JPS6221054B2 - - Google Patents

Info

Publication number
JPS6221054B2
JPS6221054B2 JP13125081A JP13125081A JPS6221054B2 JP S6221054 B2 JPS6221054 B2 JP S6221054B2 JP 13125081 A JP13125081 A JP 13125081A JP 13125081 A JP13125081 A JP 13125081A JP S6221054 B2 JPS6221054 B2 JP S6221054B2
Authority
JP
Japan
Prior art keywords
raw material
ore
melting
rate
melting rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13125081A
Other languages
Japanese (ja)
Other versions
JPS5834142A (en
Inventor
Takazo Kawaguchi
Minoru Ichidate
Shun Sato
Kazumasa Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13125081A priority Critical patent/JPS5834142A/en
Publication of JPS5834142A publication Critical patent/JPS5834142A/en
Publication of JPS6221054B2 publication Critical patent/JPS6221054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、製鉄用焼結鉱の製造方法に関するも
のである。 焼結鉱は、製鉄用溶鉱炉原料として広く用いら
れている。焼結鉱の品質を判断する基準として
は、化学成分、粒度分布、冷間強度、還元粉化性
等がある。これらは溶鉱炉操業にあたつてきわめ
て重要な因子となるので、不断の管理が行われて
いる。 焼結鉱は、粉鉱石を溶融させ、これを結合ボン
ドとして接着結合させて製造される。したがつ
て、この結合ボンドが多い(すなわち、未溶融残
留物が少ない)方が、焼結鉱の常温強度は高くな
る。 一方、還元粉化の主原因は一度溶融して凝固し
たヘマタイト(以下、2次ヘマタイトという。)
の量によつて定まり、あまり溶融させすぎると、
2次ヘマタイト量が増加し、還元粉化性を悪化さ
せることになる。また、多く溶融させるには、焼
成時間を長くとるか、燃料消費量を多くする必要
がある。溶融量が少なければ、冷間強度が低下す
る。これらの傾向を第1図に示す。実際には、焼
結鉱の品質、生産性、燃料原単位等の各観点か
ら、適性な溶融率が決定される(例えば、第1図
の斜線範囲)。 ここで、溶融率とは、後に詳述するが、一般に
焼結鉱製造過程中で溶融した履歴をもつものの焼
結ケーキ中の体積比率と定義する。 焼結鉱の製造においては、その配合原料は種々
雑多な鉱石を配合しており、その溶融に関する性
質も異なるところから、同じ操業条件でも原料配
合が変れば、異なつた溶融率を示す。 従来における原料鉱石の配合は、これら溶融率
の測定が多大な工数を要することから、溶融率を
把握せずに、直接製造した成品の品質試験を実施
し、満足する品質を得るまで配合変更を繰り返さ
なければならなかつた。したがつて、適正な原料
配合条件をつかむまでに多大な時間を必要とし、
無駄な原料配合および焼結鉱の製造を行わなけれ
ばならなかつた。 本発明の目的は、原料鉱石の諸物性値から溶融
率を算出推定し、これに基づいて事前に原料鉱石
の配合率を設定し、無駄な焼結鉱の製造をなく
し、焼結鉱の品質を安定させ、諸原単位の低減を
図ることにある。 本発明の方法は、予め測定しておいた各種原料
鉱石の高温粒子気孔率、粒度分布、および化学成
分と、各種原料鉱石を配合した配合原料中の各鉱
石の予定体積配合率と、焼成時間と、点火炉エネ
ルギ原単位と、燃料添加率とから該配合原料の溶
融率を算出し、該算出値が目標溶融率となるよう
に原料鉱石の体積配合率を最終的に決定すること
を特徴としている。 焼結鉱の製造においては、極めて多種類の原料
鉱石が用いられているが、これら原料の溶融に関
する性質はすべて異なつており、同一温度履歴で
も異なつた値を示す。 本発明者等は、実験の結果、焼結鉱製造中の原
料粒子の溶融現象は1100℃以上になると、原料鉱
石中のFe2O3とCaOが反応を起し、カルシウム・
フエライトを形成し、初期溶融液をつくり、この
溶融液が随時鉱石粒子の外周から内側に向つて侵
食するように溶融を進行させる反応であることを
見い出した。したがつて、溶融率Qは、この溶融
反応の累積値であり、溶融反応を維持させるのに
必要な温度を保持する時間(以下、反応時間とい
う。)t、原料粒径D、および溶融を進行させる
溶融線速度Vによつて、次の(1)式および(2)式で表
わされる。 ただし、 j :原料の各種鉱石銘柄を示すインデツクス i :粒度分布の粒度範囲を示すインデツクス Qj:鉱石銘柄jの溶融率(気孔、空隙を除く) QT:配合原料(焼結鉱)の溶融率(気孔、空隙
を除く) t :反応時間(層内温度1100℃以上の保持時
間) Vj:鉱石銘柄jにおける溶融線速度 Di:粒度範囲iにおける代表粒子径 Wij:鉱石銘柄jの粒度範囲iにおける体積率 Aj:鉱石銘柄jの配合原料中に占る体積配合率 各種鉱石の違いにより、同一反応時間でも溶融
率が異なるのは、原料鉱石別に粒度分布が異なる
ことと、溶融線速度が異なることによるためであ
る。この溶融線速度は基礎的な溶融実験によつて
鉱石の各銘柄ごとに求めることができる。この溶
融実験では、坩堝の内にカルシユーム・フエライ
ト融液をつくり、測定試料を反応時間に応じて漬
け、その侵食長さを測定することによつて溶融線
速度が求められた。この実験結果の一例を第1表
に示す。
The present invention relates to a method for producing sintered ore for iron manufacturing. Sintered ore is widely used as a raw material for blast furnaces for iron manufacturing. Criteria for determining the quality of sintered ore include chemical composition, particle size distribution, cold strength, reduction pulverizability, etc. These are extremely important factors when operating a blast furnace, so they are constantly managed. Sintered ore is manufactured by melting fine ore and adhesively bonding it together as a bond. Therefore, the room temperature strength of the sintered ore increases as the number of bond bonds increases (that is, the amount of unmelted residue decreases). On the other hand, the main cause of reduction powdering is hematite that has been once melted and solidified (hereinafter referred to as secondary hematite).
It is determined by the amount of
The amount of secondary hematite increases, which worsens reduction powdering properties. Furthermore, in order to melt a large amount, it is necessary to take a longer firing time or to increase fuel consumption. If the amount of melting is small, the cold strength will decrease. These trends are shown in Figure 1. In reality, an appropriate melting rate is determined from various viewpoints such as quality of sintered ore, productivity, fuel consumption rate, etc. (for example, the shaded range in FIG. 1). Here, the melting rate will be described in detail later, but is generally defined as the volume ratio in the sintered cake of something that has a history of melting during the sintered ore manufacturing process. In the production of sintered ore, the raw materials used include a variety of miscellaneous ores, and their melting properties vary, so even under the same operating conditions, if the raw material composition changes, the melting rate will vary. In the conventional blending of raw material ores, measuring the melting rate requires a large amount of man-hours, so quality tests are conducted on directly manufactured products without knowing the melting rate, and the blending is changed until a satisfactory quality is obtained. I had to repeat it. Therefore, it takes a lot of time to find the appropriate raw material blending conditions.
This resulted in unnecessary mixing of raw materials and production of sintered ore. The purpose of the present invention is to calculate and estimate the melting rate from various physical property values of the raw ore, set the blending ratio of the raw ore in advance based on this, eliminate wasteful production of sintered ore, and improve the quality of the sintered ore. The aim is to stabilize the energy consumption and reduce various basic units. The method of the present invention is based on the high-temperature particle porosity, particle size distribution, and chemical composition of various raw material ores that have been measured in advance, the planned volume ratio of each ore in the mixed raw material containing various raw material ores, and the firing time. The melting rate of the blended raw material is calculated from the ignition furnace energy consumption unit and the fuel addition rate, and the volume blending rate of the raw material ore is finally determined so that the calculated value becomes the target melting rate. It is said that In the production of sintered ore, a wide variety of raw material ores are used, but the melting properties of these raw materials are all different and exhibit different values even under the same temperature history. As a result of experiments, the present inventors have found that during the production of sintered ore, the melting phenomenon of raw material particles occurs when the temperature exceeds 1100°C, Fe 2 O 3 and CaO in the raw material ore react, and calcium and
It was discovered that this is a reaction in which ferrite is formed, an initial melt is created, and the melt progresses so that the melt erodes from the outer periphery of the ore particles inward. Therefore, the melting rate Q is the cumulative value of this melting reaction, and is determined by the time t for maintaining the temperature necessary to maintain the melting reaction (hereinafter referred to as reaction time), the raw material particle size D, and the melting rate. It is expressed by the following equations (1) and (2) depending on the linear melting velocity V. where, j: Index indicating various ore brands of raw materials i: Index indicating particle size range of particle size distribution Qj: Melting rate of ore brand j (excluding pores and voids) QT: Melting rate of blended raw material (sintered ore) ( (excluding pores and voids) t: Reaction time (time for keeping the temperature in the bed above 1100°C) Vj: Linear melting velocity in ore brand j Di: Representative particle diameter in particle size range i Wij: Volume in particle size range i of ore brand j Rate Aj: Volumetric ratio of ore brand j in the blended raw materials The reason why the melting rate varies even with the same reaction time due to differences in various ores is that the particle size distribution differs depending on the raw material ore, and the linear melting speed differs. It's for a reason. This linear melting velocity can be determined for each brand of ore through basic melting experiments. In this melting experiment, a calcium ferrite melt was created in a crucible, a measurement sample was immersed in it according to the reaction time, and the melting linear velocity was determined by measuring the erosion length. An example of the experimental results is shown in Table 1.

【表】 本発明者等は、溶融実験の結果と原料鉱石の物
性から、次の(3)式によつて溶融線速度を推定する
ことができることを見い出した。溶融線速度は、
鉱石粒子中の高温分解気化分を除く溶融反応直前
の粒子気孔率(以下、高温粒子気孔率という。)
や化学成分と密接な相関関係がある。(3)式による
計算溶融線速度と実測値との間には第2図に示す
ように良好な相関関係があることを確認した。 Vj=ki(E)j+k2(Al2O3)j+k3(SiO2)j+k4(CaO)j+k5(FeO)j +k6(MgO)j+k7(Na2O)j+k8(K2O)j+k9(TiO2)+k10 ……(3) ただし、 k1〜k10:定数 (E)j:鉱石銘柄jの高温粒子気孔率 (Al2O3)j〜(TiO2)j:鉱石銘柄jにおける
各化学成分含有率 従来、高温粒子気孔率を実測するのに多大な工
数を要していたが、本発明者等は実験の結果、高
温粒子気孔率Eは常温での粒子気孔率Eoと、鉱
石中の高温気化主成分である結晶水CWおよび炭
酸塩MCO3の含有率とから次の(4)式を用いて精度
よく算出することができることを確認した(第3
図参照)。 (E)j=1−{1−C1(CW)j−C2(MCO3
j} ×{1−(Eo)j} ……(4) ただし、 (CW)j:鉱石銘柄j中の結晶水含有率 (MCO3)j:鉱石銘柄j中の炭酸塩含有率 (Eo)j:鉱石銘柄j中の常温粒子気孔率 C1、C2:定数 反応時間tは、層内温度履歴が1100℃以上を保
持する時間によつて決定される。層内温度履歴
は、操業諸条件と燃料の添加量によつて決定され
るので、操業テストおよび計測によつて事前に把
握することができる。また反応時間は概ね焼成時
間、点火炉エネルギ原単位、燃料添加率の関数と
して表わすことができ、その関係の一例を第4図
に示す。 以上、反応時間、原料粒度分布、および原料鉱
石の諸物性を(1)〜(4)式に代入することにより、配
合原料の溶融率を算出することができ、この算出
値が適正品質を得る目標値と合致するように原料
鉱石の体積配合率を最終的に決定することができ
る。 実施例 第2表に示す条件で実施した。
[Table] The present inventors have found that the melting linear velocity can be estimated by the following equation (3) from the results of melting experiments and the physical properties of the raw ore. Melting linear velocity is
Particle porosity immediately before melting reaction excluding high-temperature decomposition vaporized content in ore particles (hereinafter referred to as high-temperature particle porosity)
There is a close correlation with the chemical composition. It was confirmed that there was a good correlation between the melting line velocity calculated by equation (3) and the measured value, as shown in Figure 2. Vj = ki (E) j + k 2 (Al 2 O 3 ) j + k 3 (SiO 2 ) j + k 4 (CaO) j + k 5 (FeO) j + k 6 (MgO) j + k 7 (Na 2 O) j + k 8 (K 2 O) j + k 9 (TiO 2 ) + k 10 ... (3) where, k 1 ~ k 10 : constant (E) j: high temperature particle porosity of ore brand j (Al 2 O 3 ) j ~ (TiO 2 ) j: ore Concentration of each chemical component in brand j Conventionally, it took a lot of man-hours to actually measure the high-temperature particle porosity, but as a result of experiments, the present inventors found that the high-temperature particle porosity E is the particle porosity at room temperature. It was confirmed that Eo can be accurately calculated using the following equation (4) from the content of crystal water CW and carbonate MCO 3 , which are the main components of high-temperature vaporization in the ore (Section 3).
(see figure). (E) j=1-{1-C 1 (CW) j-C 2 (MCO 3 )
j} × { 1 − (Eo) j: room temperature particle porosity in ore brand j C 1 , C 2 : constant The reaction time t is determined by the time during which the temperature history in the layer is maintained at 1100° C. or higher. The temperature history in the bed is determined by the operating conditions and the amount of fuel added, so it can be known in advance through operational tests and measurements. Further, the reaction time can be generally expressed as a function of firing time, ignition furnace energy consumption rate, and fuel addition rate, and an example of the relationship is shown in FIG. 4. As described above, by substituting the reaction time, raw material particle size distribution, and various physical properties of the raw material ore into equations (1) to (4), the melting rate of the blended raw materials can be calculated, and this calculated value provides the appropriate quality. The volume ratio of the raw material ore can be finally determined so as to match the target value. Examples Examples were carried out under the conditions shown in Table 2.

【表】 反応時間tは、焼成時間、点火炉エネルギー原
単位、および燃料添加率の関数で与えられ、本実
施例では第4図の各々の標準曲線から第2表のデ
ータに相当する反応時間の平均値をもつて6.4分
と決定した。適正な溶融率は第1図から80%に設
定した。各種原料鉱石の銘柄の諸物性値から単味
鉱石焼成時の溶融率を算出した結果を第3表に示
す。この結果にもとづいて、配合原料焼成時の溶
融率が80%になる組合せ例を第4表に示す。第4
表に示す配合原料によつて1箇月間実際に操業し
た結果を、従来法と比較して第5表に示す。第5
表から本発明法による成品は品質のバラツキが少
なく、無駄な焼結鉱製造がなくなり、コークス原
単位が低減していることがわかる。
[Table] The reaction time t is given as a function of firing time, ignition furnace energy consumption rate, and fuel addition rate, and in this example, the reaction time corresponding to the data in Table 2 is calculated from each standard curve in FIG. The average time was determined to be 6.4 minutes. The appropriate melting rate was set at 80% from Figure 1. Table 3 shows the results of calculating the melting rate during firing of simple ore from the physical property values of various raw material ore brands. Based on this result, Table 4 shows examples of combinations that result in a melting rate of 80% during firing of the mixed raw materials. Fourth
Table 5 shows the results of actual operation for one month using the raw materials shown in the table, in comparison with the conventional method. Fifth
From the table, it can be seen that the products produced by the method of the present invention have less variation in quality, eliminate wasteful production of sintered ore, and reduce coke consumption.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶融率と焼結鉱品質との関係を示すグ
ラフ。第2図は溶融線速度の実測値と計算値との
相関関係を示すグラフ。第3図は高温粒子気孔率
の実測値と計算値との相関関係を示すグラフ。第
4図は反応時間と各種条件との関係を示すグラ
フ。
Figure 1 is a graph showing the relationship between melting rate and sintered ore quality. FIG. 2 is a graph showing the correlation between actually measured values and calculated values of linear melting velocity. FIG. 3 is a graph showing the correlation between measured values and calculated values of high-temperature particle porosity. FIG. 4 is a graph showing the relationship between reaction time and various conditions.

Claims (1)

【特許請求の範囲】[Claims] 1 予め測定しておいた各種原料鉱石の高温粒子
気孔率、粒度分布、および化学成分と、各種原料
鉱石を配合した原料中の各鉱石の予定体積配合率
と、焼成時間と、点火炉エネルギ原単位と、燃料
添加率とから該配合原料の溶融率を算出し、該算
出値が目標溶融率となるように原料鉱石の体積配
合率を最終的に決定することを特徴とした焼結鉱
の製造方法。
1 The high-temperature particle porosity, particle size distribution, and chemical composition of various raw material ores measured in advance, the planned volume ratio of each ore in the raw material blended with various raw material ores, firing time, and ignition furnace energy source. The melting rate of the mixed raw material is calculated from the unit and the fuel addition rate, and the volume blending rate of the raw material ore is finally determined so that the calculated value becomes the target melting rate. Production method.
JP13125081A 1981-08-21 1981-08-21 Manufacture of sintered ore Granted JPS5834142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13125081A JPS5834142A (en) 1981-08-21 1981-08-21 Manufacture of sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13125081A JPS5834142A (en) 1981-08-21 1981-08-21 Manufacture of sintered ore

Publications (2)

Publication Number Publication Date
JPS5834142A JPS5834142A (en) 1983-02-28
JPS6221054B2 true JPS6221054B2 (en) 1987-05-11

Family

ID=15053509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13125081A Granted JPS5834142A (en) 1981-08-21 1981-08-21 Manufacture of sintered ore

Country Status (1)

Country Link
JP (1) JPS5834142A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153845A (en) * 1983-02-21 1984-09-01 Nippon Kokan Kk <Nkk> Method for controlling blending of ore as starting material for sintering
JP2532090B2 (en) * 1987-04-20 1996-09-11 ライオン株式会社 Gel base for fragrance

Also Published As

Publication number Publication date
JPS5834142A (en) 1983-02-28

Similar Documents

Publication Publication Date Title
Muan et al. Phase Equilibrium Studies in the System Iron Oxide‐A12O3 in Air and at 1 Atm. O2 Pressure
Saito et al. Viscosity of blast furnace type slags
Lee et al. Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO
Neudorf et al. Thermodynamic properties of Na2O-SiO2-CaO melts at 1000 to 1100° C
Shi et al. Effect of TiO 2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels
Tathavadkar et al. The soda-ash roasting of chromite minerals: Kinetics considerations
Hu et al. A model for estimating the viscosity of blast furnace slags with optical basicity
Reis et al. Structural features and properties of lead–iron–phosphate nuclear wasteforms
Nakamoto et al. Surface tension evaluation of molten silicates containing surface-active components (B2O3, CaF2 or Na2O)
JPS6221054B2 (en)
Zhang et al. Effect of B2O3 content on viscosity and structure of SiO2− MgO− FeO-based slag
Madivate et al. Thermochemistry of the glass melting process energy requirement in melting soda-lime-silica glasses from cullet-containing batches
Williamson The kinetics of crystal growth in an aluminosilicate glass containing small amounts of transition-metal ions
Kor Equilibria between liquid Mn-Si alloys and MnO-SiO 2-CaO-MgO slags
Richardson Slags and refining processes. The constitution and thermodynamics of liquid slags
KR0173842B1 (en) Sintered ore manufacturing method using high crystal water iron ore as raw materials
JPH08141713A (en) Molding powder for continuous casting of steel
Cengizler et al. Silicon and manganese partition between slag and metal phases and their activities pertinent to ferromanganese and silicomanganese production
Wetherill et al. The Rate of Reduction of Iron Ores with Carbon Monoxide Effect of Particle Size, Gas Velocity, and Gas Composition
US3982924A (en) Process for producing carbide addition agents
JPS6124456B2 (en)
US2196075A (en) Refractory and method of making it
Levchenko et al. Thermophysical Properties of CaO–SiO2–Al2O3–MgO–TiO2–FeOx–V2O3 Slag with CaO/SiO2= 1.13 with Different TiO2 and V2O3 Additions
Kronz Self-mixing melt compositions in fayalitic slags–a key in understanding early metal production
Mackenzie A Mössbauer study of the high-temperature reactions of iron oxides with calcium silicates