JPS5833841A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5833841A
JPS5833841A JP56131490A JP13149081A JPS5833841A JP S5833841 A JPS5833841 A JP S5833841A JP 56131490 A JP56131490 A JP 56131490A JP 13149081 A JP13149081 A JP 13149081A JP S5833841 A JPS5833841 A JP S5833841A
Authority
JP
Japan
Prior art keywords
film
gas
reaction
resin
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56131490A
Other languages
Japanese (ja)
Inventor
Masakatsu Ishida
石田 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP56131490A priority Critical patent/JPS5833841A/en
Publication of JPS5833841A publication Critical patent/JPS5833841A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition

Abstract

PURPOSE:To simply and clearly form an oxidized aluminum film by forming the film by a chemical vapor growth using organic aluminum compound and oxidative gas. CONSTITUTION:A semiconductor substrate 1 is set on a susceptor 9 in a reaction container 8. Reaction gas and carrier gas are supplied through a conduit 10 while heating the interior of the container 8 to the prescribed reaction temperature, and waste gas is exhausted from a conduit 11. The reaction gas to be used includes organic aluminum compound to become an aluminum supply source and oxidative gas such as oxygen or the like, and the carrier gas includes nitrogen or argon gas. An Al2O3 film can be readily formed at a low temperature in the desired thickness merely by controlling by this reaction device the reaction conditions such as reaction gas flow rate and the like.

Description

【発明の詳細な説明】 本発−は、ポリイミド系樹脂膜を絶縁膜として用いる半
導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device using a polyimide resin film as an insulating film.

例えば特公@48−2956号明細書に示されたボリイ
2ドイツインドロ中ナシリンジオン合成樹脂(以下、P
IQ樹脂と称する)は、溶液状態で半導体基板上に塗布
後に硬化されるものであるから、表面の平坦性の嵐い絶
縁属を形成するのに有利である。しかも、このPIQ樹
脂樹脂筒パッケージのモールド樹脂等から放射されるα
!llを遁断する作用を有し【おり、半導体素子の耐α
−強度、例えはMOa型メ4 s)の電荷保持機能を向
上させるのく有効なパッジベージlン効果を示す。
For example, Boli 2 Deutsche Indolo Nasirindione synthetic resin (hereinafter referred to as P
Since IQ resin (referred to as IQ resin) is applied in a solution state onto a semiconductor substrate and then cured, it is advantageous for forming an insulating material with a smooth surface. Moreover, the α emitted from the mold resin of this PIQ resin cylinder package, etc.
! It has the effect of breaking down the α resistance of semiconductor devices.
- It exhibits an effective padding effect in improving the strength, e.g., the charge retention function of MOa type metals.

このPIQ樹脂腰はパッジページ璽ン膜又は多層起重の
層間絶縁膜として用いられるが、下地の8i0オ膜等と
の接着性を良くする目的でAIキレートを下地表面に回
転金布し九後ilc酸素雰囲気中でベータを行なうこと
により薄い(100λ程度)Ad、0.膜を形成し、こ
のAItOa膜上にPIQ樹脂樹脂筒すことがある。し
かしながらこのようなデバイスでは、Aj、O1膜を形
成するのにスピンナー塗布及びベークが必要であって工
程が煩雑となり、また工程中に異物等が付着し鳥いこと
が判明しtつしかも、接着強度にもなお改醤の余地があ
ることも確認された。
This PIQ resin material is used as a padding film or an interlayer insulating film in a multi-layered structure, but after applying AI chelate to the surface of the base, rotary metal coating is applied to improve adhesion to the underlying 8i0 film, etc. By conducting beta in an ILC oxygen atmosphere, thin (about 100λ) Ad, 0. A film may be formed and a PIQ resin resin tube may be applied on the AItOa film. However, in such a device, spinner coating and baking are required to form the Aj and O1 films, making the process complicated, and it has been found that foreign matter adheres during the process, causing problems. It was also confirmed that there is still room for improvement in strength.

従って、本発明の目的は、ポリイミド系sagの接着性
を向上させると共に、その接着性に寄与する酸化アル1
=ウム膜が簡便でかつ清浄に形成されたデバイスを提供
することKある。
Therefore, the object of the present invention is to improve the adhesiveness of polyimide SAG and to improve the adhesiveness of polyimide SAG, and to improve the adhesiveness of polyimide SAG, and to
It is an object of the present invention to provide a device in which an aluminum film is simply and cleanly formed.

この目的を達成するために、本発明和よれば、下地との
間に介在せしめられた酸化アルi=ウム膜が有機アルに
クム化合物による4m成長技技術OVD)で形成される
ように構成している。
In order to achieve this object, according to the present invention, the aluminum oxide film interposed between the substrate and the substrate is formed by a 4m growth technique (OVD) using a cum compound on organic aluminum. ing.

以下、本発明の実施例を図面について詳細に述べる。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

11E11!IQは、例えばMO8111半導体デバイ
スにおける配線部分を示すものである。所定の半導体素
子を設けたシリコン基1[10表面KStO1膜2が熱
酸化技術で形成され、この8i0.膜2上には各素子間
を電気的KW!続するためのアルj=りム配線3が所定
パターンに形成されている。そして、この配線3から8
IO1膜2Kかけて全面にAJ、0゜膜4が約10OA
の厚壜に形成されており、パッジベージ璽ン属又は層間
絶縁膜としてその上に塗布形成されえPIQ樹脂膜Sの
接着強度を高めている。ここで注目すべぎことは、An
、0.膜が後述するOVD技術により形成されているこ
とである。第21!PlIは多層配線の例を示し、1層
目のアルミx−りム配*3上の一部が露出するようにグ
ツズ!析出処11alCよるOVDでリンシリケートガ
ラス属(又は窒化シリコン膜)6が被着され、この層が
形成され、更にこの配線7から層間絶縁膜6KかけてP
IQ樹脂j[5との間には0VDKよるA40a膜4が
介在せしめられている。
11E11! IQ indicates a wiring portion in the MO8111 semiconductor device, for example. A silicon base 1 [10 surface KStO1 film 2 provided with a predetermined semiconductor element is formed by thermal oxidation technology, and this 8i0. On the film 2, an electrical KW! is applied between each element. Alj=limb wiring 3 for connection is formed in a predetermined pattern. And this wiring 3 to 8
AJ on the entire surface by applying IO1 film 2K, 0° film 4 is about 10OA
The PIQ resin film S is formed on a thick bottle and can be coated thereon as a padding material or an interlayer insulating film to increase the adhesive strength of the PIQ resin film S. What is important to note here is that An
,0. The film is formed by the OVD technique described later. 21st! PlI shows an example of multi-layer wiring, and the first layer of aluminum x-rim wiring*3 is partially exposed so that it is removed! A phosphorus silicate glass (or silicon nitride film) 6 is deposited by OVD using a deposition process 11alC, and this layer is formed.
An A40a film 4 made of 0VDK is interposed between the IQ resin j[5.

上記のAjmOm lI4は、既述したAjキレートの
塗布及びベークという工程とは根本的に異なって、第3
図に示す如き反応装置を用いてOVD技術で形成される
。即ち、反応容器8内ではす竜ブタ9上に半導体基板l
がセットされ、反応容器8内を所定の反応温度まで加熱
しながら導管1oを通して反応ガス、キャリアガスを供
給し、廃ガスは導管11から排出する。使用する反応ガ
スとしては、アルミニウム供給源となる有機アルミニウ
ム化合物←例えば、トリインブチルアルミニウム。
The above-mentioned AjmOm lI4 is fundamentally different from the process of applying and baking the Aj chelate described above.
It is formed by OVD technology using a reactor as shown in the figure. That is, the semiconductor substrate 1 is placed on the turret 9 in the reaction vessel 8.
is set, the reaction gas and carrier gas are supplied through the conduit 1o while heating the inside of the reaction vessel 8 to a predetermined reaction temperature, and the waste gas is discharged from the conduit 11. The reaction gas used is an organoaluminum compound that serves as an aluminum supply source, such as triimbutylaluminum.

トリメチルアル1ニウム)、及び酸素等の酸化性ガスを
夫々用込、また窒素又はアルゴンをキャリアガスとして
用いる。この反応装置によって、反応ガス流量等の反応
条件をコントロールするのみで、低温下で容易kAlt
os属4が所望の厚みに形成される。
Oxidizing gases such as trimethylaluminum) and oxygen are used, respectively, and nitrogen or argon is used as a carrier gas. With this reactor, kAl can be easily produced at low temperatures by simply controlling the reaction conditions such as the reaction gas flow rate.
OS 4 is formed to a desired thickness.

このようなデバイスによれば、Aj會Om膜4が1工程
で容易に形成されるから、工程が非常に簡単となる。し
かも、反応容器内での反応によるために、クリーンな状
態でAjmOmが成長せしめられており、異物の付着量
を減少させることができる。また、PIQ樹脂樹脂一般
にムl ”?AjwOs膜に対し高−接着性を有してい
るが、8iO3膜等に対しては比験的接着力が弱いとさ
れている。しかし、本実施例のOVD技術でAjmOm
膜が形成される場合は、P I Qllllr属がAj
mOm膜によって高い装着力を示すと共K、既述したA
jキレートを用いる処理による場合に比べPIQ樹脂膜
の接着強度が約20−も向上し、信頼性が良好となるこ
とが期待される。なお、この人j寓Os膜によってPI
Q樹脂膜の透水性が遮断され、下層のフルlxりム配■
等の腐食が駐止される効果もある。
According to such a device, the Aj-Om film 4 can be easily formed in one process, so the process is very simple. Furthermore, since the reaction takes place within the reaction vessel, AjmOm is grown in a clean state, and the amount of foreign matter attached can be reduced. In addition, although PIQ resin generally has high adhesion to Mul"?AjwOs films, it is said that its comparative adhesion to 8iO3 films etc. is weak. AjmOm with OVD technology
If a film is formed, P I Qllllr genus Aj
The mOm film exhibits high attachment strength, and the previously mentioned A
It is expected that the adhesive strength of the PIQ resin film will be improved by about 20 - compared to the treatment using J-chelate, and that the reliability will be improved. Incidentally, this person is PI by his membrane.
Q The water permeability of the resin membrane is blocked and the full lx rim arrangement of the lower layer is achieved.
It also has the effect of stopping corrosion such as.

また、既述したAIキレートを用いる処理による場合、
アル1ニウム配葱又はパッドが腐食する傾向があるが、
本実施例ではそうし九Aツキレート処理によらないから
腐食の問題は生じない。
In addition, in the case of processing using the AI chelate described above,
Al 1 onions or pads tend to corrode, but
In this example, the problem of corrosion does not occur because the 9A chelate treatment is not used.

、IEKtた、第2図のように72ズマ析m技wによる
層間絶縁膜6上にAjlo、膜4が形成されるときKは
、このAj、0.膜4もプラズマ放電に↓るCVDで形
g−gれるよ5にすれば、下地膜と人!、0.膜とを同
一の装置を用いて連続的に処理することが可能となり、
それだけ工程がより簡単になる。
, IEKt, Ajlo, when the film 4 is formed on the interlayer insulating film 6 by the 72 ZMA technique as shown in FIG. If the film 4 is also formed into a shape 5 by CVD using plasma discharge, the base film and the person! ,0. It is now possible to process both membranes and membranes continuously using the same equipment.
That just makes the process easier.

なお、本実施例で使用するPIQ樹脂膜5は、既述した
特電I!848−2956号明細書く開示されたもので
あって、4.4’−シアミノジフェニルエーテル−3−
カルボンア電ド及び4,4′−ジアミノジフェニルエー
テル等のジアミノ化合物と、無水ピロメリト酸及び3.
3’、  4.4’−ベンゾフェノンテトラカルポン酸
二無水物等の駿無水物との縮合重金物からなって偽る。
Note that the PIQ resin film 5 used in this example is the above-mentioned Tokuden I! No. 848-2956 discloses that 4,4'-cyamino diphenyl ether-3-
3. diamino compounds such as carbonate and 4,4'-diaminodiphenyl ether, pyromellitic anhydride and 3.
It is composed of a heavy metal compound condensed with an anhydride such as 3', 4,4'-benzophenonetetracarboxylic dianhydride.

これは、溶液状態で半導体基摩上に塗布され、必要に応
じて加熱により半硬化又は硬化状態となされる。
This is applied in a solution state onto the semiconductor substrate and, if necessary, heated to a semi-cured or hardened state.

以上、本発明を例示したが、上述の実施例は本発明の技
術的思想に基いて更に変形が可能である。
Although the present invention has been illustrated above, the embodiments described above can be further modified based on the technical idea of the present invention.

例えば、上述のPIQ樹脂に代えて他のポリイイド系樹
脂、儒えは1分子中に多数のイミド結合(イにド*>を
有するデーボン社製のRK−692゜PI−1100等
を絶縁層として用いてよい。また、本発明は、MOa型
デバイスに限らず、バイボー−)Wiにも広(適用可能
である。
For example, instead of the above-mentioned PIQ resin, other polyoid resins, such as RK-692゜PI-1100 manufactured by Devon Co., Ltd., which has many imide bonds (ind *>) in one molecule, can be used as an insulating layer. Furthermore, the present invention is widely applicable not only to MOa type devices but also to bi-directional Wi.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであって、第1図は半
導体装置の主l!部断面図、纂2図はその多層配*ii
aの断面図、第3図はAn 、 O、の気相成長に用い
る反応装置の一例の概略断面図である。 なお、図面に示された符号にお込て、2は810゜膜、
3及び7はアルミニウム配線、4はAn、O。 膜、5はPIQ樹脂膜、6はリンシリケートガラス膜又
は窒化シリコン膜である。 第  1  図
The drawings show an embodiment of the present invention, and FIG. 1 shows the main structure of a semiconductor device. The partial sectional view and Figure 2 are the multilayer arrangement *ii
FIG. 3 is a schematic cross-sectional view of an example of a reaction apparatus used for vapor phase growth of An and O. In addition, in the symbols shown in the drawings, 2 is an 810° film,
3 and 7 are aluminum wiring, 4 is An, O. The film 5 is a PIQ resin film, and 6 is a phosphosilicate glass film or a silicon nitride film. Figure 1

Claims (1)

【特許請求の範囲】[Claims] l、半導体基体上にボリイ電ド系樹脂からなる絶縁属が
施されている半導体装置において、前記絶縁膜とその下
地膜との閣に、有機アル1=ウム化合物及び酸化性ガス
を用いた化学的気相成長によって形成され九酸化アル1
=ウム膜が介在せしめられC%Aることを善徴とする半
導体装置。
l. In a semiconductor device in which an insulating layer made of a polyelectrode resin is applied on a semiconductor substrate, a chemical method using an organic aluminum compound and an oxidizing gas is applied between the insulating film and its base film. Formed by chemical vapor phase epitaxy, Al9 oxide 1
= A semiconductor device in which a C%A film is interposed as a good sign.
JP56131490A 1981-08-24 1981-08-24 Semiconductor device Pending JPS5833841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56131490A JPS5833841A (en) 1981-08-24 1981-08-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56131490A JPS5833841A (en) 1981-08-24 1981-08-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5833841A true JPS5833841A (en) 1983-02-28

Family

ID=15059207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56131490A Pending JPS5833841A (en) 1981-08-24 1981-08-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5833841A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100324822B1 (en) * 1999-12-28 2002-02-28 박종섭 A method for fabricating a gate oxide of a semiconductor device
KR100356473B1 (en) * 1999-12-29 2002-10-18 주식회사 하이닉스반도체 Method of forming a aluminum oxide thin film in a semiconductor device
WO2003026019A1 (en) * 2001-09-12 2003-03-27 Nec Corporation Semiconductor device and production method therefor
US6660660B2 (en) 2000-10-10 2003-12-09 Asm International, Nv. Methods for making a dielectric stack in an integrated circuit
US6743475B2 (en) 2000-10-23 2004-06-01 Asm International N.V. Process for producing aluminum oxide films at low temperatures
US6902763B1 (en) 1999-10-15 2005-06-07 Asm International N.V. Method for depositing nanolaminate thin films on sensitive surfaces
US7476420B2 (en) 2000-10-23 2009-01-13 Asm International N.V. Process for producing metal oxide films at low temperatures
US7749871B2 (en) 1999-10-15 2010-07-06 Asm International N.V. Method for depositing nanolaminate thin films on sensitive surfaces
US9631272B2 (en) 2008-04-16 2017-04-25 Asm America, Inc. Atomic layer deposition of metal carbide films using aluminum hydrocarbon compounds
US9786491B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
US9786492B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
US9831094B2 (en) 2005-10-27 2017-11-28 Asm International N.V. Enhanced thin film deposition
US9941425B2 (en) 2015-10-16 2018-04-10 Asm Ip Holdings B.V. Photoactive devices and materials
US10002936B2 (en) 2014-10-23 2018-06-19 Asm Ip Holding B.V. Titanium aluminum and tantalum aluminum thin films
US10074541B2 (en) 2013-03-13 2018-09-11 Asm Ip Holding B.V. Deposition of smooth metal nitride films
US10504901B2 (en) 2017-04-26 2019-12-10 Asm Ip Holding B.V. Substrate processing method and device manufactured using the same
US10600637B2 (en) 2016-05-06 2020-03-24 Asm Ip Holding B.V. Formation of SiOC thin films
US10643925B2 (en) 2014-04-17 2020-05-05 Asm Ip Holding B.V. Fluorine-containing conductive films
US10847529B2 (en) 2017-04-13 2020-11-24 Asm Ip Holding B.V. Substrate processing method and device manufactured by the same
US10991573B2 (en) 2017-12-04 2021-04-27 Asm Ip Holding B.V. Uniform deposition of SiOC on dielectric and metal surfaces
US11158500B2 (en) 2017-05-05 2021-10-26 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of oxygen containing thin films

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902763B1 (en) 1999-10-15 2005-06-07 Asm International N.V. Method for depositing nanolaminate thin films on sensitive surfaces
US7749871B2 (en) 1999-10-15 2010-07-06 Asm International N.V. Method for depositing nanolaminate thin films on sensitive surfaces
KR100324822B1 (en) * 1999-12-28 2002-02-28 박종섭 A method for fabricating a gate oxide of a semiconductor device
KR100356473B1 (en) * 1999-12-29 2002-10-18 주식회사 하이닉스반도체 Method of forming a aluminum oxide thin film in a semiconductor device
US6660660B2 (en) 2000-10-10 2003-12-09 Asm International, Nv. Methods for making a dielectric stack in an integrated circuit
US7038284B2 (en) 2000-10-10 2006-05-02 Asm International, N.V. Methods for making a dielectric stack in an integrated circuit
US6743475B2 (en) 2000-10-23 2004-06-01 Asm International N.V. Process for producing aluminum oxide films at low temperatures
US6884465B2 (en) 2000-10-23 2005-04-26 Asm International Nv Process for producing aluminum oxide films at low temperatures
US7476420B2 (en) 2000-10-23 2009-01-13 Asm International N.V. Process for producing metal oxide films at low temperatures
WO2003026019A1 (en) * 2001-09-12 2003-03-27 Nec Corporation Semiconductor device and production method therefor
US7385265B2 (en) 2001-09-12 2008-06-10 Nec Corporation High dielectric constant MOSFET device
US10297444B2 (en) 2005-10-27 2019-05-21 Asm International N.V. Enhanced thin film deposition
US10964534B2 (en) 2005-10-27 2021-03-30 Asm International Enhanced thin film deposition
US9831094B2 (en) 2005-10-27 2017-11-28 Asm International N.V. Enhanced thin film deposition
US9631272B2 (en) 2008-04-16 2017-04-25 Asm America, Inc. Atomic layer deposition of metal carbide films using aluminum hydrocarbon compounds
US10074541B2 (en) 2013-03-13 2018-09-11 Asm Ip Holding B.V. Deposition of smooth metal nitride films
US10643925B2 (en) 2014-04-17 2020-05-05 Asm Ip Holding B.V. Fluorine-containing conductive films
US11823976B2 (en) 2014-04-17 2023-11-21 ASM IP Holding, B.V. Fluorine-containing conductive films
US11450591B2 (en) 2014-04-17 2022-09-20 Asm Ip Holding B.V. Fluorine-containing conductive films
US10636889B2 (en) 2014-10-23 2020-04-28 Asm Ip Holding B.V. Titanium aluminum and tantalum aluminum thin films
US10002936B2 (en) 2014-10-23 2018-06-19 Asm Ip Holding B.V. Titanium aluminum and tantalum aluminum thin films
US11139383B2 (en) 2014-10-23 2021-10-05 Asm Ip Holding B.V. Titanium aluminum and tantalum aluminum thin films
US9941425B2 (en) 2015-10-16 2018-04-10 Asm Ip Holdings B.V. Photoactive devices and materials
US10861986B2 (en) 2015-10-16 2020-12-08 Asm Ip Holding B.V. Photoactive devices and materials
US11362222B2 (en) 2015-10-16 2022-06-14 Asm Ip Holding B.V. Photoactive devices and materials
US10424476B2 (en) 2015-11-12 2019-09-24 Asm Ip Holding B.V. Formation of SiOCN thin films
US10510529B2 (en) 2015-11-12 2019-12-17 Asm Ip Holding B.V. Formation of SiOCN thin films
US9786491B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
US9786492B2 (en) 2015-11-12 2017-10-10 Asm Ip Holding B.V. Formation of SiOCN thin films
US11107673B2 (en) 2015-11-12 2021-08-31 Asm Ip Holding B.V. Formation of SiOCN thin films
US10600637B2 (en) 2016-05-06 2020-03-24 Asm Ip Holding B.V. Formation of SiOC thin films
US11562900B2 (en) 2016-05-06 2023-01-24 Asm Ip Holding B.V. Formation of SiOC thin films
US11195845B2 (en) 2017-04-13 2021-12-07 Asm Ip Holding B.V. Substrate processing method and device manufactured by the same
US10847529B2 (en) 2017-04-13 2020-11-24 Asm Ip Holding B.V. Substrate processing method and device manufactured by the same
US10504901B2 (en) 2017-04-26 2019-12-10 Asm Ip Holding B.V. Substrate processing method and device manufactured using the same
US11158500B2 (en) 2017-05-05 2021-10-26 Asm Ip Holding B.V. Plasma enhanced deposition processes for controlled formation of oxygen containing thin films
US11776807B2 (en) 2017-05-05 2023-10-03 ASM IP Holding, B.V. Plasma enhanced deposition processes for controlled formation of oxygen containing thin films
US10991573B2 (en) 2017-12-04 2021-04-27 Asm Ip Holding B.V. Uniform deposition of SiOC on dielectric and metal surfaces

Similar Documents

Publication Publication Date Title
JPS5833841A (en) Semiconductor device
US6287989B1 (en) Method of treating a semiconductor wafer in a chamber using hydrogen peroxide and silicon containing gas or vapor
KR100206630B1 (en) Method for fabricating semiconductor device
CN101506960B (en) Method of base management
JPH04123257U (en) Bias ECR plasma CVD equipment
JPH0729897A (en) Manufacture of semiconductor device
US5194928A (en) Passivation of metal in metal/polyimide structure
JPH05186213A (en) Deposition of vapor phase of hydrogen silsesquioxane
EP0154482B1 (en) Coating process
US6656313B2 (en) Structure and method for improved adhesion between two polymer films
JPS61251021A (en) Filming apparatus
JPS60197730A (en) Formation of polyimide film
JP3225331B2 (en) Method of forming SOG film and ozone treatment apparatus
JP2000223485A (en) Formation of composite insulation film and fabrication of semiconductor device employing the same
JP2001035843A (en) Method for formation of interlayer dielectric
KR0120573B1 (en) Method of forming the multilayer metal wiring
JPH0869970A (en) Plasma processing bell jar of semiconductor substrate
JPH08176510A (en) Silica-based film and its production and semiconductor device
WO1994018356A1 (en) Method of manufacturing a glass substrate for a thin film
JPH0251230A (en) Forming method for cvd oxide film
JPH025551A (en) Semiconductor device
JPS62221120A (en) Manufacture of semiconductor device
JPS599496B2 (en) Method of forming glass thin film using vapor phase method
JPH04111424A (en) Manufacture of semiconductor device
JPH09199472A (en) Device for cooling and heating semiconductor processing solution