JPS5833837A - Structure for charge beam location detecting mark - Google Patents

Structure for charge beam location detecting mark

Info

Publication number
JPS5833837A
JPS5833837A JP13161581A JP13161581A JPS5833837A JP S5833837 A JPS5833837 A JP S5833837A JP 13161581 A JP13161581 A JP 13161581A JP 13161581 A JP13161581 A JP 13161581A JP S5833837 A JPS5833837 A JP S5833837A
Authority
JP
Japan
Prior art keywords
substrate
mark
position detection
detection mark
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13161581A
Other languages
Japanese (ja)
Other versions
JPS6257253B2 (en
Inventor
Naoki Kato
加藤 直規
Kuniki Owada
大和田 邦樹
Tadamasa Ogawa
小川 忠政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13161581A priority Critical patent/JPS5833837A/en
Publication of JPS5833837A publication Critical patent/JPS5833837A/en
Publication of JPS6257253B2 publication Critical patent/JPS6257253B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To prevent charging on detection mark by promoting diffusion of charges on the mark forming region by making the mark conductive and also by providing a conductive route on the substrate so that charges can escape from the marked portion. CONSTITUTION:The substrate 1 is of the semi-insulated gallium-arsenic substrate, while the resist 2 is provided as the electron beam resist and the electron beam ?is used as the beam for scanning 4. An impurity element is introduced to the substrate 1 and thereby the conductive region 6 of mark on which the conductive layer consisting of a low resistance layer is provided. When the location detecting mark 3 is scanned by the charge beam 4, the charges injected into the area near the mark of substrate is diffused from such area through the conductive route, not giving influence on the scanning beam.

Description

【発明の詳細な説明】 本発明は半導体装置の製造工程に用いられる電子ビーム
露光などの荷電粒子によるパターン形成において、荷電
ビームの照射位置を補正するために用いられる位置検出
マークの帯電を防止して、パターン形成精度を向上する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention prevents charging of a position detection mark used to correct the irradiation position of a charged beam in pattern formation using charged particles such as electron beam exposure used in the manufacturing process of semiconductor devices. The present invention relates to a method for improving pattern formation accuracy.

荷電粒子によるパターン形成においては、一般に、パタ
ーン形成を行う基板上に塗布されたレジスト膜の所望の
位置に荷電粒子を照射し、現像処理によってレジスト膜
の荷電粒子照射部分のみを残したり、あるいは溶解除去
して未照射部を残し、次にレジストパターンをマスクと
して基板のエツチング等を行いパターン形成か行われる
。所望部に正確に荷電粒子を照射するため、あらかじめ
基板に形成(通常、ホトリソグラフィにより形成)され
た断面形状凹もしくは凸またはV状等の荷電ビーム用位
置検出マークを用いて、そこからの信号によりビーム位
置の修正を行う。この際、基板が絶縁性(又は高抵抗)
である場合は、基板に照射された電荷が逃げにくく、あ
らかじめ形成されている位置検出用マークを荷電粒子で
走査するとき、電荷がマーク付近に蓄積して粒子線を曲
げるため、誤った位置情報を与え、描画位置ずれが発生
し易い欠点があった。
In pattern formation using charged particles, generally, charged particles are irradiated onto desired positions of a resist film coated on a substrate on which a pattern is to be formed, and only the charged particle irradiated portions of the resist film are left behind through development processing, or are dissolved. The resist pattern is removed to leave an unirradiated area, and then the substrate is etched using the resist pattern as a mask to form a pattern. In order to accurately irradiate the desired area with charged particles, a position detection mark for the charged beam with a concave, convex, or V-shaped cross section is formed in advance on the substrate (usually formed by photolithography), and the signal is detected from the position detection mark. The beam position is corrected by In this case, the board is insulating (or high resistance)
In this case, it is difficult for the charge irradiated on the substrate to escape, and when a pre-formed position detection mark is scanned with a charged particle, the charge accumulates near the mark and bends the particle beam, resulting in incorrect position information. However, there was a drawback that it was easy for the drawing position to shift.

第1図は従来の位置検出用マークの一構成例を示した斜
視図である。図において、1は基板、2はレジスト、3
は位置検出用マーク、4は走査用ビーム、5は走査方向
の一例を示す矢印である。
FIG. 1 is a perspective view showing an example of the configuration of a conventional position detection mark. In the figure, 1 is the substrate, 2 is the resist, 3
4 is a position detection mark, 4 is a scanning beam, and 5 is an arrow indicating an example of a scanning direction.

第1図に示す例では、基板1を半絶縁性ガリウムひ素(
比抵抗が107Ω・cm)とし、位置検出用マーク3は
ガリウムひ素基板1上に形成した深さ0.6μmの海で
あり、電子線(走査用ビーム4)で溝の上を走査して位
置を検出する。位置検出終了後、所望のパターンを所望
の位置に形成する電子の照射を行う。
In the example shown in FIG. 1, the substrate 1 is semi-insulating gallium arsenide (
The resistivity is 107Ω・cm), and the position detection mark 3 is a 0.6 μm deep sea formed on the gallium arsenide substrate 1, and the position is determined by scanning the groove with an electron beam (scanning beam 4). Detect. After the position detection is completed, electron irradiation is performed to form a desired pattern at a desired position.

第2図は従来構成の検出用マークによる描画の位置ずれ
結果(実測による。)を示したグラフであり、横軸はパ
ターン位置の所望位置からのずれ(μm)、縦軸はひん
度である。スケールの右側にX方向、左側にY方向のず
れを示す。
Figure 2 is a graph showing the positional deviation results (based on actual measurements) of drawing using detection marks in the conventional configuration, where the horizontal axis is the deviation (μm) of the pattern position from the desired position, and the vertical axis is the frequency. . The right side of the scale shows the deviation in the X direction, and the left side shows the deviation in the Y direction.

図から明らかなように、前述した帯電によるずれが発生
している。
As is clear from the figure, the shift caused by the aforementioned charging occurs.

本発明は、上記の欠点を除去するために、検出用マーク
部の帯電を防止し、位置検出で正確な位置情報か得られ
る様に、マーク部を導電化しマーク形成領域の電荷の拡
散を促し、さらには電荷かマーク部から逃げるように基
板上に導電路を設けた構成にした。
In order to eliminate the above-mentioned drawbacks, the present invention prevents the detection mark from being charged, makes the mark conductive, and promotes the diffusion of charges in the mark formation area so that accurate position information can be obtained by position detection. Moreover, a conductive path is provided on the substrate so that the electric charge can escape from the mark part.

以下、本発明を実施例によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

第3図は本発明の位置検出用マークの一実施例を示した
斜視図である。基板1は半絶縁性ガリウムひ素(GaA
s)基板、レジスト2は電子ビームレジスト、走査用゛
ビーム4は電子ビームである。
FIG. 3 is a perspective view showing an embodiment of the position detection mark of the present invention. The substrate 1 is made of semi-insulating gallium arsenide (GaA
s) The substrate and resist 2 are electron beam resists, and the scanning beam 4 is an electron beam.

6は基板1に不純物元素を導入し導電層(低抵抗層)が
形成された部分(マークの導電領域)である。本実施例
においては、不純物元素としてSiを用い、イオン注入
法で基板に注入し、n形の導電層を形成した。Siイオ
ン注入の一例を示すと、加速電圧は1.00kVと60
kVの2段階に分けて行ない、ドーズ量はいずれもI 
X 1013/ciffであり、注入深さは0.2〜0
.3μmであった。
6 is a portion (conductive region of the mark) where an impurity element is introduced into the substrate 1 and a conductive layer (low resistance layer) is formed. In this example, Si was used as an impurity element and was implanted into the substrate by ion implantation to form an n-type conductive layer. To give an example of Si ion implantation, the accelerating voltage is 1.00 kV and 60 kV.
It is carried out in two stages of kV, and both doses are I
X 1013/ciff, and the implantation depth is 0.2 to 0.
.. It was 3 μm.

なお、GaAs基板に対し導入される不純物元素はSi
 ニ限らず、S、 Se、 Sn、 Te、 Be、 
Mg、 Zn、 Cd等があり、またイオン注入法に限
らず、拡散法によって導入してもよい。
Note that the impurity element introduced into the GaAs substrate is Si.
Not limited to D, S, Se, Sn, Te, Be,
Examples include Mg, Zn, and Cd, and they may be introduced not only by ion implantation but also by diffusion.

また、n形(又はn形)導電層を形成するかわりに、T
i 、 AI!、 W 、 Pt 、 Moなどの金属
または多結晶Siなどの低抵抗半導体の薄層を表面に堆
積させても同様の効果すなわちマーク形成領域の電荷の
拡散促進効果か得られる。
Also, instead of forming an n-type (or n-type) conductive layer, T
i, AI! A similar effect, that is, the effect of promoting charge diffusion in the mark forming region, can be obtained by depositing a thin layer of a metal such as , W, Pt, or Mo or a low resistance semiconductor such as polycrystalline Si on the surface.

第4図は本発明の他の実施例−を示したもので、位置検
出用マーク構成の平面図である。図において、7は電荷
を拡散するための導電路、8は所望のパターンを露光す
る領域、3 A、 3B、 3Cはあるチップの3組の
検出用マークであり、3’A、 3’B。
FIG. 4 shows another embodiment of the present invention, and is a plan view of the structure of the position detection mark. In the figure, 7 is a conductive path for diffusing charges, 8 is a region for exposing a desired pattern, 3A, 3B, and 3C are three sets of detection marks on a certain chip; 3'A, 3'B .

3′Cは図中では右どなりのチップのもつ検出用マーク
を示している。
3'C indicates a detection mark on the chip on the right side in the figure.

荷電ビームで位置検出用マーク3 (3A、 3B。Position detection marks 3 (3A, 3B) using charged beams.

3C)を走査するときに、基板のマーク近傍に注入され
た電荷は導電路7を通ってマーク近傍から拡散し、走査
ビームに影響をおよぼさなくなる。
3C), the charge injected into the vicinity of the mark on the substrate diffuses from the vicinity of the mark through the conductive path 7 and no longer affects the scanning beam.

本実施例におけるマークの導電領域6及び導電路7の形
成方法は第3図で説明したのと同じである。
The method of forming the conductive region 6 and the conductive path 7 of the mark in this embodiment is the same as that described with reference to FIG.

なお、基板1の絶縁性が良好で電荷の蓄積が著しい場合
は導電路7の一端を接地することが望ましい。
Note that if the insulation of the substrate 1 is good and the accumulation of charge is significant, it is desirable that one end of the conductive path 7 be grounded.

第5図は本発明の検出用マーク構成による描画の位置ず
れ結果を示したグラフであり、横軸はずれ(μm)、縦
軸はひん度である。スケールの右側にX方向、左側にY
方向のずれを示す。
FIG. 5 is a graph showing the result of positional deviation in drawing using the detection mark configuration of the present invention, where the horizontal axis is the deviation (μm) and the vertical axis is the frequency. X direction on the right side of the scale, Y direction on the left side
Indicates a shift in direction.

実験結果は第4図に示した構成の場合であり、同一基板
上の導電化処理を施さないパターン露光領域8部分に、
約3 X 10−’クーロン肩の露光量で、線幅1〜0
.5μmのパターンを描画し、所望位置に対する描画位
置のずれを測定したものである。検出用マーク近傍の導
電化処理を行なわない基板の場合(第2図参照)に比べ
、ずれ量は著しく小さくおさえられている。
The experimental results are for the configuration shown in FIG.
Line width 1 to 0 with an exposure of about 3 x 10-' Coulomb shoulder
.. A pattern of 5 μm was drawn, and the deviation of the drawing position from the desired position was measured. The amount of deviation is kept extremely small compared to the case of a substrate in which the conductive treatment in the vicinity of the detection mark is not performed (see FIG. 2).

以上説明したように、本発明の位置検出用マーりの構成
方法を用いれば、電子ビーム等の荷電粒子を使う基板上
の位置検出において、低抵抗の領域を基板の一部に選択
的に形成することにより、検出マークの帯電を防止して
描画位置のずれを小さくすることができる。この方法は
、半絶縁性ガリウムひ素などの帯電しやすい基板に対す
る荷電ビームによるパターンの直接描画において著しく
有効である。
As explained above, if the method for configuring a position detection marker of the present invention is used, a region of low resistance can be selectively formed in a part of a substrate in position detection on a substrate using charged particles such as an electron beam. By doing so, it is possible to prevent the detection mark from being charged and to reduce the deviation of the drawing position. This method is extremely effective in directly writing patterns with a charged beam on substrates that are easily charged, such as semi-insulating gallium arsenide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の位置検出用マークの一構成例を示した斜
視図、第2図は従来構成の検出用マークによる描画の位
置ずれ結果を示したグラフ、第3図及び第4図はそれぞ
れ本発明の位置検出用マークの構成を示した斜視図及び
平面図、第5図は本発明の検出用マーク構成による描画
の位置ずれ結果を示したグラフである。 1・・・基板       2−・・レジスト3・・・
位置検出用マーク 4・・・走査用ビーム5・・・走査
方向の一例を示す矢印 6・・・マークの導電領域 8・・・パターン露光領域 特許出願人 日本電信電話公社 代理人弁理人 中村純之助
Fig. 1 is a perspective view showing an example of the configuration of a conventional position detection mark, Fig. 2 is a graph showing the positional deviation results of drawing by the conventional detection mark, and Figs. 3 and 4 respectively. FIG. 5 is a perspective view and a plan view showing the structure of the position detecting mark of the present invention, and a graph showing the result of positional deviation in drawing by the detecting mark structure of the present invention. 1...Substrate 2-...Resist 3...
Mark for position detection 4...Scanning beam 5...Arrow indicating an example of scanning direction 6...Conductive area of mark 8...Pattern exposure area Patent applicant Junnosuke Nakamura, Patent attorney for Nippon Telegraph and Telephone Public Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)  パターン形成を行なう基板の所定位置に荷電
ビーム用位置検出マークを形成する工程と、該位置検出
マーク形成領域近傍の基板を低抵抗化する様に基板に対
して選んだ不純物元素をイオン注入法もしくは拡散法に
より基板に導入し表面近傍に低抵抗層を選択的に形成す
る工程又は金属もしくは低抵抗半導体の薄層を基板表面
に選択的に形成する工程を有し、上記位置検出マーク形
成領域の電荷の拡散を促す手段を設けたことを特徴とす
る荷電ビーム用位置検出マークの構成方法。
(1) A step of forming a position detection mark for a charged beam at a predetermined position on a substrate where a pattern is to be formed, and ionizing a selected impurity element to the substrate so as to reduce the resistance of the substrate near the position detection mark forming area. The above-mentioned position detection mark includes a step of introducing a low resistance layer into the substrate by an injection method or a diffusion method and selectively forming a low resistance layer near the surface, or a step of selectively forming a thin layer of metal or a low resistance semiconductor on the surface of the substrate. A method for configuring a position detection mark for a charged beam, characterized in that a means for promoting the diffusion of charges in a formation region is provided.
(2)上記電荷の拡散を促す手段として、上記位置検出
マーク領域に接続して導電路を形成することを特徴とす
る特許請求の範囲第1項記載の荷電ビーム用位置検出マ
ークの構成方法。
(2) The method for configuring a position detection mark for a charged beam as set forth in claim 1, wherein a conductive path is formed by connecting to the position detection mark area as a means for promoting the diffusion of the charges.
JP13161581A 1981-08-24 1981-08-24 Structure for charge beam location detecting mark Granted JPS5833837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13161581A JPS5833837A (en) 1981-08-24 1981-08-24 Structure for charge beam location detecting mark

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13161581A JPS5833837A (en) 1981-08-24 1981-08-24 Structure for charge beam location detecting mark

Publications (2)

Publication Number Publication Date
JPS5833837A true JPS5833837A (en) 1983-02-28
JPS6257253B2 JPS6257253B2 (en) 1987-11-30

Family

ID=15062199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13161581A Granted JPS5833837A (en) 1981-08-24 1981-08-24 Structure for charge beam location detecting mark

Country Status (1)

Country Link
JP (1) JPS5833837A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948924A (en) * 1982-09-14 1984-03-21 Nec Corp Positioning mark for electron beam exposure
JPS603400U (en) * 1983-06-22 1985-01-11 富士工器株式会社 LP gas container cap

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948924A (en) * 1982-09-14 1984-03-21 Nec Corp Positioning mark for electron beam exposure
JPS603400U (en) * 1983-06-22 1985-01-11 富士工器株式会社 LP gas container cap

Also Published As

Publication number Publication date
JPS6257253B2 (en) 1987-11-30

Similar Documents

Publication Publication Date Title
EP0779557A2 (en) Method for forming re-entrant photoresist lift-off profile for thin film device processing and a thin film device made thereby
JPS5948924A (en) Positioning mark for electron beam exposure
CA1066431A (en) Semiconductor device manufacture
EP0090447B1 (en) Masking process for semiconductor device manufacture
US4503334A (en) Method of using an electron beam
US4871919A (en) Electron beam lithography alignment using electric field changes to achieve registration
JPS5833837A (en) Structure for charge beam location detecting mark
JP3287333B2 (en) Electron beam exposure mask, method of manufacturing the same, and method of manufacturing a semiconductor device
JPS6246976B2 (en)
JPH05502760A (en) Processing method for manufacturing electrical contacts in mesa structures of semiconductor devices
JP2537180B2 (en) Method for manufacturing semiconductor device
JPH11162810A (en) Alignment mark for electron beam exposure
JPS627688B2 (en)
KR920010753B1 (en) Diffusion distance measuring method
JP3617223B2 (en) Alignment method
JPH0644550B2 (en) Method for manufacturing semiconductor device
JPS58103129A (en) Manufacture of semiconductor device
Daniel Improvements in and relating to methods of manufacturing semiconductor devices
JPH07130611A (en) Manufacture of semiconductor device
JPH0738371B2 (en) Position detection mark forming method
JPS63263722A (en) Electron beam lithographic method
JPS5893342A (en) Manufacture of semiconductor device
JPH05136480A (en) Manufacture of semiconductor device
JPH03167821A (en) Positioning mark forming method for electron beam exposure
JPS5880841A (en) Patterning method for polycrystalline silicon