JPS5834528B2 - Blowing method of bottom blowing converter - Google Patents

Blowing method of bottom blowing converter

Info

Publication number
JPS5834528B2
JPS5834528B2 JP5103278A JP5103278A JPS5834528B2 JP S5834528 B2 JPS5834528 B2 JP S5834528B2 JP 5103278 A JP5103278 A JP 5103278A JP 5103278 A JP5103278 A JP 5103278A JP S5834528 B2 JPS5834528 B2 JP S5834528B2
Authority
JP
Japan
Prior art keywords
blowing
tuyere
gas
temperature
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5103278A
Other languages
Japanese (ja)
Other versions
JPS54142117A (en
Inventor
恭二 中西
秀夫 仲村
誠治 渡辺
良治 内村
健一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5103278A priority Critical patent/JPS5834528B2/en
Publication of JPS54142117A publication Critical patent/JPS54142117A/en
Publication of JPS5834528B2 publication Critical patent/JPS5834528B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、底吹き転炉の吹錬方法に関し、とくに吹錬
中であっても効果的適正な羽口冷却を行なうことができ
る方法について提案する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blowing method for a bottom-blowing converter, and particularly proposes a method that can perform effective and appropriate tuyere cooling even during blowing.

最近、製鋼精錬に関し、炉底部に埋設した多数の羽目か
ら純酸素を直接鋼浴中に吹込むという新しい方式の転炉
が実用化されてきた。
Recently, a new type of converter furnace has been put into practical use for steelmaking and refining, in which pure oxygen is directly blown into the steel bath through a number of holes buried in the bottom of the furnace.

この転炉は酸化性ガスである純酸素を、前記羽口を通じ
て炉内に吹込むことによって、鋼中に含む不純物である
C、Si、Pなどを酸化除去する方法である。
This converter is a method of oxidizing and removing impurities such as C, Si, and P contained in steel by blowing pure oxygen, which is an oxidizing gas, into the furnace through the tuyeres.

ところが、この酸化反応は発熱反応であることから、羽
口周辺の溶鋼は著しく高温となり、その羽口自体高熱雰
囲気に曝されて激しい溶損を受ける。
However, since this oxidation reaction is an exothermic reaction, the molten steel around the tuyere becomes extremely hot, and the tuyere itself is exposed to a high-temperature atmosphere and suffers severe melting damage.

そこで、従来このような炉底から酸素を吹込む転炉のよ
うな場合内側の酸化性精錬ガスを導通させる精錬ガス用
管路のまわりに、炭化水素系の冷却ガス用管路を配した
2重同心管の羽目を設け、その冷却ガス用管路から炭化
水素(化学式:CnHm)を流し、これがCとH2ガス
とに熱分解する際の吸熱効果を利用することで、該羽口
を冷却しその損耗を軽減する方法がとられていた。
Conventionally, in the case of a converter where oxygen is injected from the bottom of the furnace, a hydrocarbon-based cooling gas pipe is placed around the refining gas pipe that conducts the oxidizing refining gas inside. The tuyere is cooled by providing a wall of heavy concentric pipes, flowing hydrocarbon (chemical formula: CnHm) from the cooling gas pipe, and utilizing the endothermic effect when this is thermally decomposed into C and H2 gas. Measures were taken to reduce the wear and tear.

しかし、かかる羽目の受ける熱は、鉄および不純物の酸
化発熱が主体であるから、必ずしも一定ではない。
However, the heat received during such a process is not necessarily constant because the heat generated by oxidation of iron and impurities is the main component.

また、最近前記酸化性ガスに粉状造滓剤を混合して、−
緒に吹込むことが行なわれており、この造滓剤も別口の
冷却剤としての効果を有するが、その使用量については
吹錬条件によって種々変わるため、所謂羽口の受熱状態
は吹錬中でも一定していないのが実情である。
In addition, recently, a powdered slag forming agent was mixed with the oxidizing gas, and -
This slag-forming agent also has the effect of acting as a separate coolant, but the amount used varies depending on the blowing conditions, so the heat receiving state of the so-called tuyeres is different from that of blowing. The reality is that it is not constant.

これに対し、上述の冷却ガスである炭化水素の流量は、
安全性を見込んで必要以上の十分な量を使っており、そ
のために相当量を無駄に流していた。
On the other hand, the flow rate of the hydrocarbon, which is the cooling gas mentioned above, is
They were using more than necessary to ensure safety, and as a result, a considerable amount was wasted.

一方、例えば冷却ガスの流量が過剰の場合には、不経済
であるばかりでなく、過剰冷却になるために羽口端周辺
に付着する凝固殻(通称マツシュ・ルーム)が異常に大
きくなり、その異常な大きさの故に、突如として欠落し
たり剥離したりすることがある。
On the other hand, for example, if the flow rate of cooling gas is excessive, it is not only uneconomical, but also causes excessive cooling, which causes the solidified shell (commonly known as matshu room) that adheres around the tuyere end to become abnormally large. Due to its unusual size, it may suddenly become missing or peel off.

このような場合、羽目はいわば先端部が裸の状態になる
ので、速い時期に消耗して羽目周辺が凹状に後退し、そ
の後の寿命も短くなり、極めて好ましくない事態となる
In such a case, the tips of the linings are exposed, so that they wear out quickly and the area around the linings recedes into a concave shape, resulting in a shortened lifespan, which is an extremely undesirable situation.

以上のことから、羽口の消耗を抑えるには、別口頂部に
小さくとも強固なマツシュ・ルームを安定的に生成させ
、それによって羽目先端の保護を行なうことが得策であ
る。
From the above, in order to suppress the wear and tear of the tuyere, it is a good idea to stably generate a small but strong pine room at the top of the tuyere and thereby protect the tip of the tuyere.

このためには、羽目先端部において溶鋼と接する側の羽
口温度を、吹錬中常時検出し、その温度が所望値を維持
するよう冷却条件をコントロールしながら転炉吹錬を行
なうことが望ましい。
For this purpose, it is desirable to constantly detect the temperature of the tuyere on the side that contacts the molten steel at the tip of the blade during blowing, and to perform converter blowing while controlling the cooling conditions so that the temperature remains at the desired value. .

この発明の目的は、転炉吹錬の過程において羽口の効果
的かつ適正な冷却を遠戚することにあり、その要旨とす
るところは、所謂底吹き転炉の羽口に測温器を取付け、
その測温器によって羽口先温度を連続的に測定し、その
測定温度の変化に応じて冷却ガスの組成ならびに流量も
しくはそれらのいずれか一方を調節しながら吹錬する点
にある。
The purpose of this invention is to achieve effective and appropriate cooling of the tuyere in the process of converter blowing, and the gist of this invention is to provide a thermometer at the tuyere of a so-called bottom-blowing converter. installation,
The temperature measuring device continuously measures the temperature at the tip of the tuyere, and blowing is performed while adjusting the composition and/or flow rate of the cooling gas in response to changes in the measured temperature.

以下にその構成の詳細を図面、実施例を参照して説明す
る。
The details of the configuration will be explained below with reference to the drawings and examples.

この発明に係る転炉吹錬は、炉底1に埋設した多数の羽
口tから精錬ガスを吹込んで酸化精錬する方法である。
Converter blowing according to the present invention is a method of oxidizing and refining by blowing refining gas through a large number of tuyeres t buried in the furnace bottom 1.

その羽口tは内管2と外管3とからなる同心の2重管で
あり、外管路3aには炭化水素系冷却ガスを、また内管
路2aには純酸素のごとき酸化性精錬ガスを流通させる
ように構成しである。
The tuyere t is a concentric double pipe consisting of an inner pipe 2 and an outer pipe 3, and the outer pipe line 3a is filled with hydrocarbon-based cooling gas, and the inner pipe line 2a is filled with oxidizing refining gas such as pure oxygen. It is configured to allow gas to flow through it.

この羽口tは吹錬のとき当然鋼浴中に浸漬されていると
共に、炉底1の中に埋設しである。
This tuyere t is naturally immersed in a steel bath during blowing, and is also buried in the furnace bottom 1.

したがって、最も過酷な条件下にある羽口を先端につい
ての温度測定は、通常極めて困難である。
Therefore, temperature measurements at the tip of the tuyere, which is under the most severe conditions, are usually extremely difficult.

そのため、その羽口先の部分における受熱条件が吹錬の
過程中大きく変動しているにも拘わらず、それに対応す
る適正な羽口冷却が行なわれていなかったのである。
Therefore, even though the heat receiving conditions at the tip of the tuyere fluctuated greatly during the blowing process, appropriate cooling of the tuyere was not performed.

そこで、この発明においてはかかる羽口tならびにその
周辺の温度を、外管3外周部と炉底耐火物との間、ある
いは前記冷却ガス用管路(外管路)3a内に、熱電対4
のごとき温度検知素子を設け、あるいは精錬ガス用管路
(内管路)2a内に光学素子を受光可能に設置して、羽
口周辺部の温度を測定するようにした。
Therefore, in this invention, the temperature of the tuyere t and its surroundings is measured by using a thermocouple between the outer circumference of the outer tube 3 and the bottom refractory, or within the cooling gas pipe (outer pipe) 3a.
The temperature around the tuyere was measured by providing a temperature sensing element such as the one shown in FIG.

つぎに、温度測定の方法とその温度に応答させる吹錬の
方法について説明する。
Next, a method of temperature measurement and a blowing method that responds to the temperature will be explained.

図面の第2図は、羽口tの外側に熱電対4を取付けて測
温する実施例を示す。
FIG. 2 of the drawings shows an embodiment in which a thermocouple 4 is attached to the outside of the tuyere t to measure temperature.

この熱電対4による測温は、前記同心2重管羽口tのそ
の外管3部の外側面に、深さが1間で巾が5mπ程度の
溝5を管軸方向に沿って設ける。
To measure the temperature using the thermocouple 4, a groove 5 having a depth of about 1 mm and a width of about 5 mπ is provided along the tube axis direction on the outer surface of the outer tube 3 of the concentric double tube tuyere t.

そして、羽口tを炉底1に装着した際に、鋼浴と接触す
る側;すなわち吹錬中の火点側から40mπおきに、そ
れぞれの温度検出端が来るように、径が0.3關φ程度
のPt/Pt−13Rh熱電対4を、アルミナ製絶縁管
を通して絶縁配置した。
When the tuyere t is attached to the hearth bottom 1, the diameter is 0.3 so that each temperature detection end is located every 40 mπ from the side that contacts the steel bath; that is, from the fire point side during blowing. A Pt/Pt-13Rh thermocouple 4 with a diameter of about φ was insulated through an alumina insulating tube.

その熱電対4のリード線は通常バーレル部(炉本体)7
と炉底部の接合フランジ部8の間から、第2図のごとく
炉外周部へ取り出し、補償導線6と接合し、これら補償
導線6は熱をシールドレ得るフレキシブル・チューブで
保護しながら、製鋼炉前および4裏作業に使われる炉床
へ導き、増巾器と指示計に接続し、その熱起電力を電気
的に処理して温度測定を行った。
The lead wire of the thermocouple 4 is usually connected to the barrel part (furnace body) 7.
It is taken out from between the joint flange 8 at the bottom of the furnace and to the outer periphery of the furnace as shown in Fig. 2, and connected to the compensating conductors 6. These compensating conductors 6 are connected to the front of the steelmaking furnace while being protected by a flexible tube that shields heat. The temperature was measured by electrically processing the thermoelectromotive force by connecting it to an amplification device and an indicator.

その測定温度は、吹錬期間を通じて監視し、同時にその
温度が一定となるよう炭化水素系冷却ガスの流量を調整
するか、あるいは炭化水素系ガスとN2あるいはArな
との不活性ガスの混合冷却ガスの流量和は一定流量に維
持しつつ、組成を調整することにより従来見られた不必
要な炭化水素の消費を抑制する。
The measured temperature is monitored throughout the blowing period, and at the same time, the flow rate of hydrocarbon cooling gas is adjusted so that the temperature remains constant, or a mixture of hydrocarbon gas and inert gas such as N2 or Ar is used for cooling. By adjusting the composition while maintaining the sum of gas flow rates at a constant flow rate, unnecessary consumption of hydrocarbons, which has conventionally been observed, is suppressed.

その際、羽口を先端から最近接熱電体4先端までの距離
は、炉底耐火物の消耗に伴い毎回変化するので、羽口を
先端の受熱が最も激しいSi吹きにおいて、あらかじめ
作業標準により定められた冷却条件における熱電対示度
を記憶させておき、以後脱炭最盛期、脱P期、そして吹
止めに至る吹錬全期において、その温度を継続して維持
するように、上述の方法により冷却ガスの組成を流量一
定条件下で調節し、あるいは冷却ガス流量の方のみを調
節することによって、炉内熱変動や羽口tの受熱変動に
よって適正な羽口を冷却を行なう。
At that time, the distance from the tip of the tuyere to the tip of the heating element 4 closest to it changes each time as the bottom refractory wears out, so the distance from the tip of the tuyere to the tip of the heating element 4 changes each time, so it is determined in advance according to the work standard that The above-mentioned method is used to memorize the thermocouple reading under the specified cooling conditions, and to maintain that temperature continuously during the entire period of blowing, from the peak decarburization period, the dephosphorization period, and the end of blowing. By adjusting the composition of the cooling gas under a constant flow rate condition, or by adjusting only the flow rate of the cooling gas, the tuyeres can be appropriately cooled according to the heat fluctuations in the furnace and the heat reception fluctuations of the tuyere t.

なお、冷却ガスの全流量を一定に保持してその組成を変
化させるという手段は、(イ)、吹錬中に種種の要因で
変動する羽目周辺部の温度(酸化発熱量)に対応して、
必要な抜熱反応(熱分解反応)を起す冷却ガスであると
共に、(0)、溶鋼静圧に打勝ち外管路3a内に溶鋼が
侵入するのを防止できること、の2点を同時に満足させ
るのに必要な制御である。
Note that the method of keeping the total flow rate of the cooling gas constant and changing its composition is (a) in response to the temperature (oxidation calorific value) around the siding, which fluctuates due to various factors during blowing. ,
It is a cooling gas that causes the necessary heat removal reaction (thermal decomposition reaction), and satisfies the following two points at the same time: (0) It can overcome the static pressure of molten steel and prevent molten steel from entering the outer pipe 3a. This is necessary control.

そこで、このような制御をするに際し、例えば所望の抜
熱効果とするために炭化水素外のガス流量を一定にした
結果で圧力が不足した場合、他のガスを用いて外管路3
a内を所定の圧力に維持させることが必要である。
Therefore, when performing such control, for example, if the pressure is insufficient as a result of keeping the flow rate of gas other than hydrocarbon constant in order to obtain the desired heat removal effect, another gas may be used to
It is necessary to maintain a predetermined pressure inside a.

これらのガスとしては、N2.Arなとの不活性ガスが
望ましいが、他にCOガス、H2ガス、NH3ガスなど
でもよい。
These gases include N2. An inert gas such as Ar is preferable, but CO gas, H2 gas, NH3 gas, etc. may also be used.

また、上述した羽口周辺温度の測定は、第3図に示すよ
うな光学素子9を用いても測定できる。
Furthermore, the above-mentioned temperature around the tuyere can also be measured using an optical element 9 as shown in FIG.

この光学素子9は、磁性管10中に充填材11を介して
固定され、そしてその磁性管10は、先端部に内向きの
噴射口12を有するガス噴射管13中に挿入されている
This optical element 9 is fixed in a magnetic tube 10 via a filler 11, and the magnetic tube 10 is inserted into a gas injection tube 13 having an inward injection port 12 at its tip.

このガス噴射は、精錬ガス中に混入する冷却剤となる粉
状造滓剤が、該光学素子9の透光機能を妨げるのを防止
(吹き飛ばす)するために行なう。
This gas injection is performed in order to prevent (blow away) the powdered slag-forming agent that becomes a coolant mixed into the refining gas from interfering with the light-transmitting function of the optical element 9.

かかる光学素子9部を具える光学測温管Pは、第4図に
示すように、羽口tの下方の精錬ガス導入管中に挿着し
、炉内を臨んで設置された該光学素子9によって羽口を
先端部の火点温度を受光量として検出する。
As shown in FIG. 4, the optical thermometer tube P including 9 optical elements is inserted into the refining gas introduction pipe below the tuyere T, and the optical element is installed facing the inside of the furnace. 9, the temperature of the spark point at the tip of the tuyere is detected as the amount of light received.

なお、受光器12、指示器13、レコーダ14を介して
検出した羽目周辺の温度は、上述した熱雷対の場合と同
じように処理する。
Note that the temperature around the cuffs detected through the light receiver 12, indicator 13, and recorder 14 is processed in the same manner as in the case of the thermal lightning pair described above.

つぎに、かかる光学測温管Pによって羽口先端部の吹錬
中の温度を測定し、その温度に対応して調節した冷却ガ
ス流量(対酸素流量を示すプロパン流量比)との関係を
示す実施例について、以下に説明する。
Next, the temperature at the tip of the tuyere during blowing is measured using the optical temperature measuring tube P, and the relationship between the temperature and the cooling gas flow rate (propane flow rate ratio indicating the oxygen flow rate) adjusted according to the temperature will be shown. Examples will be described below.

ただ、この実施例においては、前記同心2重管羽目の冷
却ガス通路におけるガス圧力を余り低下させると、浅鍋
の危険性があるのでプロパンを削減した分だけArガス
を混入し、対酸素流量比で4%の全冷却ガス流量とした
実施例である。
However, in this embodiment, if the gas pressure in the cooling gas passage of the concentric double pipe panel is reduced too much, there is a risk of shallow pan formation, so Ar gas is mixed in to compensate for the reduction in propane, and the oxygen flow rate is This is an example in which the total cooling gas flow rate is 4% in terms of ratio.

この実施例は、5を底吹き転炉に設けた6本羽口の1本
に前記光学測温管を取り付けて行なったものである。
In this example, the optical thermometer tube was attached to one of six tuyeres provided in a bottom blowing converter.

精錬用の酸素ガスが流通している羽口内部へ挿入される
光学測温器先端部分は、透明石英(4關φX200mm
)で覆われた部分であり、後続させる光学ファイバー(
41n7ILφ×8000mm)が受光器に連結されて
いる。
The tip of the optical thermometer, which is inserted into the tuyere through which oxygen gas for refining flows, is made of transparent quartz (4 mm φ x 200 mm).
) is the part covered by the optical fiber (
41n7ILφ×8000mm) is connected to the light receiver.

図面の第5図はこのようにlて測温した結果から、それ
に対応させて冷却ガス量を制御しつつ吹錬した実施例を
示す。
FIG. 5 of the drawings shows an example in which blowing was carried out while controlling the amount of cooling gas in accordance with the results of temperature measurement.

(数値は10ヒートの平均値を用いた)この発明の実施
による炉底耐火物の溶損速度は、2.7 mm/ ch
zプロパン消費量は、1、14 Nm3/ を鋼であ
った。
(The numerical value uses the average value of 10 heats) The erosion rate of the hearth refractory by implementing this invention is 2.7 mm/ch
zPropane consumption was 1,14 Nm3/steel.

一方従来法によるプロパン比は3%の一定値であり、炉
底耐火物の溶接速度は3.5 mrn/ ch 、プロ
パン消費量は1.93Nm3/を鋼が平均値であったか
ら、この発明法の効果は歴然としている。
On the other hand, the propane ratio according to the conventional method was a constant value of 3%, the welding speed of the bottom refractory was 3.5 mrn/ch, and the propane consumption was an average value of 1.93 Nm3/ for steel. The effects are obvious.

すなわち、この発明法によれば、炉底寿命の延長とプロ
パン消費量削減が達成でき経済的な底吹転炉吹錬方法を
提供できる。
That is, according to the method of the present invention, an economical bottom-blowing converter blowing method can be provided in which the life of the bottom of the furnace can be extended and the amount of propane consumed can be reduced.

なお、この炉底寿命の延長は、羽目の冷却が一定となり
、周囲の耐火物温度も吹錬を通じて余り急激な変化をし
なくなったことと、スポーリングによる炉底レンガの剥
離が少なくなったことにより、もたらされるものである
と考えられる。
This extension of the hearth bottom life is due to the fact that the cooling of the siding becomes constant, the temperature of the surrounding refractory material does not change too rapidly during blowing, and the peeling of the hearth bricks due to spalling is reduced. It is thought that this is brought about by

以上説明したようにこの発明によれば、羽口周辺の受熱
状態の変化に対し、それによく対応した羽目冷却を行な
うことができ、ひいては高価な冷却ガスを無駄に使うこ
となく経済的であると共に、一方では過冷却をすること
がないので安定した羽口先状態が維持できる。
As explained above, according to the present invention, it is possible to perform tuyere cooling that responds well to changes in the heat receiving state around the tuyere, and is also economical without wasting expensive cooling gas. On the other hand, since there is no supercooling, a stable tuyere tip state can be maintained.

したがって、その羽目寿命を著しく延長し得る。Therefore, its feather life can be significantly extended.

【図面の簡単な説明】[Brief explanation of the drawing]

図面の第1図は底吹き転炉羽口の端面図、第2図は熱電
対を取付けた状態の底吹き転炉炉底部の断面図、第3図
は光学測温管の一部切欠き図、第4図は光学測温管を転
炉炉底部に取付けた状態を示す概略図、第5図は羽口先
温度に対するプロパン流量制御例を示す図である。 t・・・・・・羽口、P・・・・・・光学測温管、1・
・・・・・炉底、2・・・・・・円管、3・・・・・・
外管、4・・・・・・熱電対、5・・・・・・溝、6・
・・・・・補償導線、7・・・・・・バーレル部、8・
・・・・・フランジ部、9・・・・・・光学素子、10
・・・・・・磁性管、11・・・・・・充填材、12・
・・・・・噴射口、13・・・・・・ガス噴射管。
Figure 1 of the drawings is an end view of the bottom blowing converter tuyere, Figure 2 is a cross-sectional view of the bottom of the bottom blowing converter furnace with a thermocouple attached, and Figure 3 is a partial cutaway of the optical thermometer tube. FIG. 4 is a schematic diagram showing a state in which an optical thermometer tube is attached to the bottom of the converter furnace, and FIG. 5 is a diagram showing an example of propane flow rate control with respect to tuyere tip temperature. T...Tuyere, P...Optical thermometer tube, 1.
...Hearth bottom, 2...Circular tube, 3...
Outer tube, 4... thermocouple, 5... groove, 6...
... Compensation lead wire, 7 ... Barrel part, 8.
...Flange portion, 9...Optical element, 10
...Magnetic tube, 11...Filling material, 12.
...Injection port, 13...Gas injection pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 同心2重管羽目のその外管路に、炭化水素系冷却ガ
スを流通させてその熱分解作用で羽口を冷却し、一方内
管路中へは酸化性精錬ガスを導入して鋼浴中へ噴出させ
酸化精錬を行なう底吹き転炉の吹錬において、前記羽目
に測温器を取付け、その測温器によって羽口先温度を連
続的に測定し、その測定温度の変化に応じて前記冷却ガ
スの組成ならびに流量、もしくはそれらのいずれか一方
を調節することを特徴とする底吹き転炉の吹錬方法。
1 Hydrocarbon cooling gas is passed through the outer pipe of the concentric double pipe to cool the tuyere by its thermal decomposition action, while oxidizing refining gas is introduced into the inner pipe to cool the steel bath. In blowing in a bottom-blown converter that performs oxidation refining by blowing air into the interior, a temperature meter is attached to the tuyere tip, and the temperature at the tuyere tip is continuously measured by the temperature meter. A method for blowing in a bottom blowing converter, characterized by adjusting the composition and/or flow rate of cooling gas.
JP5103278A 1978-04-28 1978-04-28 Blowing method of bottom blowing converter Expired JPS5834528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5103278A JPS5834528B2 (en) 1978-04-28 1978-04-28 Blowing method of bottom blowing converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5103278A JPS5834528B2 (en) 1978-04-28 1978-04-28 Blowing method of bottom blowing converter

Publications (2)

Publication Number Publication Date
JPS54142117A JPS54142117A (en) 1979-11-06
JPS5834528B2 true JPS5834528B2 (en) 1983-07-27

Family

ID=12875460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5103278A Expired JPS5834528B2 (en) 1978-04-28 1978-04-28 Blowing method of bottom blowing converter

Country Status (1)

Country Link
JP (1) JPS5834528B2 (en)

Also Published As

Publication number Publication date
JPS54142117A (en) 1979-11-06

Similar Documents

Publication Publication Date Title
KR0134654B1 (en) Apparatus and method for measuring a temperature using optical fiber
KR101742901B1 (en) Apparatus for temperature measurements of a molten bath in a top submerged injection lance installation
US4442706A (en) Probe and a system for detecting wear of refractory wall
US3080755A (en) Metallurgical process control
US3250125A (en) Hot metal temperature measuring device and temperature measuring method
CN102334003A (en) Oxygen blowing lance cooled by protective gas
US3161499A (en) Metallurgical process control
JPH0333212B2 (en)
US3747408A (en) Temperature measurement
JPS5834528B2 (en) Blowing method of bottom blowing converter
JPS62278217A (en) Lance inlaying thermocouple for controlling slag level
CA1217336A (en) Annular tuyere and method
JPH01267426A (en) Method and apparatus for temperature measurement of molten metal
US4477279A (en) Annular tuyere and method
JPS6061633A (en) Continuously measuring apparatus of temperature of melt in refining vessel
JPH0464419B2 (en)
JP2803542B2 (en) Converter operation method
JPH0259629A (en) Continuous temperature measuring instrument for molten metal
KR102511007B1 (en) Apparatus for measuring molten iron temperature of blast furnace
JPH052724B2 (en)
JP2803534B2 (en) Converter blowing control method
JPS6252423A (en) Method and apparatus for continuously measuring temperature of molten metal
JPH0875553A (en) Temperature measuring apparatus for high temperature liquid employing optical fiber
JPH05179332A (en) Cooling and protecting method for oxygen blowing tuyere to underside of molten iron bath surface in converter
JP2002013881A (en) Slag level detecting method and method for controlling lance based on it