JPS5834142A - Manufacture of sintered ore - Google Patents

Manufacture of sintered ore

Info

Publication number
JPS5834142A
JPS5834142A JP13125081A JP13125081A JPS5834142A JP S5834142 A JPS5834142 A JP S5834142A JP 13125081 A JP13125081 A JP 13125081A JP 13125081 A JP13125081 A JP 13125081A JP S5834142 A JPS5834142 A JP S5834142A
Authority
JP
Japan
Prior art keywords
ore
compounding
ratio
melting
ores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13125081A
Other languages
Japanese (ja)
Other versions
JPS6221054B2 (en
Inventor
Takazo Kawaguchi
尊三 川口
Minoru Ichidate
一伊達 稔
Shun Sato
駿 佐藤
Kazumasa Kato
和正 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13125081A priority Critical patent/JPS5834142A/en
Publication of JPS5834142A publication Critical patent/JPS5834142A/en
Publication of JPS6221054B2 publication Critical patent/JPS6221054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To manufacture a sintered ore having a stable quality, and to reduce various units, by calculating a melting ratio of a compounding material from various physical property values, compounding ratios and operating conditions of various material ores, and finally deciding the compounding ratio in accordance with the calculated value. CONSTITUTION:A melting ratio of a compounding material is calculated from a high temperature grain porosity, a grain size distribution and a chemical component of various material ores, which have been measured in advance, an estimated volume compounding ratio of each ore in a compounding material obtained by compounding various material ores, and an operating condition. In this case, the melting ratio shall show a volume ratio in sintered cake of the material which has been melted in the manufacturing process of sintered ores. Subsequently, the volume compounding ratio of the material ore is finally decided so that the calculated melting ratio becomes a target melting ratio. In this way, a quality of sintered ores is stabilized by eliminating wasteful manufacture of sintered ores, and various units are reduced.

Description

【発明の詳細な説明】 本発明は、製鉄用焼結鉱の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing sintered ore for iron manufacturing.

焼結鉱は、製鉄用溶鉱炉原料として広く用いられている
。焼結鉱の品質を判断する基準としては。
Sintered ore is widely used as a raw material for blast furnaces for iron manufacturing. As a standard for judging the quality of sintered ore.

化学成分1粒度分布、冷関強直、還元粉化性等がある。Chemical components include particle size distribution, cold rigidity, reduction powdering property, etc.

これらは溶鉱炉操業にあたってきわめて重要な因子とな
るので、不断の管理が行われている。
Since these are extremely important factors in blast furnace operation, constant management is carried out.

焼結鉱は、粉鉱石を溶融させ、これを結合ボンドとして
接着結合させて製造される。したがって、この結合ボン
ドが多い(すなわち、未溶融残留物が少ない)方が、焼
結鉱の常温強度は高くなる。
Sintered ore is manufactured by melting fine ore and adhesively bonding it together as a bond. Therefore, the room temperature strength of the sintered ore increases as the number of bonding bonds increases (that is, the amount of unmelted residue decreases).

一方、還元粉化の主原因は一度溶融して凝固したヘマタ
イト(以下、2次へマタイトとい5゜)の量によって定
まり、あまり溶融させすぎると、2次へマタイト量が増
加し、1j1元粉化性t−M化させることになる。また
、多く溶融させるには、焼成時間な長くとるか、燃料消
費量を多くする必要がある。溶融量が少なければ、冷間
強度が低下する。これらの傾向を1111図に示す。実
際には、焼結鉱の品質、生産性、燃料原薬位等の各観点
から、適性な溶融率が決定される(例えば、第1図の斜
線範@l)。
On the other hand, the main cause of reduction powdering is determined by the amount of hematite (hereinafter referred to as secondary hematite) that has been melted and solidified.If it is melted too much, the amount of secondary hematite increases, and the This will lead to the conversion to t-M. Furthermore, in order to melt a large amount, it is necessary to take a long firing time or to increase fuel consumption. If the amount of melting is small, the cold strength will decrease. These trends are shown in Figure 1111. In reality, an appropriate melting rate is determined from various viewpoints such as the quality of the sintered ore, productivity, and fuel ingredient level (for example, the shaded area @l in FIG. 1).

ここで、溶融率とは、後に詳述するが、一般に焼結鉱製
造過程中で溶融した履歴をもつものの焼結ケーキ中の体
積比率と定義する。
Here, the melting rate will be described in detail later, but is generally defined as the volume ratio in the sintered cake of something that has a history of melting during the sintered ore manufacturing process.

焼結鉱の製造においては、その配合原料は極々雑多な鉱
石を配合しており、その溶融に関する性質も異なるとこ
ろから、同じ操業条件でも原料配合が変れば、異なった
溶融率を示す。
In the production of sintered ore, the raw materials are a mixture of extremely miscellaneous ores, and their melting properties vary, so even under the same operating conditions, if the raw material composition changes, the melting rate will vary.

従来における原料鉱石の配合は、これら溶融率の測定が
多大な工数な要することから、溶融率な把握せずに、t
1接製造した成品の品質献験な実施し、満足する品質な
得るまで配合変更を繰り返さ〜 なければならなかった。したがって、適正な原料配合条
件なつかむまでに多大な時間な必要とし、無駄な原料配
合および焼結鉱の製造を行わなければならなかった。
In the conventional blending of raw material ores, measuring the melting rate requires a large amount of man-hours, so it is difficult to measure the melting rate without knowing the melting rate.
We had to carry out thorough quality tests on the manufactured products and make repeated changes to the formulation until we achieved a quality that we were satisfied with. Therefore, it takes a lot of time to find the appropriate raw material blending conditions, and wasteful raw material blending and sintered ore production have to be carried out.

本発明の目的は、原料鉱石の緒物性籠から溶融率を算出
推定し、これに基づいて事前に原料鉱石の配合率を設定
し、無駄な焼結鉱の製造をなくシ。
The purpose of the present invention is to calculate and estimate the melting rate from the mixed material basket of raw material ore, set the blending ratio of raw material ore in advance based on this, and eliminate wasteful production of sintered ore.

焼結鉱の品質を安定させ、諸態単位の低減な図ることk
がる。
To stabilize the quality of sintered ore and reduce the number of various units
Garu.

本発明の方法は、予め測定しておいた各種原料鉱石の高
温粒子気孔率5粒1分布、および化学成分と、各種原料
鉱石を配合した配合原料中の各鉱石の予定体積配合率と
、操業条件とから該配合原料f)溶融率な算出し、該算
出値が目標溶融率となるよ15kc原料鉱石の体積配合
率を最終的に゛決定することを特徴としている。
The method of the present invention is based on the high-temperature particle porosity 5-grain 1 distribution of various raw material ores measured in advance, the chemical components, the planned volume blending ratio of each ore in the blended raw material containing various raw material ores, and the operational The method is characterized in that the melting rate of the blended raw material f) is calculated from the conditions, and the volume blending ratio of the 15kc raw material ore is finally determined so that the calculated value becomes the target melting rate.

焼結鉱の製造においては、極めて多種類の原料鉱石が用
いられているが、これら原料の溶融に関する性質はすべ
て異なっており、同一温度履歴でも異なった籠を示す。
In the production of sintered ore, an extremely wide variety of raw material ores are used, but the melting properties of these raw materials are all different, and even with the same temperature history they exhibit different cages.

本発明者等は、実験の結果、焼結鉱製造中の原料粒子の
溶融現象は1100℃以上になると、原料鉱石中f)F
ez03とCaOが反応な起し、カルシウム・フェライ
トな形成し、初期溶融液なつくり、こf)溶融液が随時
鉱石粒子の外周から内@に狗って侵食するように溶融な
進行させる反応であることな見い出した。したがって、
溶融率Q)−!。
As a result of experiments, the present inventors have found that f)F
ez03 and CaO react to form calcium ferrite, creating an initial melt. f) A reaction that progresses the melt so that the melt gradually erodes from the outer periphery of the ore particles to the inside. I discovered something. therefore,
Melting rate Q)-! .

この溶融反応の累積筐であり、溶融反応を維持させるσ
)k必要な温Vv保持する時間(以下、反応時間とい5
゜)t、原料粒度分布D%および溶融な進行させる溶融
線速度■によって、次の(11式および(2)式で表わ
さねる。
σ is the cumulative housing of this melting reaction and maintains the melting reaction.
) k Time to maintain the required temperature Vv (hereinafter referred to as reaction time 5
It can be expressed by the following equations (11 and (2)) using t), the particle size distribution of the raw material D%, and the linear melting velocity (2) at which melting progresses.

j―濁 ただし。j-cloudy however.

j :原料の各種鉱石銘柄を示すインデックスi :粒
1分布の粒度範囲な示すインデックスQj:鉱石銘柄j
の溶融率(気孔、空Hな除く)QT:配合原料(焼結鉱
)の溶融率(気孔、空隙を除く) t :反応時間(層内温IE1100℃以上の保持時間
) ■j:鉱石銘柄jwおける溶融線速度 Di二粒度範囲iにおける代表粒子径 wij:鉱石銘柄jの粒度範囲iKおける体積率Aj:
鉱石銘柄jの配合原料中に占る体積配合率各種鉱石の違
いにより、同一反応時間でも溶融率が異なるのは、原料
鉱石側に粒度分布が異なることと、溶融線速度が異なる
ことによるためである。この溶融線速度は基礎的な溶融
実験によって鉱石の各銘柄ごとに求めることができる。
j: Index indicating various ore brands of raw materials i: Index indicating particle size range of grain 1 distribution Qj: Ore brand j
Melting rate (excluding pores and voids) QT: Melting rate of blended raw material (sintered ore) (excluding pores and voids) t: Reaction time (time for keeping the bed temperature IE1100°C or higher) ■j: Ore brand Melting linear velocity Di at jw2 Representative particle diameter wij at particle size range i: Volume fraction Aj at particle size range iK of ore brand j:
The reason why the melting rate differs even at the same reaction time due to the difference in the volumetric content ratio of various ores in the mixed raw material of ore brand J is due to the difference in the particle size distribution on the raw material ore side and the difference in the melting linear velocity. be. This linear melting velocity can be determined for each brand of ore through basic melting experiments.

この溶融実験では、坩堝の内にカルシューム・フェライ
ト融tなつくり、測定試料を反応時間に応じて漬け、そ
の侵食長さを測定することによって#!−線速区が求め
られた。この実験結果σ)−例を第′1表に示す。
In this melting experiment, calcium ferrite was melted in a crucible, the measurement sample was immersed according to the reaction time, and the erosion length was measured. -Linear velocity area was determined. Examples of the experimental results σ) are shown in Table '1.

第1表 本発明者等は、溶融実験の結果と原料鉱石σ)物性から
、次の(3)式によって溶融線速度を推定することがで
きることな見い出した。#ll縁線速度誓言鉱石粒子中
の高温分解気化分な除く溶融反応直前の粒子気孔率(以
下、高温粒子気孔率と(・う。)や化学成分と重接な相
関関係がある。(3)式による計算溶融線速度と実測値
との間には雛2図に水量よ”5に良好な相関関係が枳る
ことを確認した。
Table 1 The present inventors have found that the melting linear velocity can be estimated by the following equation (3) from the results of melting experiments and the physical properties of the raw ore σ). #ll Edge Linear Velocity There is a close correlation with the particle porosity (hereinafter referred to as high-temperature particle porosity) and chemical components immediately before the melting reaction, excluding high-temperature decomposition and vaporization in ore particles. (3 ) It was confirmed that there was a good correlation between the linear melting velocity calculated by the formula and the measured value, as shown in Figure 2, depending on the amount of water.

Vj=ki(B)j+に2(AlzOs)j+ks(8
i0z)j+に4(Cab)j十に6(FeO)i十k
s(MgO)j十ky(N裁zo)j十kg(KzO)
j+に*(TiOz)+kxo・・・・・・・−・・・
・・・・・・・・・・・・・・・・・・・・・・(3)
ただし、 ks−kto:定数 (E)j  :鉱石銘柄jの高温粒子気孔率(AI 2
0m) j〜(TiOz) j :鉱石銘柄jKおける
各化学成分含有率 従来、高温粒子気孔率を実測するのに多大な工数4−I
It、ていたが1本発明者等は実験の結果、高温粒子気
孔率Eは常温での粒子気孔率EOと、鉱石中の高温気化
主成分である結晶水CWおよび炭酸塩MCOsの含有率
とから次の(4)式を用(・てn度よく算出することが
できることを確認し、た(第6図参照)6 (E)j=1− (1−et(cw) j−C2(Me
Os) j]x (1−(12o) jl・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・・・(4)ただし。
Vj=ki(B)j+to 2(AlzOs)j+ks(8
i0z)j+4(Cab)j106(FeO)i10k
s (MgO)
j+ *(TiOz)+kxo・・・・・・・−・
・・・・・・・・・・・・・・・・・・・・・・・・(3)
However, ks-kto: constant (E) j: high temperature particle porosity of ore brand j (AI 2
0m) j ~ (TiOz) j: Content rate of each chemical component in ore brand jK Conventionally, it took a lot of man-hours to actually measure the porosity of high-temperature particles 4-I
As a result of experiments, the present inventors found that the high-temperature particle porosity E is determined by the particle porosity EO at room temperature and the content of crystal water CW and carbonate MCOs, which are the main components of high-temperature vaporization in ore. Using the following equation (4), we confirmed that it can be calculated well (see Figure 6)6 (E)j=1- (1-et(cw) j-C2( Me
Os) j]x (1-(12o) jl...
・・・・・・・・・・・・・・・・・・・・・・・・
...(4) However.

(CW)j  :鉱石銘柄j中の結晶水含有率(McO
s)j:鉱石銘柄j中の炭酸塩含有率<BO>j  :
鉱石銘柄j中の常温粒子気孔率C1,Cz  :定数 反応時間tは1層内i!1履歴が1100℃以上な保持
する時間によって決定される。層内温度履歴は、操業諸
条件と燃料の添加量によって決定されるので、操業テス
トおよび計測によって事前に把握することがで羨る。ま
た反応時間は概ね焼成時間、点火炉エネルギ原琳位、燃
料添加率の関数として表わすことができ、その関係の一
例4f第4図に示す。
(CW)j: Crystal water content (McO
s) j: Carbonate content rate in ore brand j <BO>j:
Room-temperature particle porosity C1, Cz in ore brand j: Constant reaction time t is within one layer i! One history is determined by the time for which the temperature is maintained at 1100°C or higher. Since the temperature history in the bed is determined by operating conditions and the amount of fuel added, it is advisable to understand it in advance through operational tests and measurements. Further, the reaction time can be generally expressed as a function of firing time, ignition furnace energy level, and fuel addition rate, and an example of the relationship is shown in FIG. 4f.

以上1反応時間、a料粒度分布、および原料鉱石の諸物
性な(1)〜(4)式に代入することにより、配合原料
の溶融率な算出することができ、この算出値が適正品質
を得る目標値と合致するように原料鉱石の体積配合率な
最終的に決定することができる。
By substituting the reaction time, a material particle size distribution, and various physical properties of the raw ore into equations (1) to (4) above, it is possible to calculate the melting rate of the blended raw material, and this calculated value indicates the appropriate quality. The volume mixing ratio of the raw material ore can be finally determined to match the target value to be obtained.

〈実−例〉 第2表に示す条件で実施じた。<Actual example> The test was carried out under the conditions shown in Table 2.

!2表 反応時間tは、焼成時間1点火炉エネルギー原琳位、お
よび燃料添加率の関数で与えられ1本実施例では第4図
の各々の標準曲線から第2表f)データに相当する反応
時間の平均I[すもって6.4分と決定した。適正な溶
融率は第1図から80%に設定した。各種原料鉱石f)
銘柄の諸物性−から畢味鉱石焼成時の溶融率を算出した
結果を第6表に示す。この結果にもとづいて、配合原料
焼成時σ)溶融率が80鴫になる組合せ例な第4表に示
す・第4表に示す配合原料によって1箇月間実際に操業
した結果を、従来法と比較して第5表に示す。
! Table 2 Reaction time t is given as a function of firing time, ignition furnace energy level, and fuel addition rate. The average time I was determined to be 6.4 minutes in total. The appropriate melting rate was set at 80% from FIG. Various raw material ores f)
Table 6 shows the results of calculating the melting rate of Humi ore during firing based on the physical properties of the brands. Based on this result, the results of actual operation for one month using the blended raw materials shown in Table 4 are shown in Table 4, and the results are compared with the conventional method. and shown in Table 5.

第5表から本発明法による成品1ま品質グ)ノくラツキ
が少なく、無駄な焼結鉱製iカーなくなり、コークス#
琳位が低減していることがわカ・る。
Table 5 shows that the product produced by the method of the present invention has less roughness, no wasteful sintered ore i-ker, and coke #1.
I can see that the Rin position is decreasing.

第6表 囁 第4表 第5表Table 6 whisper Table 4 Table 5

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融率と焼結鉱品質との関係な示すグラフ。第
2図は溶融線速度の実測値と計算値とσ°)相関関係を
示すグラフ。第3図は高温粒子気孔率の実測値と計算筒
との相関関係な示すグラフ。第4図は反応時間と各種条
件との関係な示すグラフ。 特許出願人  住友金属工業株式会社
Figure 1 is a graph showing the relationship between melting rate and sintered ore quality. Figure 2 is a graph showing the correlation between actually measured values, calculated values, and σ° of linear melting velocity. Figure 3 is a graph showing the correlation between the measured value of high-temperature particle porosity and the calculation cylinder. Figure 4 is a graph showing the relationship between reaction time and various conditions. Patent applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】 予め測定しておいた各種原料鉱石の高温気孔率。 粒度分布、および化学成分と、各穫原料鉱石を配合した
配合原料中の各鉱石の予定体積配合率と、操業条件とか
ら該配合原料の溶融率を算出し、該算出値が目標溶融率
となるよ’Sk原料鉱石の体積配合率を最終的に決定す
ることな特徴とした焼結鉱の製造方法。
[Claims] High-temperature porosity of various raw material ores measured in advance. The melting rate of the blended raw material is calculated from the particle size distribution, chemical components, the planned volume ratio of each ore in the blended raw material containing each harvested raw ore, and the operating conditions, and the calculated value is the target melting rate. Naruyo'Sk A method for producing sintered ore characterized by the fact that it ultimately determines the volumetric ratio of the raw material ore.
JP13125081A 1981-08-21 1981-08-21 Manufacture of sintered ore Granted JPS5834142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13125081A JPS5834142A (en) 1981-08-21 1981-08-21 Manufacture of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13125081A JPS5834142A (en) 1981-08-21 1981-08-21 Manufacture of sintered ore

Publications (2)

Publication Number Publication Date
JPS5834142A true JPS5834142A (en) 1983-02-28
JPS6221054B2 JPS6221054B2 (en) 1987-05-11

Family

ID=15053509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13125081A Granted JPS5834142A (en) 1981-08-21 1981-08-21 Manufacture of sintered ore

Country Status (1)

Country Link
JP (1) JPS5834142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153845A (en) * 1983-02-21 1984-09-01 Nippon Kokan Kk <Nkk> Method for controlling blending of ore as starting material for sintering
JPS63260956A (en) * 1987-04-20 1988-10-27 Lion Corp Gel-like base for aromatic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153845A (en) * 1983-02-21 1984-09-01 Nippon Kokan Kk <Nkk> Method for controlling blending of ore as starting material for sintering
JPS6318651B2 (en) * 1983-02-21 1988-04-19 Nippon Kokan Kk
JPS63260956A (en) * 1987-04-20 1988-10-27 Lion Corp Gel-like base for aromatic

Also Published As

Publication number Publication date
JPS6221054B2 (en) 1987-05-11

Similar Documents

Publication Publication Date Title
CN103068749B (en) Chromium oxide fireproof material
US3991148A (en) Method of forming ceramic products
US6511523B2 (en) Platinum material reinforced by oxide-dispersion and process for producing the same
Ohta et al. Effects of dissolved oxygen and size distribution on particle coarsening of deoxidation product
KR20000077339A (en) Process for producing sintered ore and the sintered ore
JP2001510435A (en) Carbonitride powder, its production and use
JPS5834142A (en) Manufacture of sintered ore
Madivate et al. Thermochemistry of the glass melting process energy requirement in melting soda-lime-silica glasses from cullet-containing batches
CN103459054A (en) Method for manufacturing refractory grains containing chromium(III) oxide
JP7052664B2 (en) Castable refractory
JP5190729B2 (en) Method for producing high purity aluminum metaphosphate
KR0173842B1 (en) Sintered ore manufacturing method using high crystal water iron ore as raw materials
CN106591687B (en) Utilize the method for vanadium nitride powder production ferrovanadium nitride
CN106278308A (en) A kind of add the method that zirconium oxide metering nozzle prepared by magnesium-rich spinel micropowder
CN104105677A (en) Mix for producing a fire-resistant material, a fire-resistant material, a method for producing a fire-resistant material and use of a material as a sintering aid
Cengizler et al. Silicon and manganese partition between slag and metal phases and their activities pertinent to ferromanganese and silicomanganese production
US3518100A (en) Stabilized zirconia shapes
JPS5837132A (en) Sintering operating method
JPH0130766B2 (en)
US2196075A (en) Refractory and method of making it
JPS62191423A (en) Production of easily sintering lead-containing oxide powder
WO2022071369A1 (en) Method for manufacturing sintered ore, and sintered ore
Wang et al. Effect of silica on crystallization process of calcium ferrite: thermodynamic and kinetic analysis
KR100510346B1 (en) Method for Evaluating Sintering Characteristic of Raw Materials to Be Sintered and Blending the Raw Materials Using Evaluation Results
Nayak et al. Insights into Non-free Opening of Ladles: Filler Sand Chemistry Modifications for High Mn Steel Billet Casting