JP2537180B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2537180B2
JP2537180B2 JP60214848A JP21484885A JP2537180B2 JP 2537180 B2 JP2537180 B2 JP 2537180B2 JP 60214848 A JP60214848 A JP 60214848A JP 21484885 A JP21484885 A JP 21484885A JP 2537180 B2 JP2537180 B2 JP 2537180B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
ion
ion implantation
semiconductor device
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60214848A
Other languages
Japanese (ja)
Other versions
JPS6276617A (en
Inventor
俊郎 宇佐見
裕一 見方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60214848A priority Critical patent/JP2537180B2/en
Publication of JPS6276617A publication Critical patent/JPS6276617A/en
Application granted granted Critical
Publication of JP2537180B2 publication Critical patent/JP2537180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の技術分野] この発明は半導体装置の製造方法に関し、特に、イオ
ン注入法に関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an ion implantation method.

[発明の技術的背景] 最近、半導体装置の製造において、半導体基板に不純
物を精密に導入しようとする場合にはイオン注入法を採
用することが主流となっている。
[Technical Background of the Invention] Recently, in manufacturing a semiconductor device, an ion implantation method has been mainly used when impurities are to be introduced into a semiconductor substrate with precision.

半導体基板にイオン注入法によって不純物を導入する
場合、該基板の原子列と平行に(すなわち、面方位指数
<100>の基板面に垂直に)イオン注入すると、いわゆ
るチャンネリング現象が起こってイオンは該基板中に深
く注入され、その結果、MOS構造の場合などは、深いソ
ース・ドレイン接合が形成されることになるが、ソース
・ドレイン接合が深いと短チャンネル効果と寄生容量が
大きくなるため半導体素子の高密度化及び高速化に障害
となる。従って、高密度の集積回路を可能とするために
はソース・ドレイン接合を浅くすることが必要であり、
これを可能とするためには、イオン注入工程ではチャン
ネリング現象を生じさせぬようにイオンの注入方向を結
晶軸に対して傾けることが必要である(G.Dearnaley et
al. :Can. J. Phys.46(1968)p587参照)。
When impurities are introduced into a semiconductor substrate by an ion implantation method, if ion implantation is performed in parallel with the atomic sequence of the substrate (that is, perpendicular to the substrate surface having a plane orientation index <100>), so-called channeling phenomenon occurs and ions are A deep source / drain junction is formed in the case of a MOS structure, etc. as a result of being deeply implanted into the substrate, but a deep source / drain junction causes a short channel effect and a large parasitic capacitance. This is an obstacle to increasing the density and speed of the device. Therefore, it is necessary to make the source / drain junction shallow in order to enable a high-density integrated circuit.
In order to make this possible, it is necessary to tilt the ion implantation direction with respect to the crystal axis so as not to cause the channeling phenomenon in the ion implantation process (G. Dearnaley et al.
al.: Can. J. Phys. 46 (1968) p587).

それ故、従来、半導体装置の製造工程で半導体基板に
イオン注入を行う時には、イオン注入方向を基板面の法
線方向よりも8゜程度傾いた入射角でイオン注入を行っ
ている。この場合、よく知られているように、イオンの
加速電圧に応じて半導体基板上に1μm以上の厚さのレ
ジスト膜を形成し、該レジスト膜に選択的に開口してマ
スクを形成した後、前記のように傾けたイオンビームを
該基板の面に沿って全面にスキャンさせて該開口内の基
板中に不純物イオンを注入する。
Therefore, conventionally, when performing ion implantation into a semiconductor substrate in the process of manufacturing a semiconductor device, the ion implantation is performed at an incident angle which is inclined by about 8 ° with respect to the normal direction of the substrate surface. In this case, as is well known, a resist film having a thickness of 1 μm or more is formed on a semiconductor substrate according to the acceleration voltage of ions, and a mask is formed by selectively opening the resist film, The tilted ion beam is scanned over the entire surface of the substrate to implant impurity ions into the substrate in the opening.

第2図にこのような従来のイオン注入方法を示したも
のであり、同図において、1は半導体基板、2はレジス
ト膜、2aはレジスト膜に形成された開口、3はイオンビ
ームである。イオンビーム3は基板面の法線方向に対し
て8゜±3゜程度傾いた入射角で照射される。
FIG. 2 shows such a conventional ion implantation method. In FIG. 2, 1 is a semiconductor substrate, 2 is a resist film, 2a is an opening formed in the resist film, and 3 is an ion beam. The ion beam 3 is applied at an incident angle which is inclined by about 8 ° ± 3 ° with respect to the normal line direction of the substrate surface.

なお、傾けたイオンビームを半導体基板面にスキャン
する方法としては、半導体基板を静止させた状態でイオ
ンビームを静電的にスキャンする方法、該傾けたイオン
ビームを静止させた状態で半導体基板のほうを左右上下
に移動させてスキャンする方法のいずれかの方法が実施
されてきた。
As a method of scanning the tilted ion beam on the surface of the semiconductor substrate, a method of electrostatically scanning the ion beam with the semiconductor substrate stationary, and a method of scanning the semiconductor substrate with the tilted ion beam stationary One of the methods of scanning by moving the one up, down, left, and right has been implemented.

[背景技術の問題点] しかしながら、従来のイオンビーム照射方法によると
第2図からも明らかなように、レジストの開口縁のため
に影となる部分が生じ、このため、イオン注入工程終了
後、レジスト開口2a内には第2図(b)に示すようにイ
オン注入領域4に隣接してイオン不注入領域5が生じる
結果となっていた。
[Problems of the Background Art] However, according to the conventional ion beam irradiation method, as is apparent from FIG. 2, a shadowed portion is generated due to the opening edge of the resist, and therefore, after the ion implantation step is completed, In the resist opening 2a, as shown in FIG. 2B, an ion non-implanted region 5 is formed adjacent to the ion implanted region 4.

従来、設計ルールによって素子のセルサイズもかなり
大きかった時には、このようにイオン注入用開口内にイ
オン不注入領域5が存在していてもこの不注入領域が素
子の電気的特性を悪化させる恐れは殆どなかったので無
視することができたが、最近では集積回路の微細化が進
展したため、イオン注入用開口(レジスト開口2a)の一
辺の幅Wも1μm程度にまで縮小されているので、前記
の如きイオン不注入領域5の存在は素子のしきい値電圧
等の素子電気的特性に悪影響を及ぼすものとして無視で
きなくなってきた。たとえば、レジスト膜厚が1.5μm
の場合、イオン不注入領域5の一辺の幅wは第2図から
明らかであるように、 w=1.5μm×tan8゜=2100Å となり、レジスト開口2aの一辺の幅Wが1μmであれ
ば、イオン不注入領域5の面積は開口2aの全面積の2割
強にも達するので、無視することはできなくなる。
Conventionally, when the cell size of the device is also considerably large according to the design rule, even if the ion non-implanted region 5 exists in the ion implantation opening, the non-implanted region may not deteriorate the electrical characteristics of the device. It could be ignored because it was scarcely present, but the width W of one side of the ion implantation opening (resist opening 2a) has been reduced to about 1 μm due to the recent progress in miniaturization of integrated circuits. The existence of such an ion non-implanted region 5 cannot be ignored because it adversely affects the device electrical characteristics such as the threshold voltage of the device. For example, if the resist film thickness is 1.5 μm
In this case, the width w of one side of the non-ion-implanted region 5 is w = 1.5 μm × tan8 ° = 2100Å, and the width W of one side of the resist opening 2a is 1 μm, as is clear from FIG. Since the area of the non-implanted region 5 reaches a little over 20% of the total area of the opening 2a, it cannot be ignored.

特に、第3図に示すように、全く同一の素子6及び7
が互いに直角をなす向きで基板上に配置されるとともに
相互の間隔dが10μm程度に近接している場合には、両
者のイオン不注入領域6a及び7aの形状も異なってくるた
め、両者の電気的特性には大きな差異が生じることにな
り、両者を同一特性の素子として使用するためには両者
のしきい値電圧の精密な制御が必要となるが、これは回
路設計や素子形成等を非常に煩雑させることになる。
In particular, as shown in FIG. 3, exactly the same elements 6 and 7
Are arranged on the substrate in directions perpendicular to each other and the distances d between them are close to each other by about 10 μm, the shapes of the ion non-implanted regions 6a and 7a of both are also different, so that the electrical conductivity of both There is a big difference in the characteristic characteristics, and in order to use them as elements with the same characteristics, it is necessary to precisely control the threshold voltage of both elements, which is very important for circuit design and element formation. Will be complicated.

[発明の目的] この発明の目的は、前記の如き問題を生じない、改良
された半導体装置製造方法を提供することである。更に
詳細には、この発明の目的は、イオン注入工程において
不純物導入用開口内に不純物不注入領域を生じさせるこ
とのないイオン注入方法を提供することである。
[Object of the Invention] An object of the present invention is to provide an improved semiconductor device manufacturing method which does not cause the above problems. More specifically, an object of the present invention is to provide an ion implantation method that does not cause an impurity non-implanted region in the impurity introduction opening in the ion implantation step.

[発明の概要] この発明は、まず、半導体基板の結晶軸に対して所定
角度傾けたイオンビームを該半導体基板の面にスキャン
した後、該半導体基板をその軸心のまわりに実質上90
゜,180゜,270゜と90゜づつ回転させ、順次、前回のスキ
ャンのよってイオン注入が行われた領域と前回のスキャ
ンで影になったその隣接領域とに対して等ドーズ量の該
傾けたイオンビームを4回以上重ねてスキャンすること
を特徴とするものである。このように90゜づつ回転させ
て等ドーズ量の注入をする本発明方法によれば、パター
ン形状がどのような方向に向いていても、開口の各辺に
沿う影になる領域のドーズ量はすべて、中央の影になら
ない領域のドーズ量の3/4以上となって、どの方向に向
いたパターンについても一定のイオン注入濃度分布が得
られ、各半導体素子に一定の電気的特性を与えることが
できる。そのように、素子特性がパターンのレイアウト
(方向)に依存しないから、回路設計や素子形成におけ
る自由度が高まる。
SUMMARY OF THE INVENTION According to the present invention, first, an ion beam tilted at a predetermined angle with respect to a crystal axis of a semiconductor substrate is scanned on a surface of the semiconductor substrate, and then the semiconductor substrate is substantially rotated about its axis.
Rotate each by 90 ° by 180 °, 180 °, 270 °, and sequentially incline the region at which ion implantation was performed by the previous scan and the adjacent region shaded by the previous scan at an equal dose amount. It is characterized in that the ion beam is scanned four times or more. As described above, according to the method of the present invention in which an equal dose is injected by rotating by 90 °, the dose of the shadowed area along each side of the opening is no matter which direction the pattern shape is oriented. All the doses are 3/4 or more of the central non-shadowed area, and a constant ion implantation concentration distribution can be obtained for patterns oriented in any direction, giving constant electrical characteristics to each semiconductor element. You can Thus, the element characteristics do not depend on the layout (direction) of the pattern, so that the degree of freedom in circuit design and element formation is increased.

[発明の実施例] 第1図に本発明方法の一実施例を示す。Embodiment of the Invention FIG. 1 shows an embodiment of the method of the present invention.

本実施例では半導体基板1の表面にレジスト膜2を形
成した後、該レジスト膜2に互いに直角に配置された2
個の同一面積のレジスト開口2aを形成し、このレジスト
開口2a内に該基板1の法線に対して8゜傾いた方向から
イオンビーム3を照射しつつ該イオンビーム3を半導体
基板1の表面に沿って全面スキャンした。 この時のド
ーズ量は0.25×1013cm-2となるようにイオン電流を設定
した。
In this embodiment, after the resist film 2 is formed on the surface of the semiconductor substrate 1, two resist films 2 are formed at right angles to each other.
A plurality of resist openings 2a having the same area are formed, and the ion beam 3 is irradiated into the resist opening 2a from a direction inclined by 8 ° with respect to the normal line of the substrate 1, and the ion beam 3 is applied to the surface of the semiconductor substrate 1. The whole surface was scanned along. The ion current was set so that the dose amount at this time was 0.25 × 10 13 cm -2 .

次に、半導体基板1をその中心軸線のまわりに90゜平
面的に回転させた後、再び同じドーズ量になるようにイ
オン電流を設定してイオンビーム3を半導体基板1の表
面に沿って全面スキャンした。
Next, the semiconductor substrate 1 is rotated by 90 ° about its central axis in a plane, and then the ion current is set so that the same dose amount is obtained again, so that the ion beam 3 is entirely spread along the surface of the semiconductor substrate 1. Scanned.

そして90゜回転における以上の操作を、最初の半導体
基板の位置から180゜と270゜回転させたところでも行っ
て、第1図(b)に示すように互いに向きの異なる二つ
のイオン注入領域8と9を半導体基板1内に形成した。
該領域におけるイオン濃度を調べたところ、各領域8及
び9には、各々の中心部に所定のドーズ量(1×1013cm
-2)の領域8a及び9aが形成される一方、各領域8及び9
の外周縁に沿って所定のドーズ量よりも低い(この実施
例では3/4)ドーズ量(0.75×1013cm-2)の領域8b及び9
bが形成されており、各領域8及び9にはイオン不注入
領域が形成されていないことが確認された。
Then, the above operation in the 90 ° rotation is performed even when the semiconductor substrate is rotated by 180 ° and 270 ° from the initial position of the semiconductor substrate, and two ion implantation regions 8 having different directions are formed as shown in FIG. 1 (b). And 9 were formed in the semiconductor substrate 1.
When the ion concentration in the region was examined, it was found that in each region 8 and 9, a predetermined dose amount (1 × 10 13 cm
-2 ) regions 8a and 9a are formed while each region 8 and 9a
Along the outer peripheral edge of the regions 8b and 9 having a dose amount (0.75 × 10 13 cm −2 ) lower than a predetermined dose amount (3/4 in this embodiment).
It was confirmed that b was formed, and no ion non-implanted region was not formed in each of the regions 8 and 9.

[発明の効果] 以上に説明したように、本発明の方法によれば、イオ
ン注入工程においてイオン注入予定領域内にイオン不注
入領域を生じさせることがないため、電気的特性のすぐ
れた素子を高密度に集積した高密度半導体装置を製造す
ることができる。また、本発明方法で形成されたイオン
注入領域は第1図(b)に示されるように、すべての方
向において同じ不純物分布となるので半導体基板上の素
子の向きにかかわらず、同一の素子は同一の特性を持つ
こととなり、その結果、回路設計や素子形成における困
難性や煩雑性が除かれる。
[Effects of the Invention] As described above, according to the method of the present invention, since an ion non-implanted region is not generated in the ion implantation planned region in the ion implantation step, an element having excellent electrical characteristics can be obtained. It is possible to manufacture a high-density semiconductor device integrated with high density. Further, as shown in FIG. 1 (b), the ion-implanted region formed by the method of the present invention has the same impurity distribution in all directions, so that the same element is formed regardless of the orientation of the element on the semiconductor substrate. Since they have the same characteristics, the difficulty and complexity in circuit design and element formation are eliminated as a result.

なお、実施例では半導体基板を90゜づつ順次回転させ
る場合のみを示したが、半導体基板を平面上でどのよう
に姿勢を変えるかは前記実施例の場合に限定されるもの
ではない。またスキャンの方法は静電的にイオンビーム
をスキャンする方法、半導体基板を移動させてスキャン
する方法のいずれでもよいことは当然である。
In the embodiment, only the case where the semiconductor substrate is sequentially rotated by 90 ° is shown, but how to change the posture of the semiconductor substrate on the plane is not limited to the case of the embodiment. Further, it goes without saying that the scanning method may be either a method of electrostatically scanning an ion beam or a method of moving a semiconductor substrate for scanning.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明方法で半導体基板にイオン注入を
行う場合を示した図、第1図(b)は第1図(a)に示
した状態で形成されるイオン注入領域の平面図、第2図
及び第3図は従来の方法によってイオン注入した場合に
イオン不注入領域が発生する状態を示した図であり、第
2図(a)及び第3図(a)は半導体基板の一部の断面
図、第2図(b)及び第3図(b)はイオン注入後の半
導体基板の平面図である。 1……半導体基板、2……レジスト膜、2a……開口、3
……イオンビーム、4……イオン注入領域、5……イオ
ン不注入領域、6,7……素子、6a,7a……イオン不注入領
域、8,9……イオン注入領域。
FIG. 1 (a) is a diagram showing a case where ions are implanted into a semiconductor substrate by the method of the present invention, and FIG. 1 (b) is a plane of an ion implantation region formed in the state shown in FIG. 1 (a). FIG. 2, FIG. 3 and FIG. 3 are views showing a state in which an ion non-implanted region is generated when ions are implanted by a conventional method, and FIGS. 2 (a) and 3 (a) are semiconductor substrates. 2B and 3B are plan views of the semiconductor substrate after ion implantation. 1 ... semiconductor substrate, 2 ... resist film, 2a ... opening, 3
…… Ion beam, 4 …… Ion implantation area, 5 …… Ion non-implantation area, 6,7 …… Element, 6a, 7a …… Ion non-implantation area, 8,9 …… Ion implantation area.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板に不純物をイオン注入すること
によって半導体装置を製造する方法において、該半導体
基板の結晶軸に対して所定角度傾けたイオンビームを該
半導体基板の面にスキャンした後、該半導体基板をその
軸心のまわりに実質上90゜づつ回転させ、順次、前回の
スキャンによってイオン注入が行われた領域とその隣接
領域とに対して少なくとも4回以上の等ドーズ量のイオ
ンビームを重ねてスキャンすることを特徴とする半導体
装置の製造方法。
1. A method of manufacturing a semiconductor device by ion-implanting impurities into a semiconductor substrate, comprising scanning an ion beam tilted at a predetermined angle with respect to a crystal axis of the semiconductor substrate, and then scanning the surface of the semiconductor substrate. The semiconductor substrate is rotated substantially 90 ° about its axis, and an ion beam of equal dose at least four times is sequentially applied to the region where the ion implantation was performed by the previous scan and its adjacent region. A method for manufacturing a semiconductor device, which comprises scanning in a stack.
JP60214848A 1985-09-30 1985-09-30 Method for manufacturing semiconductor device Expired - Lifetime JP2537180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60214848A JP2537180B2 (en) 1985-09-30 1985-09-30 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60214848A JP2537180B2 (en) 1985-09-30 1985-09-30 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6276617A JPS6276617A (en) 1987-04-08
JP2537180B2 true JP2537180B2 (en) 1996-09-25

Family

ID=16662543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60214848A Expired - Lifetime JP2537180B2 (en) 1985-09-30 1985-09-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2537180B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532478B2 (en) * 1987-06-26 1996-09-11 松下電器産業株式会社 Method for manufacturing semiconductor device
JP3426226B1 (en) 2002-01-10 2003-07-14 日本ライツ株式会社 Light guide member, lighting unit and instrument
US20070096245A1 (en) * 2003-06-19 2007-05-03 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method for the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927092B2 (en) * 1977-03-17 1984-07-03 三洋電機株式会社 Ion implantation method
JPS5493957A (en) * 1978-01-06 1979-07-25 Mitsubishi Electric Corp Production of semiconductor device
JPS58100350A (en) * 1981-12-08 1983-06-15 Mitsubishi Electric Corp Ion implantation device

Also Published As

Publication number Publication date
JPS6276617A (en) 1987-04-08

Similar Documents

Publication Publication Date Title
US6821834B2 (en) Ion implantation methods and transistor cell layout for fin type transistors
US5378641A (en) Electrically conductive substrate interconnect continuity region and method of forming same with an angled implant
US4918027A (en) Method of fabricating semiconductor device
US3873371A (en) Small geometry charge coupled device and process for fabricating same
US5413946A (en) Method of making flash memory cell with self-aligned tunnel dielectric area
EP0333583A2 (en) Method of producing a semiconductor device
US5936285A (en) Gate array layout to accommodate multi-angle ion implantation
JPH0834194B2 (en) Ion implantation method and method of manufacturing semiconductor device using this method
US5183768A (en) Method of fabricating semiconductor device by forming doped regions that limit width of the base
CN1029273C (en) Method of manufacturing semiconductor device, and semiconductor device obtained by this method
US20060264013A1 (en) Method for implanting ions to a wafer for manufacturing of semiconductor device and method of fabricating graded junction using the same
JP2537180B2 (en) Method for manufacturing semiconductor device
US7132340B2 (en) Application of post-pattern resist trim for reducing pocket-shadowing in SRAMs
EP0874389B1 (en) A method of producing MOSFET transistors by means of tilted implants
JP2677987B2 (en) Method for manufacturing semiconductor integrated circuit device
US20020160588A1 (en) Method of forming a junction in semiconductor device using halo implant processing
US6037203A (en) Method of fabricating a semiconductor device having triple well structure
JPS6341019A (en) Ion implatation method
JPH0399430A (en) Manufacture of semiconductor device
JPH04155932A (en) Production of semiconductor device
JPH02177426A (en) Manufacture of semiconductor wafer
JP3214191B2 (en) Method for manufacturing semiconductor device
KR100628348B1 (en) Method for implanting ions into semiconductor substrate
KR950002183B1 (en) Manufacturing method for semiconductor device
JPS63299119A (en) Ion implantation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term