JPS5834357A - Method and device for eddy current flaw detection - Google Patents

Method and device for eddy current flaw detection

Info

Publication number
JPS5834357A
JPS5834357A JP56133564A JP13356481A JPS5834357A JP S5834357 A JPS5834357 A JP S5834357A JP 56133564 A JP56133564 A JP 56133564A JP 13356481 A JP13356481 A JP 13356481A JP S5834357 A JPS5834357 A JP S5834357A
Authority
JP
Japan
Prior art keywords
output
probe
coils
flaw
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56133564A
Other languages
Japanese (ja)
Inventor
Kin Baba
馬場 「きん」
Shigenori Kamimura
上村 繁憲
Akira Saeki
佐伯 朗
Masanobu Kawakami
川上 正修
Masashi Eguchi
江口 雅志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARA DENSHI SOKKI KK
JFE Steel Corp
Eddio Corp
Original Assignee
HARA DENSHI SOKKI KK
Eddio Corp
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARA DENSHI SOKKI KK, Eddio Corp, Kawasaki Steel Corp filed Critical HARA DENSHI SOKKI KK
Priority to JP56133564A priority Critical patent/JPS5834357A/en
Publication of JPS5834357A publication Critical patent/JPS5834357A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To detect flaws of a material to be detected in an axial and a circumferential direction, by arranging plural detecting probe coils zigzag in circumference, and rotating and scanning those probe coils electrically. CONSTITUTION:To a heat-resisting cylindrical fixture 101 having an enough diameter to be fitted around a steel tube T as a body to be detected, plural probe coils are fitted zigzag adjacently to the circumferential surface. Energizing coils are superposed upon this coil group. A flaw L of the steel tube T in an axial direction is detected by the combination of the plus output 1 and minus output 2 of, for example, adjacent probe coils, and the output difference between the both is used. Further, a flaw C or CCW in a circumferential direction is detected from the output difference between, for example, a minus output 2 and a plus output n'. Those probe coils are switched electrically and rotated and scanned. Consequently, flaws of a steel tube, conveyed at a high speed at high temperature, in an axial and a rolling direction and in a circumferential direction are detected efficiently.

Description

【発明の詳細な説明】 本発明は渦流探傷方法および装置に係υ、特に、長尺条
材を熱間製造ラインにおいて探傷するに最適な渦流探傷
方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an eddy current flaw detection method and apparatus, and more particularly to an eddy current flaw detection method and apparatus that are optimal for flaw detection of long strip materials on a hot production line.

継目無鋼管、鍛接鋼管等の製造工程および電縫鋼管の熱
間仕上げ工程等中において、圧延方向および、これと直
交する局方向傷の検出を行う必要がある。かかる工程に
おける鋼管は、800℃乃至1100℃程度の高温に晒
され、しかも高速で送管されるため、能率良く適確に工
程中における傷検出を行うことは困難であった。
BACKGROUND ART During the manufacturing process of seamless steel pipes, forge-welded steel pipes, etc. and the hot finishing process of electric resistance welded steel pipes, it is necessary to detect flaws in the rolling direction and in the local direction orthogonal to this. Steel pipes in this process are exposed to high temperatures of about 800° C. to 1100° C. and transported at high speeds, so it has been difficult to efficiently and accurately detect flaws during the process.

(3) 従来における熱間状態下の鋼管探傷の例としては、貫通
コイルを用いた渦流探傷がある。しかし、かかる探傷法
は管軸・圧延方向に被検材を隣接比較するものであるた
め、管軸圧延方向に長い線状あるいは、しわ状傷の検知
が原理的に困難である欠点がある。また、隣接比較しな
い場合には、被検材の材質・寸法的な変動および貫通コ
イルと被検材との相対的位置変動等によってもたらされ
る信号を消去できず、極めて大きな傷の検知しかでき々
いことが知られて因る。
(3) An example of conventional flaw detection for steel pipes under hot conditions is eddy current flaw detection using a through coil. However, since this flaw detection method compares the test materials adjacent to each other in the tube axis/rolling direction, it has the drawback that it is difficult in principle to detect long linear or wrinkle-like flaws in the tube axis/rolling direction. Furthermore, if adjacent comparisons are not made, it is not possible to eliminate signals caused by changes in the material and dimensions of the test material and relative positional changes between the through coil and the test material, and it is only possible to detect extremely large flaws. This is due to the fact that it is known.

ところで、管軸圧延方向に長い線状あるいはしわ状傷の
検知に関しては該傷と交差して走査する隣接差動プロー
ブコイルによる機械的な回転プローブによって原理的に
達成できることが知られている。しかしながら、隣接差
動プローブコイルを鋼管の外周に沿って機械的走差を行
うに際し、その走差速度が遅いために、高速生産を行う
前述の製造ラインに適用することはできなかった。すな
わち機械的回転数は軸受の径と回転数とから最大回転数
に制限を与え、プローブコイルの鋼管表面(4) に対する追従性は、プローブコイル及び走査機構の質量
2回転体であるために生じる遠心力等によって制約を受
ける。特に、回転数の上昇に伴なって追従性の低下する
ことが知られておシ、従って、機械的回転数に上限が与
えられることになる。
By the way, it is known that detection of linear or wrinkle-like flaws that are long in the tube axis rolling direction can be achieved in principle by a mechanical rotating probe using adjacent differential probe coils that scan across the flaws. However, when mechanically running the adjacent differential probe coils along the outer periphery of the steel pipe, the running speed is slow, so it could not be applied to the above-mentioned manufacturing line that performs high-speed production. In other words, the maximum rotational speed is limited by the diameter and rotational speed of the bearing, and the ability of the probe coil to follow the steel pipe surface (4) is due to the fact that the probe coil and scanning mechanism are two-mass rotating bodies. Restricted by centrifugal force, etc. In particular, it is known that the followability decreases as the rotational speed increases, and therefore an upper limit is placed on the mechanical rotational speed.

一方、回転走査軌跡を密にする方法としては、鋼管外周
面に沿って回転走査するプローブコイルを円周上に複数
個配設するものがある。この場合、プローブコイルは追
従機構尋の機械的設計ならびに構造上の制約から2〜4
個を回転軸芯を中心にして対向配設させている。例えば
、4つのプローブコイルを500〜1000回転/分で
機械的走査を行えば、1個のプローブの実効探傷区域が
15−であれば、15X4X1000すなわち60m/
分の鋼管に対して全面探傷走査を行うことができる。
On the other hand, as a method of making the rotational scanning locus denser, there is a method of arranging a plurality of probe coils on the circumference for rotational scanning along the outer circumferential surface of the steel pipe. In this case, the probe coil should be 2 to 4
The two are arranged facing each other around the rotation axis. For example, if four probe coils are mechanically scanned at 500 to 1000 revolutions/min, if the effective detection area of one probe is 15-, then the area is 15X4X1000 or 60m/min.
It is possible to perform full-surface flaw detection scanning on minute steel pipes.

これに対し、例えば絞シ圧延直後における鋼管の製造速
度は400 m1分に達し、前述の探傷設備を用いた場
合には60÷400=15(チ)、すなわち被探傷材の
全長に対し15チの区域を走査できるに過ぎない。従っ
て、全面探傷条件を満たせる傷は、所定長さ以上のもの
に限定される。
On the other hand, for example, the manufacturing speed of steel pipes immediately after drawing and rolling reaches 400 m1 min, and when using the above-mentioned flaw detection equipment, 60 ÷ 400 = 15 (ch), that is, 15 m1 for the total length of the material to be tested. can only scan an area of Therefore, flaws that can satisfy the full surface flaw detection conditions are limited to those with a predetermined length or more.

鋼管に発生する傷は、管軸圧延方向に生じる長い傷に限
らず、管軸・圧延方向に生じる長さの短い傷にも生じ、
これに対しても検知が要求されている。また、管軸方向
に長さのない鋼管円周方向にも傷は発生するが、このよ
うな疵に対しては、前述の機械的回転による回転走査探
傷はプローブコイルが疵を交差して走査しないために検
知することができない。
Scratches that occur on steel pipes are not limited to long scratches that occur in the tube axis/rolling direction, but also short scratches that occur in the tube axis/rolling direction.
Detection is required for this as well. In addition, flaws also occur in the circumferential direction of steel pipes, which have no length in the pipe axis direction, but for such flaws, the above-mentioned rotary scanning flaw detection using mechanical rotation requires the probe coil to scan across the flaws. It cannot be detected because it does not.

鋼管に生ずる傷は、造管前の材料に存在したものと、圧
延工程中に発生した傷とに大別される。
Flaws that occur in steel pipes are broadly classified into those that exist in the material before pipe making and those that occur during the rolling process.

このような傷は圧延直後にリアルタイムで検知されれば
、従来よシ目的とされてきた品質保証のための探傷にと
どまらず、リアルタイムによる前工程への是正措置すな
わち広義のプロセス制御の一環としての非破壊検査体制
が確立できることになシ、かかる要求を満足する探傷シ
ステムの出現が強く望まれている。
If such flaws can be detected in real time immediately after rolling, they can be used not only for quality assurance, which has traditionally been the purpose of flaw detection, but also as a part of real-time corrective measures for previous processes, that is, as part of process control in a broad sense. Since it is possible to establish a non-destructive inspection system, there is a strong desire for a flaw detection system that satisfies such requirements.

本発明の目的は、熱間状態下における長尺条材の圧延方
向および周方向の傷を検知することのできる渦流探傷方
法及び装置を提供するにある。
An object of the present invention is to provide an eddy current flaw detection method and apparatus that can detect flaws in the rolling direction and circumferential direction of a long strip under hot conditions.

すなわち本発明は、機械的にプローブを回転させること
なく電気的にプローブコイルを回転走査せしめる如くす
ることによって圧延方向の傷を検出すると共に、被検材
の製造に伴なって材料が走行する状態を利用して周方向
の傷を検出するようにしたものである。
That is, the present invention detects flaws in the rolling direction by rotating and scanning the probe coil electrically without mechanically rotating the probe, and detects the state in which the material travels as the material to be inspected is manufactured. This method uses the method to detect flaws in the circumferential direction.

第1図は本発明の実施例を示すブロック図である1、 検出端1は複数個の検出プローブコイルを円周を成し且
つ千鳥形を成すように配設すると共に、円周面上のプロ
ーブコイル群を(管)軸上に複数列を配設し、且つ単数
または複数個の励磁コイルでプローブコイル群の複数列
を包含巻回し、耐熱構造に構成される。検出端1の出力
は鋼管(被探傷材)の管軸・圧延(L)方向の傷検知用
信号多重化処理部2.および鋼管の円周に沿って生ずる
円周(0)方向傷検知用信号多重化処理部3の各々に送
出される。多重化処理部2は高周波時分割多重化を行っ
たのち検出端から隔離して設けられ(7) たL系列時分割復調器4に管軸中圧延方向傷情報信号を
送出する。同様に多重化処理部3の円周方向傷情報信号
も検出端から隔離して設けられた0系列時分割復調器5
に送出される。各復調器および各多重化処理部には同期
信号としてのクロックパルスOPが印加されている。信
号の多重化および多重化された信号の復調のためには時
分割用パルス信号が必要であるが、この信号は主発振器
6で発生させたパルス信号を駆動回路7より各回路にク
ロックツぐルスOPとして送出する。駆動回路7の出力
信号は分周回路8によって分周したのち帯域フィルター
9を介して信号電力増幅器10および移相器11.12
に出力される1、駆動回路7の出力信号は複数の分周回
路を備えた周波数逓減分局器13にも送出され、該分周
器13により得られた低周波信号がスキャナー駆動回路
14に送出される。
FIG. 1 is a block diagram showing an embodiment of the present invention. 1. The detection end 1 has a plurality of detection probe coils arranged circumferentially and in a zigzag pattern. A plurality of rows of probe coil groups are arranged on the (tube) axis, and the plurality of rows of the probe coil group are wrapped around one or more excitation coils to form a heat-resistant structure. The output of the detection end 1 is sent to a signal multiplexing processor 2 for detecting flaws in the tube axis/rolling (L) direction of the steel pipe (material to be tested). and signal multiplexing processing section 3 for detecting flaws in the circumferential (0) direction occurring along the circumference of the steel pipe. After performing high-frequency time-division multiplexing, the multiplexing processing section 2 sends the tube axis mid-rolling direction flaw information signal to the L-series time-division demodulator 4, which is provided separately from the detection end (7). Similarly, the circumferential flaw information signal of the multiplexing processing section 3 is also received by the 0-series time-division demodulator 5, which is provided separately from the detection end.
will be sent to. A clock pulse OP as a synchronization signal is applied to each demodulator and each multiplexing processing section. A time division pulse signal is required for signal multiplexing and demodulation of the multiplexed signal. Send as OP. The output signal of the drive circuit 7 is frequency-divided by a frequency divider circuit 8 and then passed through a bandpass filter 9 to a signal power amplifier 10 and a phase shifter 11.12.
1, the output signal of the drive circuit 7 is also sent to a frequency downscaling divider 13 having a plurality of frequency divider circuits, and the low frequency signal obtained by the frequency divider 13 is sent to the scanner drive circuit 14. be done.

多重化された管軸・圧延方向傷情報信号を復調する時分
割復調器4の出力は複数の位相検波器151〜15?、
(増幅器を含む構成)の各々に送(8) 出される。位相検波器151〜15%には、位相検波用
参照基準電圧として移相器11の出力信号が印加されて
いる。位相検波器15.〜157Lの各出力信号は複合
回路16.〜16ユに送出される。この複合回路16.
〜16詐は入力された信号の高域を除去するp 、eス
フイルタと正弦波状信号を単一極性の信号に変換する信
号折返し回路とをもって構成される。複合回路161〜
16%で波形処理された信号は、電子的回転走査近似化
を行うスキャナー17に送出され、該スキャナー17は
スキャナー駆動回路14より送出される信号(例えば3
3Hz低周波信号)に基づいて複合回路16里〜16%
の出力を順次切換えて選択出力する。複合回路161〜
16%の出力はまた、第2のスキャナーであるスキャナ
ー18に送出される。このスキャナー18のスキャニン
グはスキャナー駆動回路14に接続されたシフトレジス
タ19の出力に基づいて行われる。かかるシフトレジス
タ19は、機械的探傷装置における回転軸を中心として
180度の関係を維持し対向する姿勢を保ちながら連続
回転機能を模擬する機能を出すためのスキャニングノ々
ルス遅延機能をもつものである。従って、スキャナー1
8によるサンプリング動作は、信号系列数に対応するn
ビットのシフトレジスタ19によって(TL/2)ビッ
ト遅延した点を原点としたパルスによシ行われることに
なる。スキャナー18および17にはバイパスフィルタ
ー20.21の各々が設けられ、スキャナーによる低速
信号抽出時に生じた低周波信号すなわち本実施例におい
ては約33Hzの基本波信号および副次高調波、たとえ
ば第5高調波の165Hzまでの低周波妨害信号が除去
される。バイパスフィルター20.21の出力信号は信
号振幅閾値検出回路22.23の各々に送出される。こ
れら信号振幅閾値検出回路22.23には傷深さに対応
した選別レベルを設定する閾値設定器24の出力信号が
印加されている。信号振幅閾値検出回路2223の出力
信号はリレー駆動回111r25に送出され傷信号が閾
値を越えるたびにリレー26が駆動され、ランプ27を
点灯させ、被探傷材に傷のあることを報知する。
The output of the time division demodulator 4 that demodulates the multiplexed tube axis/rolling direction flaw information signal is transmitted to a plurality of phase detectors 151 to 15? ,
(configuration including an amplifier). The output signal of the phase shifter 11 is applied to the phase detectors 151 to 15% as a reference voltage for phase detection. Phase detector 15. Each output signal of ~157L is output from the composite circuit 16. ~ Sent out to 16 Yu. This composite circuit 16.
~16 filters are constructed with a p filter that removes the high frequency range of the input signal, and a signal folding circuit that converts the sinusoidal signal into a single polarity signal. Composite circuit 161~
The signal waveform processed at 16% is sent to a scanner 17 that performs electronic rotational scanning approximation, and the scanner 17 receives the signal sent from the scanner drive circuit 14 (e.g. 3
Composite circuit based on 3Hz low frequency signal) 16ri ~ 16%
The outputs of are sequentially switched and outputted selectively. Composite circuit 161~
The 16% output is also sent to a second scanner, scanner 18. Scanning by the scanner 18 is performed based on the output of a shift register 19 connected to the scanner drive circuit 14. The shift register 19 has a scanning nose delay function for simulating a continuous rotation function while maintaining a 180 degree relationship with the rotation axis of the mechanical flaw detection device and maintaining a facing attitude. be. Therefore, scanner 1
The sampling operation by 8 is n corresponding to the number of signal sequences.
This is performed using a pulse whose origin is a point delayed by (TL/2) bits by the bit shift register 19. Each of the scanners 18 and 17 is provided with a bypass filter 20.21, which filters the low frequency signal generated when the scanner extracts the low-speed signal, that is, the fundamental signal of approximately 33 Hz in this embodiment, and the subharmonic, for example, the fifth harmonic. Low frequency interfering signals up to 165 Hz of waves are removed. The output signal of the bypass filter 20.21 is sent to each of the signal amplitude threshold detection circuits 22.23. An output signal from a threshold setter 24 for setting a screening level corresponding to the flaw depth is applied to these signal amplitude threshold detection circuits 22 and 23. The output signal of the signal amplitude threshold detection circuit 2223 is sent to the relay drive circuit 111r25, and each time the flaw signal exceeds the threshold, the relay 26 is driven to light the lamp 27 to notify that there is a flaw in the material to be detected.

一方、多重化された円周方向傷情報信号用としての0系
列復調器5の出力は複数の位相検波器281〜28.(
増幅器を含む構成)の各々に送出される。位相検波器2
81〜28ユには、位相検波用参照基準電圧として移相
器12の出力信号が印加され、これら位相検波器281
〜28.nの出力信号は複合回路291〜29rLの各
々に送出される。この複合回路29.〜29ユは、複合
回路161〜167と同一の回路構成および機能を有す
るものであり、その出力信号群はアナログ混合回路30
に出力され並列混合される。アナログ混合回路30は、
鋼管の円周方向に沿って生じている傷が傷検知用プロー
ブコイルのどの位置に対向しても信号として検知する機
能を有し、その出力信号は信号振幅閾値検出回路31に
送出される。
On the other hand, the output of the 0-sequence demodulator 5 for the multiplexed circumferential flaw information signal is transmitted to a plurality of phase detectors 281 to 28. (
configuration including an amplifier). Phase detector 2
The output signal of the phase shifter 12 is applied to the phase detectors 281 to 28 as a reference voltage for phase detection.
~28. The n output signals are sent to each of the composite circuits 291-29rL. This composite circuit 29. ~29 units have the same circuit configuration and function as the composite circuits 161 to 167, and their output signal group is the same as the analog mixing circuit 30.
output and mixed in parallel. The analog mixing circuit 30 is
It has a function of detecting a flaw occurring along the circumferential direction of the steel pipe as a signal no matter where it faces the flaw detection probe coil, and the output signal is sent to the signal amplitude threshold detection circuit 31.

この信号振幅閾値検出回路31は、閾値設定器32から
出力されるSRさに対応した選別レベル設定値とアナロ
グ混合回路30の出力信号レベルとを比較し、設定値を
アナログ混合回路30の出力信(11) 号レベルが越えるたびに出方信号を発し、該出方信号を
リレー駆動回路33に送出する。リレー駆動回路33は
信号振幅閾値検出回路31jシ信号が出力される毎にリ
レー34を駆動し、ランプ35を点灯して被探傷材の円
周方向に傷のあることを報知する。なお、信号電力増幅
婚10の出力は励振器36に与えられる。該励磁器36
は被探傷材に渦電流反応を佐じさせるために用いられる
もので、電線を?@回した励磁コイルである。
This signal amplitude threshold detection circuit 31 compares the selection level setting value corresponding to the SR output from the threshold value setter 32 with the output signal level of the analog mixing circuit 30, and converts the setting value into the output signal level of the analog mixing circuit 30. (11) Every time the number level is exceeded, an output signal is generated, and the output signal is sent to the relay drive circuit 33. The relay drive circuit 33 drives the relay 34 every time the signal amplitude threshold detection circuit 31j signal is output, and lights up the lamp 35 to notify that there is a flaw in the circumferential direction of the material to be detected. Note that the output of the signal power amplifier 10 is given to an exciter 36. The exciter 36
is used to induce an eddy current reaction in the material to be tested, and is used for electrical wires. @ It is the turned excitation coil.

ここで検出端1の構造ならびに探傷原理について図を示
し説明する。M2図は探傷対象の鋼管Tを探傷する検出
端1の斜視図でるシ、図に示すよりに鋼管Tに外嵌され
る径を有した#熱性の円筒状取付A101に複数のブロ
ーノコイル102;フf円周面に隣接させながら取付け
られている。該コイル群を包嵌する励磁器/励磁コイル
36は上記コイル群に重ね合わされる。
Here, the structure of the detection end 1 and the principle of flaw detection will be explained with reference to figures. Figure M2 is a perspective view of the detection end 1 for flaw-detecting the steel pipe T to be tested. F is attached adjacent to the circumferential surface. An exciter/excitation coil 36 surrounding the coil group is superimposed on the coil group.

第3図は第2図の鋼管Tおよび検出端1を各々円周方向
に展開した展開図である。鋼管Tに図示したO 、 L
 、 Ocwの各々は表面に点在する傷の−(12) 例を示したものである。また、検出端1のω〜■は検出
プローブコイル配置状況を示したものである。この複数
の検出プローブの相互の接続を示せば次の如くである。
FIG. 3 is a developed view of the steel pipe T and the detection end 1 shown in FIG. 2, each developed in the circumferential direction. O, L shown in steel pipe T
, Ocw are -(12) examples of scratches scattered on the surface. Further, ω to ■ of the detection end 1 indicate the arrangement of the detection probe coils. The mutual connections of the plurality of detection probes are shown as follows.

第3図に示した鋼管Tの傷りの如き線状傷は、L1〜L
?Lに区分された検出領域にょ夛検出されるが、一つの
検出領域は隣接するプローブコイルの正極出力と負極出
力との組合せにょシ行われる。
Linear scratches such as the scratches on the steel pipe T shown in Figure 3 are from L1 to L
? Detection is performed in multiple detection areas divided into L, but one detection area is a combination of the positive and negative outputs of adjacent probe coils.

すなわち各プローブコイルの出力に対し順番に番号を付
しOHI 、OH2・・山oH?Lの如くとし、その出
力信号極性が正であるときOH1負であるときOHとす
るとs  III 〜L、Lを得るためには次のよう々
構成とすればよい。例えば、oHlに対してはOH2と
の差動比較であり、OH2に対してはOH3との差動比
較であ’)s OH(:)  1に対してはOH(晋)
との差動比較であシ、以下、同様の差動比較を行い、最
後のQl(t−に対してはで旧との差動比較である。こ
のようにして得られた差動出力Ll 、L2・・・L 
(T)−1・・・L(九−1〕。
In other words, numbers are assigned to the output of each probe coil in order: OHI, OH2...YamaoH? If the output signal polarity is positive, OH1 is negative; if it is negative, OH. In order to obtain s III ~L, L, the following configuration may be used. For example, for oHl, it is a differential comparison with OH2, and for OH2, it is a differential comparison with OH3.
Hereafter, similar differential comparisons are made, and for the final Ql(t-, a differential comparison is made with the old one.The differential output Ll obtained in this way is , L2...L
(T)-1...L (9-1).

L?Lの各々は第1図に示した多重化処理部2によって
高周波時分割多重化を行ったのち時分割復調器4に伝送
する。
L? Each of the signals L is subjected to high frequency time division multiplexing by the multiplexing processing unit 2 shown in FIG. 1, and then transmitted to the time division demodulator 4.

また、第3図に示した0あるいはOCWの如き線状傷の
検出に対しては、次の如きプローブコイルの接続構成に
よル行う。
Detection of linear flaws such as 0 or OCW shown in FIG. 3 is performed using the following probe coil connection configuration.

すなわち、反転出力OH1と正出力OH−との差動比較
出力をOl、反転出方OH2と正出方OHI“との差動
比較出力を02、以下同様の差動比較を行い最終的に反
転出力0HfLと正出力OH(%−1)’との差動比較
出力を〇−として検出情報を出力する。このようにして
得られた差動比較出力01,02,03・・・・・0%
の各々は、多重化処理部3によって高周波時分割多重化
を行ったのちO系列復調器5に伝送される。以上説明し
た如きプローブコイルの電気的組合せの一例を示したの
が第4図である。
That is, the differential comparison output between the inverted output OH1 and the positive output OH- is O1, the differential comparison output between the inverted output OH2 and the normal output OHI is 02, and the same differential comparison is made thereafter and finally inverted. Detection information is output by setting the differential comparison output between the output 0HfL and the positive output OH (%-1)' as 0-.The differential comparison outputs obtained in this way are 01, 02, 03...0 %
are subjected to high-frequency time division multiplexing by the multiplexing processing section 3 and then transmitted to the O-sequence demodulator 5. FIG. 4 shows an example of the electrical combination of probe coils as described above.

(15) 第4図に示すように、OH1〜OH−よシなるプローブ
コイルの列と、CH11〜OH−よシなるプローブコイ
ルの列とが並行して第2図に示す如く円周面上に配置さ
れている。プローブコイルOHI〜OH%の反転出力は
インノ々−タ(INV)によって得る。これらの反転出
力と各チャンネル(OH1〜OH%および0H11〜0
H−)の出力との差動比較を比較器(OOMP)によっ
て行い、出力信号L1〜L%のL系列出力および出力信
号01〜0%の0系列出力を得る。L1〜L%の各出力
ハマルチゾレクサ21に送出され、01〜〇九の各出力
はマルチプレクサ31に送出され、この内の1つが順次
または任意に選択出力される。′tた、マルチプレクサ
21.31のほか、復調器4゜5に印加されるクロック
パルスOPは、電磁誘導試験検査周波数fに対し、fx
Nx?L(但し、Nは整数値、nは信号系列数)の周波
数が用いられる。彦お、第4図における※印のプローブ
コイルは、円周環状配列のプローブコイルを展開した場
合の理解を容易にする為のもので※印のない他の(16
) 同符号プロブコイルと1復することを意味する。
(15) As shown in Figure 4, a row of probe coils from OH1 to OH- and a row of probe coils from CH11 to OH- are arranged in parallel on the circumferential surface as shown in Figure 2. It is located in The inverted output of the probe coils OHI to OH% is obtained by an inverter (INV). These inverted outputs and each channel (OH1~OH% and 0H11~0
A comparator (OOMP) performs a differential comparison with the output of H-) to obtain an L series output of output signals L1 to L% and a 0 series output of output signals 01 to 0%. The outputs L1 to L% are sent to the harmonic multi-solexer 21, and the outputs 01 to 09 are sent to the multiplexer 31, and one of them is output sequentially or arbitrarily. In addition to the multiplexer 21.31, the clock pulse OP applied to the demodulator 4.
Nx? L (where N is an integer value and n is the number of signal sequences) frequencies are used. Hikoo, the probe coils marked with * in Fig. 4 are for easy understanding when the probe coils in a circumferential annular arrangement are expanded.
) It means repeating once with the same sign prob coil.

マルチプレクサ21及び31の出力、すなわち多重化処
理部2及び3の出力は、時分割復調器4及び0系列復調
器5に送出される。時分割復調器4ではL1〜L−の全
出力をクロックパルスOPによシマルチプレクサ21に
同期して取出し、0系列復調器5では01〜0%の全出
力をクロックパルスOPによシマルチゾレクサ31に同
期して取出す。各復調器の出力は位相器15+〜15%
および281〜281が装備するノ々ンドパスフィルタ
によってクロック周波数(f−N・n)を除去する。ス
キャナー17および18は九個の入力を順次または任意
の入力を選択的に出力し、従来の機械的なプローブ回転
に変え、電子的に回転走査する。この場合の走査速度は
、分局器13の出力周波数が33Hzである場合、33
X60キ2.000となシ、およそ2.000回転の機
械回転走査に対応近似させたものとなる。
The outputs of the multiplexers 21 and 31, that is, the outputs of the multiplexing processing units 2 and 3, are sent to the time division demodulator 4 and the 0-series demodulator 5. In the time division demodulator 4, the entire output of L1 to L- is taken out in synchronization with the multiplexer 21 according to the clock pulse OP, and in the 0 series demodulator 5, the total output of 01 to 0% is taken out in synchronization with the multiplexer 31 according to the clock pulse OP. Extract synchronously. The output of each demodulator is phase shifter 15+~15%
And the clock frequency (fN·n) is removed by the non-pass filters 281 to 281 are equipped with. Scanners 17 and 18 sequentially output nine inputs or selectively output any input, replacing conventional mechanical probe rotation with electronic rotational scanning. The scanning speed in this case is 33Hz when the output frequency of the branching unit 13 is 33Hz.
X60 x 2,000 is an approximation corresponding to mechanical rotation scanning of approximately 2,000 revolutions.

第5図は複合回路161〜16%とスキャナー17.1
8の接続関係を等価回路で示したものである。各スキャ
ナーはロータリースイッチで図示している。スキャナー
が複合回路16.〜16九を選択する関係は、例えば下
表の如くである。すなわち、機械的回転走査にたとえれ
ばスキャナー17と18との間には回転軸を中心として
180度のずれがあシ、この関係を維持しながら連続回
転機能を模擬している。この180度の差を付ける機能
はシフトレジスタ19によって行われることは前述の通
りである。
Figure 5 shows the composite circuit 161-16% and the scanner 17.1
8 is shown in an equivalent circuit. Each scanner is illustrated with a rotary switch. The scanner is a composite circuit16. The relationship for selecting ~169 is as shown in the table below, for example. That is, compared to mechanical rotational scanning, there is a 180 degree shift between the scanners 17 and 18 around the rotation axis, and a continuous rotation function is simulated while maintaining this relationship. As described above, the function of making this 180 degree difference is performed by the shift register 19.

第6図は本発明を熱間圧延鋼管製造設備に用いた適用例
を示すブロック図である。
FIG. 6 is a block diagram showing an example of application of the present invention to hot rolled steel pipe manufacturing equipment.

丸鋼片・丸ビットtたは角鋼片ψ角ピット等の材料40
は、加熱炉41によって均等に充分加熱されたのち、穿
孔機42によって中空鋼管状に加工される。穿孔加工さ
れた鋼片はプラグミル(あるいはマンドレルミル)43
によって圧延伸管加工され、母管が製造される。該母管
は圧延伸管加工々程において冷却されるため、必要に応
じて再加熱炉44によって再加熱される。しかるのち定
径機または絞シ圧延機45による複数スタンドによシ所
定の外径、肉厚を有する鋼管が製造される。
Materials such as round steel pieces, round bits or square steel pieces ψ square pits, etc. 40
is heated uniformly and sufficiently in a heating furnace 41, and then processed into a hollow steel tube shape by a punching machine 42. The perforated steel piece is processed using a plug mill (or mandrel mill) 43
The tube is processed into a rolled and drawn tube to produce a mother tube. Since the mother tube is cooled during the rolling tube processing process, it is reheated by the reheating furnace 44 as necessary. Thereafter, a steel pipe having a predetermined outer diameter and wall thickness is manufactured using a plurality of stands using a diameter-sizing machine or a drawing mill 45.

この工程の後に第1図に示した本発明に係る電磁誘導探
傷装置100が配設され、鋼管に生じた各(19) 種の傷が検出される。電磁誘導探傷装置100を経た鋼
管は冷却床46によって徐冷される。電磁誘導探傷装置
100によって傷が発見された不良鋼管は、切断機47
に送出することなく不良鋼管選別機構48によってライ
ンから除外する。この不良鋼管選別機構48は切断機4
7の後段に設けても良い。良品の鋼管は、切断機47に
よって任意の所定鋼管長に切断され、切断された鋼管は
矯正機49で曲わが矯正される。矯正された鋼管は切断
面取機50に送られて、高精度に定尺に合せるために切
断加工が行われる。以上の工程を経て製品の姿となった
鋼管は、従来よシ用いられている通常の電磁誘導探傷装
置51によシ、従来の方法1手段によって製品の品質保
証の一環として全数検査が行われる。
After this step, the electromagnetic induction flaw detection device 100 according to the present invention shown in FIG. 1 is installed to detect each (19) types of flaws that have occurred in the steel pipe. The steel pipe that has passed through the electromagnetic induction flaw detection device 100 is gradually cooled by a cooling bed 46. A defective steel pipe whose flaws have been detected by the electromagnetic induction flaw detection device 100 is cut by the cutting machine 47.
The defective steel pipes are removed from the line by the defective steel pipe sorting mechanism 48 without being sent to the factory. This defective steel pipe sorting mechanism 48 is a cutting machine 4
It may be provided after 7. A non-defective steel pipe is cut into an arbitrary predetermined length by a cutting machine 47, and the bent steel pipe is straightened by a straightening machine 49. The straightened steel pipe is sent to a cutting and chamfering machine 50, where it is cut to a specified length with high precision. The steel pipes that have undergone the above steps and have been made into products are then 100% inspected as part of product quality assurance using a conventional electromagnetic induction flaw detection device 51 and a conventional method. .

このような設備において、電磁誘導探傷装置51のみに
よって不良品の選別を行った場合には、ミル43または
絞シ圧延機44等が伺等かの要因によシネ調状態となっ
て、仮に不良鋼管を連続的に製造した場合には、切断加
工以後の工程を完了しく20) てから不良であることが発見されるため、製造効率が悪
く、省エネルギー化にも逆行するものであった。しかし
、本発明を適用することによ如、従来の不都合を解消で
きるので、不良鋼管が製造されたとしても、早期発見な
らびに早期是正措置をとることができるので、良品鋼管
のみを各種の精整工程に流す生産体制が可能となる。こ
のようなラインの確立ができるのは、前述の如く機械的
なプローグコイルの回転走査によらず電気的に回転走査
によって高温下での探傷が可能となったことに依るもの
である。
In such equipment, if defective products are screened only by the electromagnetic induction flaw detection device 51, the mill 43 or the drawing mill 44 may become cine-like due to various factors, and it may be possible to detect defective products. When steel pipes are manufactured continuously, defects are discovered only after the cutting process has been completed20), resulting in poor manufacturing efficiency and working against energy conservation. However, by applying the present invention, the conventional inconveniences can be solved, and even if defective steel pipes are manufactured, early detection and early corrective measures can be taken, and only good quality steel pipes can be processed through various refining processes. A production system that flows through the process becomes possible. The ability to establish such a line is due to the fact that, as described above, flaw detection can be performed at high temperatures by electrically rotating and scanning the probe coil instead of mechanically rotating and scanning it.

以上よシ明らかな如く本発明によれば、電気的なプロー
ブコイル回転走査によって、高温下を高速で搬送される
鋼管の管軸・圧延方向の傷および円周方向の傷を能率良
く適確に検出することができる。
As is clear from the above, according to the present invention, by electrical probe coil rotation scanning, it is possible to efficiently and accurately remove flaws in the tube axis/rolling direction and circumferential direction of steel pipes being conveyed at high speed under high temperatures. can be detected.

なお、本発明は熱間仕上げ及び工程に適用した場合に特
に有効であるが、熱間のみならず冷間においても適用で
き、また、鋼管のみならず導電材料の管、線、棒等の棒
状材、さらには型鋼、レール等の如く断面形状が円形状
を成さない導電材料の長尺条材に対しても適用可能であ
る。
The present invention is particularly effective when applied to hot finishing and processes, but it can also be applied not only to hot finishing but also to cold finishing, and can be applied not only to steel pipes but also to rod-shaped conductive materials such as pipes, wires, and rods. The present invention is also applicable to long strips of conductive material whose cross-sectional shape does not have a circular shape, such as shaped steel and rails.

また、圧延比率の高い材料にあっては、その殆んどが圧
延方向に長く伸ばされた形状の傷となるため、前述の傷
検知内容のうち圧延方向傷の検出に限って適用が可能で
あシ、また、圧延方向傷以外の傷検出に対しては従来よ
プ用いられている貫通コイル方式による渦流探傷を適用
し本発明装置との併用によシ各種の傷検出を行うように
することも可能であることは云うまでもない。
Furthermore, for materials with a high rolling ratio, most of the flaws are elongated in the rolling direction, so of the flaw detection methods described above, this can only be applied to the detection of flaws in the rolling direction. In addition, to detect flaws other than those in the rolling direction, eddy current flaw detection using a through-coil method, which is conventionally used, is applied, and when used in combination with the device of the present invention, various flaws can be detected. It goes without saying that this is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図、第2図は本
発明に係る検出端1と被探傷材を示す斜視図、第3図は
第2図の検出端1および被探傷材を円周方向に展開した
展開図、第4図は本発明に係る検出端lと多重化処理部
2,3の詳細回路図、第5図は本発明に係る複合回路と
スキャナーとの関係を示す等価回路図、第6図は本発明
の適用例を示すブロック図である。 1・・・検出端、2,3・・・多重化処理部、4・・・
時分割復調器、5・・・0系列復調器、6・・・主発振
器、7・・・駆動回路、8・・・分局回路、9・・・帯
域フィルター、10・・・信号電力増幅器、11.12
・・・移相器、13・・・周波数逓減分周器、14・・
・スキャナー駆動回路、151〜15 n 1281〜
28?L・・・位相検波器、161〜167L、291
〜297L・・・複合回路、17.18・・・スキャナ
ー、19・・・シフトレジ、l’、20.21・・・ハ
イノ々スフイルター、22.23・・・信号振幅閾値検
出回路、21.31・・・マルチプレクサ、24・・・
閾値設定器、25.33・・・リレー駆動回路、26.
34・・・リレー、27.35・・・ランプ、30・・
・アナログ混合回路、31・・・信号振幅閾値検出回路
、32・・・閾値設定器、36・・・励振器、200,
300・・・マルチプレクサ、INV・・・インノ々−
タ、OOMP・・・比較器。 代理人   鵜 沼 辰 之 (ほか2名) 第2 第3 う wA  副 )叶凶
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a perspective view showing the detection end 1 and the material to be tested according to the invention, and Fig. 3 is the detection end 1 and the material to be tested in Fig. 2. FIG. 4 shows a detailed circuit diagram of the detection end l and multiplexing processing units 2 and 3 according to the present invention, and FIG. 5 shows the relationship between the composite circuit and the scanner according to the present invention. The equivalent circuit diagram, FIG. 6, is a block diagram showing an example of application of the present invention. 1... Detection end, 2, 3... Multiplexing processing section, 4...
Time division demodulator, 5... 0 series demodulator, 6... Main oscillator, 7... Drive circuit, 8... Branch circuit, 9... Bandpass filter, 10... Signal power amplifier, 11.12
... Phase shifter, 13... Frequency reduction divider, 14...
・Scanner drive circuit, 151~15n 1281~
28? L...Phase detector, 161 to 167L, 291
~297L...Composite circuit, 17.18...Scanner, 19...Shift register, l', 20.21...High nose filter, 22.23...Signal amplitude threshold detection circuit, 21. 31...Multiplexer, 24...
Threshold value setter, 25.33...Relay drive circuit, 26.
34...Relay, 27.35...Lamp, 30...
- Analog mixing circuit, 31... Signal amplitude threshold detection circuit, 32... Threshold setter, 36... Exciter, 200,
300...Multiplexer, INV...Inno-
OOMP... comparator. Agent Tatsuyuki Unuma (and 2 others) 2nd 3rd UwA Vice) Kanae

Claims (2)

【特許請求の範囲】[Claims] (1)  圧延長尺条材を励磁して渦電流を発生させ、
該渦電流の前記条材の有する傷による変化をプローブコ
イルによって検出し探傷を行う渦流探傷方法において、
前記圧延長尺条材の通過しうる所要の直径上の全周面に
所定の間隔をもって配置された第1の複数個のプローブ
コイルの出力信号を1個おきに極性反転して取出し、隣
接する1組のプローブコイルの出力信号の差動比較によ
シ圧延方向の傷を前記圧延長尺条材の全周にわたって検
出すると共に、前記隣接する1組のコイル間隔域に近接
して設けられた第2のプローブコイルの出力信号と前記
第1のプローブコイルの極性反転信号を出力するプロー
ブコイルの出力信号との差動比較によシ圧延方向に直交
する周方向の傷を検出することを特徴とする渦流探傷方
法。
(1) Excite the rolled elongated strip to generate an eddy current,
In an eddy current flaw detection method in which flaw detection is performed by detecting changes in the eddy current due to flaws in the strip material using a probe coil,
Output signals of the first plurality of probe coils arranged at a predetermined interval on the entire circumferential surface on a required diameter through which the rolled elongated strip can pass are taken out with the polarity reversed for every other probe coil, and By differential comparison of the output signals of one set of probe coils, flaws in the rolling direction are detected over the entire circumference of the rolled elongated strip, and flaws are detected near the spacing area of the adjacent one set of coils. A flaw in the circumferential direction perpendicular to the rolling direction is detected by differential comparison between the output signal of the second probe coil and the output signal of the probe coil that outputs the polarity inversion signal of the first probe coil. Eddy current flaw detection method.
(2)圧延長尺条材を励磁して渦電流を発生させ、該渦
電流の前記条材の有する傷による変化をプローブコイル
によって検出し探傷を行う渦流探傷装置において、前記
圧延長尺条材の通過しうる所要の直径上の全周面に所定
の間隔を吃って配設される第1の複数個のプローブコイ
ルと、該プローブコイルに並行し且つ隣接コイル間に位
置するように配設される第2の複数個のプローブコイル
と、前記第1の複数個のプローブコイルの出力信号を1
個おきに反転して取出し隣接する片側のプローブコイル
との差動比較によシ圧延方向の傷信号を取出し多重化し
て出力する第1の多重化処理部と、該多重化処理部の出
力を複数の探傷信号に復調し波形整形する第1の検波部
と、該第1の検波部の複数の出力を順次電気的に走査す
る第1のスキャナーと、前記第1の検波部の複数の出力
を前記第1のスキャナーに対し所定の遅延時間をもって
順次電気的に走査する第2のスキャナーと、前記第1、
第2のスキャナー出力を設定値と比較し其の比較結果に
基づいて出力回路を制御する第1の駆動部と、前記第2
の複数個のプローブコイルの出力信号と前記反転出力信
号を出力するプローブコイルの出力信号との差動比較に
よ9周方向の傷信号を取出し多重化して出力する第2の
多重化処理部と、該第2の多重化処理部の出力を複数の
探傷信号に復調し波形整形する第2の検波部と、該第2
の検波部の複数の出力をアナログ的に混合する混合回路
と、該混合回路の出力信号と設定値との比較結果に基づ
いて出力回路を制御する第2の駆動部とを具備すること
を特徴とする渦流探傷装置。
(2) In an eddy current flaw detection device that excites a rolled elongated strip material to generate an eddy current, and detects a change in the eddy current due to a flaw in the rolled elongated material using a probe coil, flaw detection is performed on the rolled elongated strip material. a first plurality of probe coils disposed at predetermined intervals over the entire circumferential surface on a required diameter through which the probe coils can pass; and a first plurality of probe coils disposed parallel to the probe coils and positioned between adjacent coils. The output signals of the second plurality of probe coils provided and the first plurality of probe coils are
A first multiplexing processing section that takes out flaw signals in the rolling direction by inverting and taking out every other probe coil and differentially comparing them with the adjacent probe coil on one side, multiplexes and outputs the flaw signals; a first detection section that demodulates and shapes the waveforms of a plurality of flaw detection signals; a first scanner that sequentially electrically scans the plurality of outputs of the first detection section; and a plurality of outputs of the first detection section. a second scanner that sequentially electrically scans the first scanner with a predetermined delay time;
a first driving section that compares the second scanner output with a set value and controls an output circuit based on the comparison result;
a second multiplexing processing unit that extracts flaw signals in nine circumferential directions by differential comparison between the output signals of the plurality of probe coils and the output signal of the probe coil that outputs the inverted output signal, multiplexes the signals, and outputs the multiplexed signals; , a second detection unit that demodulates the output of the second multiplexing processing unit into a plurality of flaw detection signals and shapes the waveform;
A mixing circuit that mixes a plurality of outputs of the detection section in an analog manner, and a second driving section that controls the output circuit based on a comparison result between the output signal of the mixing circuit and a set value. Eddy current flaw detection equipment.
JP56133564A 1981-08-26 1981-08-26 Method and device for eddy current flaw detection Pending JPS5834357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56133564A JPS5834357A (en) 1981-08-26 1981-08-26 Method and device for eddy current flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133564A JPS5834357A (en) 1981-08-26 1981-08-26 Method and device for eddy current flaw detection

Publications (1)

Publication Number Publication Date
JPS5834357A true JPS5834357A (en) 1983-02-28

Family

ID=15107747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133564A Pending JPS5834357A (en) 1981-08-26 1981-08-26 Method and device for eddy current flaw detection

Country Status (1)

Country Link
JP (1) JPS5834357A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172259A (en) * 1986-01-24 1987-07-29 Hara Denshi Sokki Kk Eddy current flaw detector
JPS63180850A (en) * 1987-01-21 1988-07-25 Sumitomo Metal Ind Ltd Eddy current flaw detector
EP0276550A2 (en) * 1987-01-29 1988-08-03 LTV Steel Company, Inc. Electronically scanned eddy current flaw inspection
EP0315887A2 (en) * 1987-11-09 1989-05-17 Nippon Nuclear Fuel Development Co., Ltd. Eddy current flaw detecting apparatus and method
US5043663A (en) * 1989-10-19 1991-08-27 Baker Hughes Incorporated Method and apparatus for detecting angular defects in a tubular member
FR2663746A1 (en) * 1990-06-08 1991-12-27 Ca Atomic Energy Ltd FOURCAULT CURRENT PROBE FOR DETECTING DEFECTS LOCATED IN A TUBE OF FERROMAGNETIC MATERIAL.
US5119023A (en) * 1988-11-16 1992-06-02 Nnc Limited Method and apparatus for eddy curent non-destructive examination of cylindrical metallic members
JPH04230846A (en) * 1990-03-26 1992-08-19 Vallourec Method and apparatus for inspecting metal tube using eddy current
JP2008164393A (en) * 2006-12-27 2008-07-17 Yazaki Corp Device and method for determining deterioration of shielding conductor of high voltage cable
JP2016224010A (en) * 2015-06-03 2016-12-28 日立Geニュークリア・エナジー株式会社 Eddy current inspection device
EP4194846A1 (en) * 2021-12-08 2023-06-14 Eddyfi Canada Inc. Multiplexing readout circuit and method for electromagnetic inspection array probe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960784A (en) * 1972-10-12 1974-06-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960784A (en) * 1972-10-12 1974-06-12

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172259A (en) * 1986-01-24 1987-07-29 Hara Denshi Sokki Kk Eddy current flaw detector
JPS63180850A (en) * 1987-01-21 1988-07-25 Sumitomo Metal Ind Ltd Eddy current flaw detector
EP0276550A2 (en) * 1987-01-29 1988-08-03 LTV Steel Company, Inc. Electronically scanned eddy current flaw inspection
EP0315887A2 (en) * 1987-11-09 1989-05-17 Nippon Nuclear Fuel Development Co., Ltd. Eddy current flaw detecting apparatus and method
US5119023A (en) * 1988-11-16 1992-06-02 Nnc Limited Method and apparatus for eddy curent non-destructive examination of cylindrical metallic members
US5043663A (en) * 1989-10-19 1991-08-27 Baker Hughes Incorporated Method and apparatus for detecting angular defects in a tubular member
JPH04230846A (en) * 1990-03-26 1992-08-19 Vallourec Method and apparatus for inspecting metal tube using eddy current
FR2663746A1 (en) * 1990-06-08 1991-12-27 Ca Atomic Energy Ltd FOURCAULT CURRENT PROBE FOR DETECTING DEFECTS LOCATED IN A TUBE OF FERROMAGNETIC MATERIAL.
JP2008164393A (en) * 2006-12-27 2008-07-17 Yazaki Corp Device and method for determining deterioration of shielding conductor of high voltage cable
JP2016224010A (en) * 2015-06-03 2016-12-28 日立Geニュークリア・エナジー株式会社 Eddy current inspection device
EP4194846A1 (en) * 2021-12-08 2023-06-14 Eddyfi Canada Inc. Multiplexing readout circuit and method for electromagnetic inspection array probe

Similar Documents

Publication Publication Date Title
JPS5834357A (en) Method and device for eddy current flaw detection
CA1284180C (en) Electronically scanned eddy current flaw inspection
JP2009085832A (en) Eddy current inspection method of steel wire material
JP4598811B2 (en) Inspection method of steel balls
JPH06501105A (en) How to inspect heat exchanger pipes inside a heat exchanger
JPS626162A (en) Eddy current examination method
JPS626163A (en) Rotary magnetic field type eddy current examination method
JPH08201347A (en) Tube flaw detecting device
Shi et al. Eddy current and metal magnetic memory testing nondestructive evaluation for superficial defects of old cylinder barrel
JPS61126461A (en) Inspecting method of wire
EP0190200A4 (en) Eddy current flaw detector method and apparatus.
JPS62145162A (en) Split type rotary magnetic field eddy current flaw detector
Godbole A Trio of Techniques for Eddy Current Inspection of Tubes and Bars
Libby Eddy current test for tubing flaws in support regions
EP0131065A3 (en) Method and apparatus for ultrasonic testing of tubular goods
JPS5821159A (en) Eddy current flaw detecting method
RU2231782C1 (en) Eddy current flaw detector for continuous monitoring of pipes and rolled stock
JPH09263917A (en) Production of extrusion material
JPS62133350A (en) Detecting method for welding defect in welded zone of seam welded pipe
RU2159425C1 (en) Process of eddy-current testing of materials
SU862058A1 (en) Electromagnetic flaw detector
Li et al. Study on quantitative detection of lamination defect in thick-walled metallic pipe by using circumferential guided waves
JPS6130359A (en) Inspection for flaw on basic material of steel member
Taylor et al. Manufacturing Technology for Nondestructive Evaluation(NDE) System to Implement Retirement for Cause(RFC) Procedures for Gas Turbine Engine Components
JPH0815237A (en) Roll flaw detecting method