JPS5834571A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JPS5834571A
JPS5834571A JP13157481A JP13157481A JPS5834571A JP S5834571 A JPS5834571 A JP S5834571A JP 13157481 A JP13157481 A JP 13157481A JP 13157481 A JP13157481 A JP 13157481A JP S5834571 A JPS5834571 A JP S5834571A
Authority
JP
Japan
Prior art keywords
solid electrolyte
active material
iodide
solid
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13157481A
Other languages
Japanese (ja)
Inventor
Shigeru Matake
茂 真竹
Atsuo Imai
今井 淳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13157481A priority Critical patent/JPS5834571A/en
Publication of JPS5834571A publication Critical patent/JPS5834571A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/182Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a solid electrolyte battery which has a large energy density and a high output density, and can produce a relatively large current by stacking together a solid positive active material, a solid electrolyte which conducts lithium ions, and a solid negative active material which is a lithium ion source. CONSTITUTION:A disk-like positive active material is prepared by pressure-molding mixture powder prepared by mixing PbI2 powder with a purity of 99.9% and a grain diameter of below 200mum, and Pb powder with a purity of 99.99% and a grain diameter of below 200mum in a voluminal ratio of 80 to 20. Next, a solid electrolyte thin film consisting of an LiI-MgI2 system solid solution, a negative active material thin film made of Li and a gold electrode thin film, in that order, are layered over the above positive active material so as to obtain a solid electrolyte battery. When the iodide of at least one element chosen from among magnesium and calcium is added to or solidified into the solid electrolyte made of lithium iodide as described above, the lithium-ion conducting property of the solid electrolyte is increased. As a result, even when the battery is small, a relatively large current can be released from the battery.

Description

【発明の詳細な説明】 本発明は固体電解質電池に係り、更に胛しくは、エネル
ギー密度、出力密度共に高く、比較的に大電流を取り出
すことができるなど、実用上のn特性に優れる固体電解
質電池に関する。
Detailed Description of the Invention The present invention relates to a solid electrolyte battery, and more particularly relates to a solid electrolyte battery that has excellent practical n-characteristics, such as high energy density and high output density, and the ability to draw a relatively large current. Regarding batteries.

近都、IC,LSIなどを用いて小型、高集積化が集む
電子機器公費において社、その電源として小形、薄形、
軽量でエネルギー密度が高く、且つ液漏れがなく保存性
に優れる(2)体電池へのl!!望が高まっている。
In the near future, public-funded electronic devices are becoming more compact and highly integrated using ICs, LSIs, etc., and small, thin, and
It is lightweight, has high energy density, and has no leakage and has excellent storage stability. (2) L for body batteries! ! Hopes are rising.

この橡な要望を満たす固体電池として、リチウムイオン
導電性の固体電解質を用いたリチウム系同体電解質電電
が開発され、実用化された。
As a solid-state battery that satisfies this demanding demand, a lithium-based isoelectrolyte electrolyte using a lithium-ion conductive solid electrolyte has been developed and put into practical use.

従来、かかるリチウム系電池としては、沃化リチウム(
LiI)を主成分とする同体電解質を用い、このLiI
を主成分とする圧粉体を、金属リチウム等のリチウムイ
オン源から成る負極活物質と、例えば、4す2−ビニル
ピリジンのヨウ素錯体などから成る正極活物質とに挾持
させるように成形したものが知られてψる〇 ところが、この沃化リチウムは、通常は高抵抗の物質で
あ抄、常温におけるリチウムイオン導電率が約10−q
Ω−1・億−1と極めて小であり、従って、実用上、電
池の内部抵抗が大となり、大電流を取り出すことができ
ないという不都合があったO そこで、固体電解質として上記の沃化リチウム粉末に、
約40モル%のα−アルミナ粉末を添加配合した圧粉体
を用いた固体電池が開発された。
Conventionally, such lithium-based batteries have been made using lithium iodide (
Using an isoelectrolyte whose main component is LiI,
A powder compact mainly composed of is sandwiched between a negative electrode active material consisting of a lithium ion source such as metallic lithium, and a positive electrode active material consisting of, for example, an iodine complex of 4-2-vinylpyridine. However, lithium iodide is usually a high-resistance material, and its lithium ion conductivity at room temperature is about 10-q.
The lithium iodide powder described above was used as a solid electrolyte. To,
A solid-state battery using a green compact containing approximately 40 mol % of α-alumina powder has been developed.

この固体電解質け、リチウムイオン導電率、が約101
Ω−凰・cit−”と可成高いものであるが、圧粉体で
あるために薄形化が困難であり、内部抵抗低減の効果が
十分に得られない。
This solid electrolyte has a lithium ion conductivity of approximately 101
Although it has a relatively high value of Ω-cit-”, it is difficult to make it thin because it is a compacted powder, and the effect of reducing internal resistance cannot be sufficiently obtained.

そこで、固体電解質を薄形、低体積化する為に、沃化リ
チウムから成る薄膜を用いることが考えられるが、この
場合、沃化リチウムの圧粉体を用いると、粉体の結晶粒
界面の高イオン導電性を利用できるのであるが、薄膜で
あると、リチウムイオンがLiI結晶内部の高抵抗領域
を通過する必要があり、従って低抵抗とはならないので
ある。
Therefore, in order to make the solid electrolyte thinner and lower in volume, it is possible to use a thin film made of lithium iodide, but in this case, if a compacted powder of lithium iodide is used, High ionic conductivity can be utilized, but if the film is thin, lithium ions must pass through a high resistance region inside the LiI crystal, and therefore the resistance will not be low.

本発明者等は、従来の固体電解質電池が有していた上述
の不都合を解消すべく、鋭意研究した結果、沃化リチウ
ムから成る面体電解質に、マグネシウム及びカルシウム
から選ばれる少なくとも1種の沃化物を添加配合し、或
いは更にこれらの沃化物を固溶体化すると、固体電解質
のリチウムイオン導電性が高まる。また、かかる固体電
解質な、沃他船を主成分とする正極活物質と組合わせる
ことkより、負診活物質/菌%盲、解質/正極活物質と
全てが固体の電池が構成されることとなり、更に#i、
これらの固体電解質を、真空蒸着法もしくねスパッタリ
ング法により、正極活物質上に形成した薄膜とすると、
電池が薄形、低体積化し、エネルギー密度、出力密度共
に羨、<、比較的に大電流を取り出すことができるなど
、実用上のnIII性に優れる固体電解質が得られるこ
とを見出し、本発明を完成するに至った。
In order to eliminate the above-mentioned disadvantages of conventional solid electrolyte batteries, the present inventors have conducted extensive research and found that at least one iodide selected from magnesium and calcium has been added to the hedral electrolyte made of lithium iodide. The lithium ion conductivity of the solid electrolyte is increased by adding or blending these iodides, or by further converting these iodides into a solid solution. In addition, by combining such a solid electrolyte with a cathode active material whose main component is a solid electrolyte, a battery is constructed in which all of the negative diagnosis active material/bacterium percentage blind and delyte/positive electrode active material are solid. In addition, #i,
When these solid electrolytes are formed into a thin film on a positive electrode active material by vacuum evaporation or sputtering,
We have discovered that it is possible to obtain a solid electrolyte that has excellent practical nIII properties, such as making the battery thinner and lower in volume, and being able to extract a relatively large current in both energy density and output density, and have developed the present invention. It was completed.

本発明の目的は、エネルギー密度、出力密度共に高く、
比較的に大電流を取り出すことができるなど、実用上の
111411性に優れる固体電解質電池を提供すること
kある。
The purpose of the present invention is to have high energy density and high power density,
It is an object of the present invention to provide a solid electrolyte battery that has excellent practical properties such as being able to draw a relatively large current.

即ち、本発明の固体電解質電池は、それぞれが固体の、
正接活物物質、リチウムイオン導電性の固体電解質、リ
チウムイオン源の負極活物質を、この順序で糠層して成
る固体電解質電池であって、前記の固体電解質が、主成
分としての沃化リチウふと、マグネシウム及びカルシウ
ムから選ばれる少なくとも1111の沃化物を含み、前
記の正極活物質が、沃他船を主成分として含むことを特
徴とするものである。
That is, the solid electrolyte battery of the present invention each has solid,
A solid electrolyte battery comprising a bran layer of a tangential active material, a lithium ion conductive solid electrolyte, and a negative electrode active material as a lithium ion source in this order, wherein the solid electrolyte contains lithium iodide as a main component. It is characterized in that it contains at least 1111 iodides selected from magnesium and calcium, and the positive electrode active material contains iodine as a main component.

本発明に用いる、前記固体電解質は、沃化マグネシウム
(Mj’ It )及び/又は沃化カルシウム(CaI
t)を4 X 10−″〜10モル%含み、及び残部沃
化リチウム(LiI)の組成を有するものであるが、か
かるLiIと、M、9I、及び/又はCaI、との少な
くとも1部分が固溶体となり、更には、Lilと、M、
91.及び/又はCaItとの全部が固溶体となってい
ることが、例えばLiI結晶と、yuIIt 結晶及び
/又はCa1.  結晶との混合晶系の場合と比べて、
固体電解質中におけるLi+イオン導電性が一階高いも
のとなる為に好ましい。
The solid electrolyte used in the present invention is composed of magnesium iodide (Mj'It) and/or calcium iodide (CaI
t) in an amount of 4 x 10-'' to 10 mol %, and the remainder is lithium iodide (LiI), but at least a portion of such LiI and M, 9I, and/or CaI is It becomes a solid solution, and furthermore, Lil, M,
91. For example, the LiI crystal, the yuIIt crystal and/or the Ca1. Compared to the case of a mixed crystal system with crystals,
This is preferable because the Li+ ion conductivity in the solid electrolyte becomes one level higher.

前記固体電解質が、LiI −M、!?It系、Li 
I −CaI。
The solid electrolyte is LiI-M,! ? It system, Li
I-CaI.

系、もしくはLiI −k理I、 −CaIt糸固溶糸
走溶体る場合には、該固溶体が、Mg2.及び/又Fi
caI。
system, or LiI-kLiI, -CaIt thread solid solution, when the solid solution is Mg2. and/or Fi
caI.

を4×10″″Wモル襲以上含むものであることが好ま
しい。4 X 10””モル襲未満であると、L1+イ
オン導電性を高める効果が十分に得られない為である。
It is preferable that it contains 4×10″W moles or more. This is because if it is less than 4 x 10" molar ratio, the effect of increasing L1+ ion conductivity cannot be sufficiently obtained.

tた、前記固溶体へのMgI、及び/又はCaI、の配
合量の上限は、LiIへの、ylil、もしくけCh 
I *の固溶限界濃度とされ、通常、その濃度は、M造
条件によっても変るためまだ充分明らかではないがCa
I=の多結晶では5モル襲と云われ、hllNItでは
Mal+のイオン半径がよりLi+に近いため更に重連
するものと予想される。
In addition, the upper limit of the amount of MgI and/or CaI added to the solid solution is
It is considered to be the solid solubility limit concentration of I*, and the concentration is not yet fully clear because it varies depending on the M production conditions, but Ca
In the polycrystal of I=, it is said that there are 5 moles, and in hllNIt, since the ionic radius of Mal+ is closer to that of Li+, it is expected that there will be more multiples.

本発明に用いる、前記固体電解憤は% LII粉末と、
Mjl*粉末及び/又けcaIt粉末を含む混合粉末の
焼結体、これらのLiIと、MgI、及び/又けCaI
、  の一部分もしくは全部を固溶体化した粉末の圧粉
体もしくは焼結体、又はLiIと、MgI、及び/又は
CaI、を成分として含む固溶体の薄片等から成ってい
ても良いが、真空蒸着法もしくはスパッタリング法によ
り、沃化リチウムと、沃化マグネシウム及び/又は沃化
カルシウムとの固溶体を、蒸着材料もしくはスパッタリ
ング源とし、又は沃化リチウムと、沃化マグネシウム及
び沃化カルシウムの少なくとも1種を、夫々別個の蒸着
材料もしくはスパッタリング源として、正極活物質上に
形成された薄膜であることが、固体電解質中におけ′る
Ll+イオン導電牟が高いものとなると共に、電池が薄
形、低体積化されて、電池の内部抵抗が低いものとなる
為に好ましい。この場合、正極活物質上に固体電解質の
薄膜を形成した後、直ちに前記負極活物質を積層させる
ことが、−停電解質の主成分であるLiIの吸湿を防止
できる為に好ましい・そこで、例えば真空熱着法により
、前述した蒸着材料もしくけスパッタリング源を用いて
固体音、解質な形成するに際して、例えば複数個の蒸発
源(ヒータ)を具備したペルジャー内で、固体電解質及
び負極活物質の蒸着材料を、夫禽別個の蒸発源(ヒータ
)上に載置して、これらの蒸着材料を順次蒸発させて、
正極活物質上に固体電解質、次いで負極活物質を検層形
成すれば良い。
The solid electrolyte ingot used in the present invention contains % LII powder,
A sintered body of a mixed powder containing Mjl* powder and/or caIt powder, LiI, MgI, and/or sintered CaI
, may be made of a green compact or sintered body of powder in which a part or all of these are made into a solid solution, or a thin piece of a solid solution containing LiI, MgI, and/or CaI as components, but vacuum evaporation method or By a sputtering method, a solid solution of lithium iodide and magnesium iodide and/or calcium iodide is used as a vapor deposition material or a sputtering source, or lithium iodide and at least one of magnesium iodide and calcium iodide are respectively used. The thin film formed on the cathode active material as a separate vapor deposition material or sputtering source increases the conductivity of Ll+ ions in the solid electrolyte and makes the battery thinner and smaller in volume. This is preferable because the internal resistance of the battery is low. In this case, it is preferable to layer the negative electrode active material immediately after forming a thin film of the solid electrolyte on the positive electrode active material because it is possible to prevent moisture absorption of LiI, which is the main component of the blackout electrolyte. When forming a solid electrolyte using the above-mentioned evaporation material or sputtering source by a thermal deposition method, for example, a solid electrolyte and a negative electrode active material are evaporated in a Pelger equipped with a plurality of evaporation sources (heaters). The materials are placed on separate evaporation sources (heaters) and these evaporation materials are sequentially evaporated,
A solid electrolyte and then a negative electrode active material may be formed on the positive electrode active material.

本発明に用いる、前記MI極活物質は、沃化銀(PbI
、 )を主成分として含むことが、2Li + PbI
*→2LiI + Pbとなって反応し、反応生成物で
あるLilXPbは共に電池反応をそこなわない為に好
ましい。PbI、の配合量は80〜90重曹襲であるこ
とが好ましい。この陽極活物jIiは、主成分であるP
bI、以外の成分として、鉛、銅、アルミニウムもしく
はニッケルなどを含むことができる。
The MI electrode active material used in the present invention is silver iodide (PbI
, ) as the main component means that 2Li + PbI
*→2LiI + Pb is reacted, and the reaction product LiIXPb is preferable because both do not impair the battery reaction. The blending amount of PbI is preferably 80 to 90% sodium bicarbonate. This anode active substance jIi contains P, which is the main component.
Components other than bI may include lead, copper, aluminum, nickel, etc.

本発明に用いる、前記のリチウムイオン源の負極活物質
としては、金属リチウム、、 Li−st系固溶体、又
はリチウム合金などが挙げられる。
Examples of the negative electrode active material of the lithium ion source used in the present invention include metallic lithium, Li-st solid solution, and lithium alloy.

本発明の固体電飾質電池によれば、固体電解質が、沃化
リチウムに、マグネシウム及びカルシウムから選ばれる
少なくとも1種の沃化物を添加配合し、或いは、更に、
これらの沃化物の少なくとも一部分を固溶体化している
為に、固体電解質のリチウムイオン導電性が高いものと
なっている。
According to the solid electrolyte battery of the present invention, the solid electrolyte contains lithium iodide and at least one iodide selected from magnesium and calcium, or further,
Since at least a portion of these iodides is converted into a solid solution, the solid electrolyte has high lithium ion conductivity.

また、かかる固体電解質を、沃化銀を主成分とする正極
活物質と組合せることkより、かかる固体電解質と活物
質とが容易に反応せず、沃化物どうしでなじみが良いた
め電池の低抵抗化ができる。
In addition, by combining such a solid electrolyte with a positive electrode active material containing silver iodide as a main component, the solid electrolyte and active material do not easily react, and the iodides are compatible with each other, resulting in low battery performance. It can be resisted.

また、活物質が高温に耐えるものとなる。更には、固体
電解質が、真空蒸着法もしくはスパッタリング法により
形成された薄膜である本発明の電池によれげ、電池の小
形、薄形、軽量化が容易に達成される。
Moreover, the active material can withstand high temperatures. Furthermore, by using the battery of the present invention in which the solid electrolyte is a thin film formed by vacuum evaporation or sputtering, the battery can be made smaller, thinner, and lighter.

従って、本発明の固体電解*Vt池は、エネルキー密度
、出力密度共に高く、比較的に大電流を取り出すことが
できるなど、実用上の諸物件に優れ、且つ、従来の酸化
銀電池などと比べて廉価であるという利点を有する電池
である。
Therefore, the solid electrolytic *Vt battery of the present invention has excellent practical properties such as high energy density and high output density, and can extract a relatively large current, and is superior to conventional silver oxide batteries. This battery has the advantage of being inexpensive.

実施例1 アルゴン(Ar)  ドライ?ツクス内で、市販の沃化
リチウムと沃化マグネシウムを、夫々、MgI。
Example 1 Argon (Ar) Dry? In TUX, commercially available lithium iodide and magnesium iodide were converted to MgI, respectively.

臘がLiIに対して0.2モル襲となる様に秤取し、こ
れらの粉末をアルミナ乳鉢を用いて混合した。
The powders were weighed so that the ratio of LiI to LiI was 0.2 mol, and these powders were mixed using an alumina mortar.

かくして得られた混合粉末を、石英アングル管内に入れ
、管内が10−” m H9以下となる様に真空脱気し
た後、l#な封止した。次いでこの石英封管を電気炉内
に入れ、約700℃、1時間加熱処理して混合粉末を溶
融し、LiI −ME I、糸面溶体を作成した。
The mixed powder thus obtained was placed in a quartz angle tube, and the tube was vacuum degassed so that the pressure inside the tube was 10-" m H9 or less, and then sealed to l#. The quartz sealed tube was then placed in an electric furnace. The mixed powder was heat-treated at about 700° C. for 1 hour to melt it, and a LiI-ME I thread solution was created.

また、純度99.9%、粒径200μm以下のPbI、
粉末と、純度99.99%、粒径200 μm以下のp
b粉末を、体積比率80:20の割合で配合して混合し
た。次いで得られた混合粉末を3t/!11iの圧力で
加圧成形して、径12m5厚さ0.5諺の円#i吠の陽
極活物質を作製した。
In addition, PbI with a purity of 99.9% and a particle size of 200 μm or less,
Powder and p with a purity of 99.99% and a particle size of 200 μm or less
Powder b was blended and mixed at a volume ratio of 80:20. Then, the obtained mixed powder was used at 3t/! A positive electrode active material having a diameter of 12 m and a thickness of 0.5 mm was formed by pressure molding at a pressure of 11 m.

かくして得られた陽極活物質を、蒸発源(ヒータ)3本
(以下、第1.第2.第3ヒータという)を具備するペ
ルジャー内中央部に挿置すると共に、第1ヒータ上に上
記作製したLiI −M、9I、系固溶体約0.377
、第2ヒータ土にgI陽極活物質なる金属リチウム約1
.5 fi 、第3ヒータに1.極層とする金Igを載
置した。
The anode active material thus obtained was inserted into the center of a Pel jar equipped with three evaporation sources (heaters) (hereinafter referred to as first, second, and third heaters), and the above prepared material was placed on the first heater. LiI-M, 9I, system solid solution approx. 0.377
, about 1 g of metallic lithium, which is the active material of the anode, is added to the second heater soil.
.. 5 fi, 1. to the third heater. Gold Ig was placed as a polar layer.

次いで該ペルジャー内を約I×10−61111 Hg
真空度とすぺ〈真空脱気した後、第1ヒータを約4分間
加熱した後、第2ヒータを約8分間加熱し、次いで箇3
と−タを約6分間加熱して、各蒸着材料を、順次蒸発さ
せて、真空蒸着法により正極活物質上に順次、LiI 
−MliI、系固溶体から成る固体電解質薄膜、Liか
も成る負極活物質薄膜、金電sll膜を積層形成した固
体電解質電池を得た。
Then, about I×10-61111 Hg was pumped into the Pelger.
Vacuum degree and space〈After vacuum degassing, heat the first heater for about 4 minutes, then heat the second heater for about 8 minutes, and then
The reactor was heated for about 6 minutes to evaporate each evaporation material in sequence, and LiI was sequentially deposited on the positive electrode active material by vacuum evaporation.
A solid electrolyte battery was obtained in which a solid electrolyte thin film made of -MliI and a solid solution, a negative electrode active material thin film also made of Li, and a gold electrolyte Sll film were stacked.

尚、正極活物質の固体電解質との接合面以外の主向上に
は厚さ0.05mmの銅iAI膜から成る電極層を形成
した。
Note that an electrode layer made of a copper iAI film with a thickness of 0.05 mm was formed on the main surface of the positive electrode active material other than the bonding surface with the solid electrolyte.

実施例2 固溶体成分であるん19I! に代えて、Lllに対し
て0.2モル−のCaI、を用いた以外は、実施例1と
同一の方法により、LtI−CaI、系固溶体を作製し
た。
Example 2 Solid solution component 19I! An LtI-CaI solid solution was prepared in the same manner as in Example 1, except that 0.2 mol of CaI was used instead of LtI.

次いで、第1ヒータ上に載置する蒸着材料を、Lil−
MgI、  系固溶体に代えて、上記作製したLil 
−CaIt系固溶体約o、a gとした以外は、実施例
1と岡−の原料及び方法により、PbI2− Pb糸正
圧粉体ら成る正極活物質上に順次、LiI −Cal1
糸固溶体から成る固体電解質薄膜、liから成る負極活
物質薄膜、金電極li膜を積層形成した固体電解質電池
を得た。
Next, the vapor deposition material placed on the first heater is
Instead of the MgI-based solid solution, the Lil
LiI-Cal1 was sequentially deposited on the positive electrode active material consisting of PbI2-Pb thread positive pressure powder using the raw materials and method of Example 1 and Oka, except that -CaIt-based solid solution was used at approximately o, ag.
A solid electrolyte battery was obtained in which a solid electrolyte thin film made of a thread solid solution, a negative electrode active material thin film made of Li, and a gold electrode Li film were laminated.

尚、正極活物質の他の士面上には、実施例1と同様に、
厚さ0.05mの銅薄膜から成る電極層を形成した。
In addition, on the other surfaces of the positive electrode active material, as in Example 1,
An electrode layer made of a copper thin film with a thickness of 0.05 m was formed.

実施例3 蒸発源(ヒータ)4本(以下、第1.#i2.第2.l
I4ヒ−1という)を具備するペルジャー内中央部に、
実施例Iにおいて作製したものと、−一の組成及び形状
を有する正極活物質を載置すると共に、第1ヒ−1上[
LiIIILJo、3.S+、 第2?: −タ上に#
It 約20■、第3ヒータ上に金jll Li約1.
5II、l14ヒータ上にAu #119を各々載置し
た。
Example 3 Four evaporation sources (heaters) (hereinafter referred to as 1st. #i2. 2nd.l)
In the central part of the Pelger, which is equipped with a
A positive electrode active material having the same composition and shape as that produced in Example I and -1 was placed on the first heat-1 [
LiIIILJo, 3. S+, 2nd? : - on ta #
It approx. 20cm, gold jll Li approx. 1.
Au #119 was placed on the 5II and 114 heaters, respectively.

次いて該ペルジャー内を約I X 10−’ ilII
Hgの真空度とすぺ〈真空脱気した後、第1ヒータ及び
1112ヒータを同時に約20分間加熱した後、第3ヒ
ータを約8分間加熱し、次いで第4ヒータを約6分間加
熱して、各蒸着材料を順次#発させて、真空蒸着法によ
り、正極活物質上に、順次、LiI−huIm 系固溶
体から成る固体電解質薄膜、Liかも成る負極活物質薄
膜、金I!極薄膜を積層形成した固体電解質電池を得た
The inside of the Pelger was then heated to about I
Hg vacuum degree and specifications (After vacuum degassing, heat the first heater and heater 1112 simultaneously for about 20 minutes, then heat the third heater for about 8 minutes, then heat the fourth heater for about 6 minutes. , each vapor deposition material is emitted in sequence, and a solid electrolyte thin film made of a LiI-huIm solid solution, a negative electrode active material thin film made of Li, and a gold I! A solid electrolyte battery with laminated ultra-thin films was obtained.

尚、正極活物質の固体電解質との接合面以外の主向上に
は厚さ0.05mの銅薄膜から成る電極層を形成した。
An electrode layer made of a copper thin film with a thickness of 0.05 m was formed on the main surface of the positive electrode active material other than the bonding surface with the solid electrolyte.

実施例4 第2ヒータに載置する蒸着材料として、M、!i/11
に代えてCAII約20ダとした以外は、実施例3と同
一の原料及び方法を用いて固体電解質電池を得た0 比較例 実施例3において固体電解質の一成分とすぺ〈用いられ
たMl、を用いず、固体電解質薄膜をLiIのみから成
るものとした以外は実施例3と同一の原料及び方法によ
り固体電解質電池を得た。
Example 4 As the vapor deposition material placed on the second heater, M,! i/11
A solid electrolyte battery was obtained using the same raw materials and method as in Example 3, except that approximately 20 da of CAII was used instead of CAII. A solid electrolyte battery was obtained using the same raw materials and method as in Example 3, except that the solid electrolyte thin film was made of only LiI instead of using .

かくして、実施例1〜4及び比較例において作製された
各固体N解質電池の一路電圧及び内部抵抗を測定し、結
果を表に示した。
Thus, the one-way voltage and internal resistance of each of the solid N electrolyte batteries produced in Examples 1 to 4 and Comparative Example were measured, and the results are shown in the table.

なお、開路電圧は、電池温度を20〜25℃に保持して
入力インピーダンス100MΩのrノタルデルトメータ
ーを用い、また内部抵抗は、電池の端子にAC:lKH
2を印加(通電面積:1.IC1F)して常法によりそ
れぞれ測定した。
The open circuit voltage was measured using a notar deltometer with an input impedance of 100 MΩ while keeping the battery temperature at 20 to 25°C, and the internal resistance was measured using an AC: lKH
2 was applied (current-carrying area: 1.IC1F), and each measurement was made by a conventional method.

表からも明らかな様に、本発明の固体電解寅電池は、従
来の、固体電解質がLiIのみから成る電池と比べて、
略同等の起電力を有すると共に、内部抵抗が約1/10
”  と極めて低いものである。
As is clear from the table, the solid electrolyte battery of the present invention has a lower solid electrolyte battery compared to a conventional battery in which the solid electrolyte is only composed of LiI.
It has approximately the same electromotive force, and the internal resistance is approximately 1/10
” is extremely low.

Claims (1)

【特許請求の範囲】 1、 それぞれが固体の、正極活物質、リチウムイオン
導電性の固体電解質、リチウムイオン源の負極活物質を
、この順序で積層して成る固体電解質電池であって、 前記の固体電解質が、主成分としての沃化リチウムと、
マグネシウム及びカルシウムから選ばれる少なくとも1
種の沃化物を含み、前記の正極活物質が、沃他船を主成
分として含むことを特徴とする1体電解質電池。 2、 111体電解質が、沃化リチウムと、マグネシウ
ム及びカルシウムから選ばれる少なくとも1種の沃化物
の固溶体である特許請求の範囲第1項記載の電池。 3、  II溶体が、マグネシウム及び/又はカルシウ
ムから選ばれる少なくとも1種の沃化物を、4×lθ″
″1モル憾以上含むものである特許請求の範囲第2項記
載の電池。 4、固体電解質が、沃化リチウムと、沃化マグネシウム
及び/又は沃化カルシウムとの固溶体を、蒸着材料もし
くはスノ平ツタ源として、正極活物質上に真空蒸着法も
しくはスノ母ツタリング法により形成された薄膜である
特許請求の範囲第1項乃至第3項記載の電池。 5、 固体電解質が、沃化リチウムと、沃化マグネシウ
ム及び沃化カルシウムの少なくとも1種を、夫々別個の
蒸着材料もしくはスパッタ源として、正極活物質上に真
空蒸着法もしくはスパッタリング決により形成された薄
膜である特許請求の範囲第1項乃至第3項記載の電池。
[Claims] 1. A solid electrolyte battery comprising a positive electrode active material, a lithium ion conductive solid electrolyte, and a lithium ion source negative electrode active material, each of which is solid, stacked in this order, comprising: The solid electrolyte contains lithium iodide as the main component,
At least one selected from magnesium and calcium
1. A monolithic electrolyte battery, characterized in that the positive electrode active material contains iodide as a main component. 2. The battery according to claim 1, wherein the 111-body electrolyte is a solid solution of lithium iodide and at least one iodide selected from magnesium and calcium. 3. The II solution contains at least one iodide selected from magnesium and/or calcium at 4×lθ″
4. The battery according to claim 2, wherein the solid electrolyte contains a solid solution of lithium iodide and magnesium iodide and/or calcium iodide as a vapor deposition material or a Snohira ivy source. 5. The battery according to claims 1 to 3, wherein the solid electrolyte is a thin film formed on a positive electrode active material by a vacuum evaporation method or a snobutting method.5. Claims 1 to 3 are thin films formed on a positive electrode active material by vacuum evaporation or sputtering using at least one of magnesium and calcium iodide as separate vapor deposition materials or sputtering sources, respectively. Batteries listed.
JP13157481A 1981-08-24 1981-08-24 Solid electrolyte battery Pending JPS5834571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13157481A JPS5834571A (en) 1981-08-24 1981-08-24 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13157481A JPS5834571A (en) 1981-08-24 1981-08-24 Solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPS5834571A true JPS5834571A (en) 1983-03-01

Family

ID=15061230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13157481A Pending JPS5834571A (en) 1981-08-24 1981-08-24 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPS5834571A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105962A (en) * 1986-10-22 1988-05-11 Matsushita Electric Ind Co Ltd Manufacture of thin film of solid electrolyte
JPS63186779U (en) * 1987-05-26 1988-11-30
JPH03269078A (en) * 1990-03-19 1991-11-29 Agency Of Ind Science & Technol Lithium ion-conductive glass electrolyte
JPH03269079A (en) * 1990-03-19 1991-11-29 Agency Of Ind Science & Technol Lithium ion-conductive solid electrolyte
JP2016066405A (en) * 2014-09-22 2016-04-28 公立大学法人大阪府立大学 Solid electrolyte for all-solid type secondary battery, method for manufacturing the same, and all-solid type secondary battery including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105962A (en) * 1986-10-22 1988-05-11 Matsushita Electric Ind Co Ltd Manufacture of thin film of solid electrolyte
JPS63186779U (en) * 1987-05-26 1988-11-30
JPH03269078A (en) * 1990-03-19 1991-11-29 Agency Of Ind Science & Technol Lithium ion-conductive glass electrolyte
JPH03269079A (en) * 1990-03-19 1991-11-29 Agency Of Ind Science & Technol Lithium ion-conductive solid electrolyte
JP2016066405A (en) * 2014-09-22 2016-04-28 公立大学法人大阪府立大学 Solid electrolyte for all-solid type secondary battery, method for manufacturing the same, and all-solid type secondary battery including the same

Similar Documents

Publication Publication Date Title
Liu et al. Development of the cold sintering process and its application in solid-state lithium batteries
US4009092A (en) Substituted lithium phosphates and solid electrolytes therefrom
US20150372298A1 (en) All-solid state ion secondary battery
WO2018225494A1 (en) All-solid-state sodium ion secondary battery
JPH01195676A (en) Solid lithium cell
JP2020009619A (en) All-solid battery, and method for manufacturing the same
JP6947321B1 (en) Batteries and battery manufacturing methods
US4007122A (en) Solid electrolytes for use in solid state electrochemical devices
JP2018018578A (en) Solid electrolytic powder, electrode mixture material arranged by use thereof, and all-solid type sodium ion secondary battery
JP2022537206A (en) Lithium ion conductive haloboro-oxysulfides
JPS5834571A (en) Solid electrolyte battery
US3558357A (en) Solid-electrolyte cell with tellurium or selenium electrode and ag3si or rbag4i5 electrolyte
JP2016027563A (en) Solid electrolyte, lithium battery and lithium air battery
JPS6166369A (en) Lithium secondary battery
KR100491961B1 (en) Positive electrode material based on titanium oxysulphide for electrochemical generator and method for making same
JPH0361286B2 (en)
JPS6084772A (en) Solid electrolyte battery
JP2001093535A (en) Solid electrolyte cell
US3547700A (en) Solid state battery cells
JPS60115169A (en) Solid electrolyte battery
JPS61128468A (en) Solid electrolyte battery
JP2022124603A (en) Laminated solid-state battery
JP2023147097A (en) Method for manufacturing positive electrode complex
JP2022129560A (en) Laminate type solid battery
JP2024049068A (en) Solid electrolyte composition, method for producing composite, and method for producing battery