chemical energy of the fuel is converted into electrical energy.

イオン交換膜1を複数枚重ねることによつて、
燃料阻止効果を増大し燃料利用効率を向上するこ
とができる。本発明者等は特に液体燃料としてメ
タノールを選びメタノール透過量とイオン交換膜
重ね枚数との関係を測定した。使用したイオン交
換膜はDu Pont de Nemours社製Nafion425であ
る。実験の結果、下記(1)式又は第2図に示すごと
く、メタノール(燃料)透過量はイオン交換膜を
重ね合わせるにしたがい膜枚数の2乗に逆比例し
て小さくなることを確認した。一方電気抵抗は枚
数に比例して増加する。
By stacking multiple ion exchange membranes 1,
The fuel blocking effect can be increased and the fuel utilization efficiency can be improved. The present inventors particularly selected methanol as the liquid fuel and measured the relationship between the amount of methanol permeation and the number of stacked ion exchange membranes. The ion exchange membrane used was Nafion 425 manufactured by Du Pont de Nemours. As a result of the experiment, it was confirmed that the amount of methanol (fuel) permeated decreases in inverse proportion to the square of the number of membranes as the ion exchange membranes are stacked, as shown in equation (1) below or in Figure 2. On the other hand, electrical resistance increases in proportion to the number of sheets.

Q=PS・T・ΔC/N ……(1) Q:イオン交換膜を透過する液体燃料 P:透過係数 S:イオン交換膜面積 T:経過時間 ΔC:イオン交換膜両側の燃料濃度差 N:イオン交換膜重ね枚数 メタノールが正極に達すると、酸素と反応する
ため正極電位が低下する。電池電圧低下へのメタ
ノールの寄与を第3図のAに示す。膜の枚数を増
やすにしたがい電池電圧の低下は減少している
が、これは第2図に示したごとくイオン交換膜に
よつてメタノールが正極に達するのを防止してい
るためである。電池電圧低下の原因としては他
に、イオン交換膜抵抗によるものが考えられる。
膜抵抗による電池電圧の降下は第3図のBに示す
ごとく、重ね枚数に比例して増大する。電池電圧
の低下の主な原因は上に述べた2つが考えられる
が、この両者による電池電圧の低下値は第3図の
Cであらわされる。Nafion425を用いた場合はイ
オン交換膜を2枚重ねて使用した場合、電池電圧
の低下がもつとも小さいことを実験的に確認し
た。もちろん、他のイオン交換膜を用いた場合の
最適イオン交換膜使用枚数はNafion425の場合と
異なることがありうる。
Q=PS・T・ΔC/N 2 ...(1) Q: Liquid fuel permeating through the ion exchange membrane P: Permeability coefficient S: Ion exchange membrane area T: Elapsed time ΔC: Fuel concentration difference N on both sides of the ion exchange membrane :Number of stacked ion exchange membranes When methanol reaches the positive electrode, it reacts with oxygen, causing the positive electrode potential to drop. The contribution of methanol to the battery voltage drop is shown in Figure 3A. As the number of membranes increases, the drop in battery voltage decreases, but this is because the ion exchange membrane prevents methanol from reaching the positive electrode, as shown in Figure 2. Another possible cause of the battery voltage drop is ion exchange membrane resistance.
As shown by B in FIG. 3, the drop in battery voltage due to membrane resistance increases in proportion to the number of stacked layers. The two main causes of the decrease in battery voltage are considered to be the two mentioned above, and the value of decrease in battery voltage due to both of these is represented by C in FIG. 3. It was experimentally confirmed that when Nafion 425 is used and two ion exchange membranes are stacked, the drop in battery voltage is minimal. Of course, when using other ion exchange membranes, the optimal number of ion exchange membranes to be used may differ from that for Nafion 425.

本発明に関する複層膜は必ずしもイオン交換膜
のみから成つている必要はなく、他のメタノール
阻止効果を有する膜状物質との組合せ(重ね合
せ)でもよい。
The multilayer membrane according to the present invention does not necessarily have to consist only of ion exchange membranes, but may also be combined (superimposed) with other membranous substances having a methanol blocking effect.

本発明によれば、メタノールが正極に達する量
を減少することができるので、電池電圧の低下を
抑え、燃料の利用効率を高めることができる。
According to the present invention, it is possible to reduce the amount of methanol reaching the positive electrode, thereby suppressing a drop in battery voltage and increasing fuel utilization efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る燃料電池の断面模式図、
第2図は膜のメタノール透過量及び膜の電気抵抗
とイオン交換膜重ね枚数との関係を示す特性図、
第3図は電池電圧の低下量と、低下原因である膜
抵抗とメタノール透過による電池電圧低下の大き
さとイオン交換膜重ね枚数との関係図である。第
4図はメタノールによる正極電位の低下を表わす
特性図、第5図は電流密度と、正極及び負極電位
の関係を示す特性図である。 1……イオン交換膜、2……アノライト室、3
……ガス排出口、4……空気室、5……空気入
口、6……空気出口、7……正極、8……負極、
A……メタノールを原因とする電池電圧の低下、
B……イオン交換膜の電気抵抗による電池電圧の
低下、C……AとBを加算した電池電圧低下量の
合計、E1……正極電位、E2……負極電位。
FIG. 1 is a schematic cross-sectional view of a fuel cell according to the present invention,
Figure 2 is a characteristic diagram showing the relationship between the amount of methanol permeation through the membrane, the electrical resistance of the membrane, and the number of stacked ion exchange membranes;
FIG. 3 is a diagram showing the relationship between the amount of decrease in battery voltage, the membrane resistance that causes the decrease, the magnitude of the decrease in battery voltage due to methanol permeation, and the number of stacked ion exchange membranes. FIG. 4 is a characteristic diagram showing a decrease in positive electrode potential due to methanol, and FIG. 5 is a characteristic diagram showing the relationship between current density and positive and negative electrode potentials. 1...Ion exchange membrane, 2...Anolyte chamber, 3
...Gas outlet, 4...Air chamber, 5...Air inlet, 6...Air outlet, 7...Positive electrode, 8...Negative electrode,
A... Decrease in battery voltage caused by methanol,
B... Decrease in battery voltage due to electrical resistance of the ion exchange membrane, C... Total amount of battery voltage drop by adding A and B, E 1 ... Positive electrode potential, E 2 ... Negative electrode potential.

Claims (1)

【特許請求の範囲】[Claims] 1 液体燃料と電解液との混合物に接して配置さ
れた負極と、その反対側に配置されたイオン交換
膜と電解液、及びその電解液と接して配置された
正極とを有するものにおいて、該イオン交換膜は
密着積層した複数枚のイオン交換膜又はイオン交
換膜と燃料透過阻止性の膜とからなることを特徴
とする液体燃料電池。
1. A negative electrode placed in contact with a mixture of liquid fuel and electrolyte, an ion exchange membrane and electrolyte placed on the opposite side, and a positive electrode placed in contact with the electrolyte. A liquid fuel cell characterized in that the ion exchange membrane is composed of a plurality of closely stacked ion exchange membranes or an ion exchange membrane and a fuel permeation blocking membrane.
JP56130292A 1981-06-30 1981-08-21 Liquid fuel cell Granted JPS5834573A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56130292A JPS5834573A (en) 1981-08-21 1981-08-21 Liquid fuel cell
US06/380,773 US4390603A (en) 1981-06-30 1982-05-21 Methanol fuel cell
DE8282105839T DE3273441D1 (en) 1981-06-30 1982-06-30 Methanol fuel cell
EP82105839A EP0068508B1 (en) 1981-06-30 1982-06-30 Methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130292A JPS5834573A (en) 1981-08-21 1981-08-21 Liquid fuel cell

Publications (2)

Publication Number Publication Date
JPS5834573A JPS5834573A (en) 1983-03-01
JPS6224909B2 true JPS6224909B2 (en) 1987-05-30

Family

ID=15030820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130292A Granted JPS5834573A (en) 1981-06-30 1981-08-21 Liquid fuel cell

Country Status (1)

Country Link
JP (1) JPS5834573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240410U (en) * 1988-09-12 1990-03-19

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345979U (en) * 1990-09-13 1991-04-26
US5599638A (en) 1993-10-12 1997-02-04 California Institute Of Technology Aqueous liquid feed organic fuel cell using solid polymer electrolyte membrane
US8039160B2 (en) * 2004-07-14 2011-10-18 Arkema Inc. Multi-layer polyelectrolyte membrane
KR100899665B1 (en) 2007-01-17 2009-05-27 한국과학기술연구원 Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240410U (en) * 1988-09-12 1990-03-19

Also Published As

Publication number Publication date
JPS5834573A (en) 1983-03-01

Similar Documents

Publication Publication Date Title
US4390603A (en) Methanol fuel cell
US4543303A (en) Fuel cell battery with in cell oxidant-product liquid separators
JPH06132038A (en) Solid highpolymer electrolyte type fuel cell
JPH041469B2 (en)
JPH0425673B2 (en)
JPH08273687A (en) Supply gas humidifier of fuel cell
JPH09283153A (en) Solid high molecular electrolyte fuel cell
JP2005243442A (en) Fuel cell
JP3447875B2 (en) Direct methanol fuel cell
JPS6224909B2 (en)
JP2007026856A (en) Fuel cell stack
JPH05251097A (en) Solid high polymer electrolyte type fuel cell
JPH06338342A (en) Cell stack structure for solid high polymer electrolytic fuel cell
JP2000277128A (en) Solid polymer type fuel cell
US3506493A (en) Electrochemical cell having barrier with microporous openings
JP3258390B2 (en) Fuel cell
JPH08138696A (en) Fuel cell
JPH09161819A (en) Solid polymer electrolytic fuel cell
JP2007305402A (en) Solid polymer electrolyte fuel cell
JPH1173979A (en) Solid polymer electrolyte fuel cell
JPH08138705A (en) Fuel cell humidifier
JP3423241B2 (en) Cell unit for fuel cell and fuel cell
JPS60165062A (en) Fuel cell
JP2003017091A (en) Solid polymer fuel cell
JPS584274A (en) Methanol fuel cell