JPS583337A - Temperature compensating system - Google Patents

Temperature compensating system

Info

Publication number
JPS583337A
JPS583337A JP56101058A JP10105881A JPS583337A JP S583337 A JPS583337 A JP S583337A JP 56101058 A JP56101058 A JP 56101058A JP 10105881 A JP10105881 A JP 10105881A JP S583337 A JPS583337 A JP S583337A
Authority
JP
Japan
Prior art keywords
amplifier
multiplication factor
gain
circuit
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56101058A
Other languages
Japanese (ja)
Other versions
JPS6362140B2 (en
Inventor
Shinji Kiyota
清田 眞司
Sadao Ifukuro
貞雄 衣袋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56101058A priority Critical patent/JPS583337A/en
Publication of JPS583337A publication Critical patent/JPS583337A/en
Publication of JPS6362140B2 publication Critical patent/JPS6362140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6931Automatic gain control of the preamplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Control Of Amplification And Gain Control (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To perform photoelectric conversion with the best condition, by keeping the center value of a multiple factor of a photodetector to an optimum multiple regardless of temperature change, through the provision of a means changing the gain of an amplifier of a reception circuit depending on ambient temperatures. CONSTITUTION:An optical input signal is converted into an electric signal with an avalanche photodiode ADP1 and amplified at an amplifier 2 and a peak value is detected at a peak value detection circuit 3. An optical AGC circuit 4 and an electric AGC circuit 5 are controlled with an output of the circuit 3 to control the multiplication factor of the ADP1 and the gain of the amplifier 2. The amplifier 2 of a reception circuit thus constituted is provided with thermisters 12 and 13 resistance value of which is changed with the change in ambient temperature, a signal is applied to a base of a transistor TR11, and when the ambient temperature is changed, the output terminal voltage of the emitter of the TR11 is changed according to the resistance change in the thermisters 12 and 13, the gain of the amplifier 2 is controlled, the change in the optimum multiplication factor of the ADP1 is compensated and the photo-electric conversion is made with the best condition.

Description

【発明の詳細な説明】 木兄明紘、フルAGCl用い九九/電気変換を行う受信
副路にhVhて、周囲温度の変化に拘らず8/Nを當に
最良O状態に保つこ乏ができる温14111償方式に関
するものである。
[Detailed Description of the Invention] Akihiro Kinoe discovered that it is difficult to maintain the best O state at 8/N regardless of changes in ambient temperature by using hVh in the receiving sub-path that performs multiplication/electrical conversion using full AGCl. This is related to the 14111 compensation method that can be used.

光通信システムの中継器等にお−ては、アバランシェ・
7オト・ダイオード(AFJ))t−受光素子として用
−て、受信光を光/電気変換しさらに増幅して、電気信
号からなる受信信号を発生する、受信回路が用いられる
。周知のごと(APDKFI信号の増倍作用があp′、
そのためこのような受信回路においては、APRK対す
る光A(JCjと増幅系に対する電気AGGとを併用す
る、フルAGCが用iられることが多−0 第1@はAPDを用−た受信回路の構成例を示すプ四V
り図である。同図にお−て、1はAID、2tll1幅
11、sハヒ−り検a$ll路s 4a光AGC1m路
、5は電気AGO@路で゛ある。
In repeaters of optical communication systems, avalanche
A receiving circuit is used that uses an optical diode (AFJ) as a light receiving element to perform optical/electrical conversion of received light and further amplify it to generate a received signal consisting of an electrical signal. As is well known (the multiplication effect of the APDKFI signal is p′,
Therefore, in such receiving circuits, full AGC is often used, which uses optical A (JCj) for APRK and electric AGG for the amplification system. P4V showing an example
This is a diagram. In the figure, 1 is an AID, 2 is a width of 11, s is an optical AGC path, and 5 is an electric AGO path.

第1#AICお−て、APD1紘光信号入力を受けてこ
れを光/電気変換して変換された電気信号を斃崖し、発
生し大電気信号は増幅器1におiで増幅されて出力を発
生する。増幅@20a&力はピーク検出回路5にお−て
そのビーII[t4Ilk量される。
The 1st #AIC receives the optical signal input from the APD 1, converts it into electricity and converts the converted electrical signal, and the generated large electrical signal is amplified by the amplifier 1 and outputted. Occur. The amplification@20a&power is detected by the peak detection circuit 5 by the amount of the beam II[t4Ilk.

ピーク検出回路5の出力にようて光AGC−踏4を介し
てAID I C)バイアス電圧を変化さ讐ることによ
うてAPD10増僑率Mf制御し、同時にピーク検出囲
路JsO出力によって電気AGO關路5を介して増幅器
2の利得を制御することによりてフルAGCが行われて
、増幅II2の出力における信号振幅は、光入力レベル
の変化に拘らず一定に保光れる。こ0llI増幅器2に
おける利得紘、通常の先入力レベルにおいては最大〇−
一定値制御され、光入力レベルの変動に対しては、主と
して光jLGC回路4を介してAID 10増倍率Mを
変化させゐことKようて、ムGC作用が行われる。光入
力レベルが上昇してAID j O増倍率変化によるA
GCの限界を超えたときは、電気AGC回路4vt介し
て増幅器2の利得を変化させて、出力信号振幅を一定に
保つ。
According to the output of the peak detection circuit 5, the AID I C) bias voltage is changed through the optical AGC-step 4, and the APD 10 density increase rate Mf is controlled accordingly, and at the same time, the electric AGO is controlled by the output of the peak detection circuit JsO. Full AGC is performed by controlling the gain of amplifier 2 via link 5, so that the signal amplitude at the output of amplifier II2 remains constant regardless of changes in the optical input level. The gain value of the amplifier 2 is maximum 0- at the normal pre-input level.
It is controlled to a constant value, and in response to fluctuations in the optical input level, the AID 10 multiplication factor M is changed mainly through the optical JLGC circuit 4, so that the MGC function is performed. A due to increase in optical input level and AID j O multiplication factor change
When the GC limit is exceeded, the gain of the amplifier 2 is changed via the electric AGC circuit 4vt to keep the output signal amplitude constant.

第H1a、落1図の受信回路における光入力レベルとム
?Dの増倍率MfIPよび増幅器の利得Gとの関係の−
゛例を示している。同図にみられるごとく、光入力レベ
ルが小さめと電線利得Gはゼロに近い一定値で6シ、光
入力レベルが上昇するに伴って増倍率Mが低下する。光
入力レベルが大11iときは、増倍率M紘一定値1とな
ル、光入力レベルがさらに上昇するに伜、て利得Gが負
の値をとって低下すゐ。乙のようなAGCが行われる結
果、#11図の受信回路においては、光入力レベルの変
化に拘らず、増幅囲路2における出力信号振幅は一定に
保たれる。
What is the optical input level and modulus in the receiving circuit of Figure H1a and Figure 1? The relationship between the multiplication factor MfIP of D and the amplifier gain G is -
゛It shows an example. As seen in the figure, when the optical input level is small, the wire gain G is a constant value close to zero, and as the optical input level increases, the multiplication factor M decreases. When the optical input level is high 11i, the multiplication factor M is a constant value of 1, and as the optical input level further increases, the gain G takes a negative value and decreases. As a result of performing AGC as shown in Figure B, in the receiving circuit shown in Figure #11, the output signal amplitude in the amplifier circuit 2 is kept constant regardless of changes in the optical input level.

一方、APDFI雑音(暗電流)を琵生し、その値は増
倍率Mによって変化することが知られている。
On the other hand, it is known that APDFI noise (dark current) is generated and its value changes depending on the multiplication factor M.

すなわちAPDは個有の崎最大となる増倍率(最適増倍
率Mope )を有する。例えば長波長(波長1.5声
程度)のゲルマニウムムPDKおけるM・ν8拡10〜
20である。従って第1wJK示されたごと龜受信回路
においては、APDlの増倍率MのAGC動作における
中心値は、一般に、標準となる動作状態において最適増
倍率M・t#に等しくなるようにとられる。
That is, the APD has a unique maximum multiplication factor (optimal multiplication factor Mope). For example, in a germanium PDK with a long wavelength (about 1.5 tones), M ν8 expansion 10~
It is 20. Therefore, in the receiving circuit shown in the first wJK, the central value of the multiplication factor M of APDl in the AGC operation is generally set to be equal to the optimum multiplication factor M·t# in the standard operating state.

しかしながらAPDの最適増倍率M・ptas温1によ
りても変化する。例えば前述の長練長ゲルマニクムAF
J)において紘、常温で最適増倍率に@ptを設定した
場合、温度が上昇するに停って最適増倍率M・pt I
d低下し、温度が低下すれば逆に上昇する。従来は受信
回路におけるAIDの増倍率Mの中心値線、周lll1
1度の変化に拘らず一定にとられてIn魁そのため周囲
温度が標準状態から変化し大場會、 AIDの増倍率M
の中心値が、最適増倍率M・itと異なる状態になる欠
点があり光。
However, it also changes depending on the optimum multiplication factor M·ptas temperature 1 of APD. For example, the above-mentioned long steel germanicum AF
In J), if @pt is set as the optimum multiplication factor at room temperature, as the temperature rises, the optimum multiplication factor M・pt I
d decreases, and if the temperature decreases, it will conversely increase. Conventionally, the center value line of the multiplication factor M of AID in the receiving circuit, the circumference lll1
Therefore, the ambient temperature changes from the standard state and the AID multiplication factor M
There is a drawback that the center value of light is different from the optimum multiplication factor M.it.

本発明はこのような従来技術の欠点を除去しようとす基
ものであって、そのl釣線、周園温JIIが変化しても
受光素子としてのAIDの増倍率Mの中心値を、當にそ
の温度における最適増倍率KepgK保つことがでII
5従うて受信回路を常にその温度におけるル貨最良の状
態Km持することができる方式を提供することにある。
The present invention is based on an attempt to eliminate such drawbacks of the prior art, and it is possible to maintain the center value of the multiplication factor M of the AID as a light receiving element even if the fishing line and ambient temperature JII change. Keeping the optimum multiplication factor KepgK at temperature II
5. Therefore, it is an object of the present invention to provide a system that can always keep a receiving circuit in the best condition at that temperature.

本発明の温度補償方式紘、周囲温度の変11bKよって
ムpnの最適増倍率Mgtが変化し比場合、増幅器の利
:′得を変化させることによって、出力信号振幅【一定
に保つとともにAIDの増倍率の中心値が常にその温直
における最適増倍率M@pgkなるように制御するもの
である。
According to the temperature compensation method of the present invention, when the optimum multiplication factor Mgt of the pn changes due to a change in the ambient temperature, the output signal amplitude can be kept constant and the AID can be increased by changing the gain of the amplifier. Control is performed so that the central value of the magnification is always the optimum multiplication factor M@pgk at that temperature.

以下、実施例にりいて本発明を詳細KW&Hする。Hereinafter, the present invention will be explained in detail with reference to Examples.

第5lII紘、本発明の温度補償方式の一実施例【示し
、菖1図に示され九受信崗路におiて、増幅器2に含ま
れる一部の増幅用トランジスタの利得を変化させて温度
補償を行う場合を示して−る。
An embodiment of the temperature compensation method of the present invention is shown in Fig. This shows the case where compensation is provided.

IIs図KThlnテ、11はトランジ、*#、12.
11ijサーンスタ、14.15は抵抗である。サーミ
スタ12.13d受光素子として使用されるメ?Dの特
性に応じて、iずれか一方のみを使用してもよめ0例え
ば前述の長゛波畏ゲルマニウムAIDの場合は、サーミ
スタ12を使用せずその部分を短絡し、サーミスタ13
のみを使用する。
IIs diagram KThlnte, 11 is transition, *#, 12.
11ij and 14.15 are resistors. Thermistor 12.13dMean used as a light receiving element? Depending on the characteristics of D, only one of i may be used. For example, in the case of the long wave germanium AID described above, the thermistor 12 is not used and that part is shorted, and the thermistor 13 is
Use only.

#Ii図K”sP%/−&て、信号はトランジスタ11
のペースに入力され、コレクタから出力される。周囲温
度が変化するとt−iスーj2,15の内部抵抗が変化
し、従ってHs図の回路における入力と出力との間の利
得が変化して、コレクタにかける出力レベルが変化する
。周囲温度の変化に対する無5lllの回路における利
得変化が、周囲温度の変化に基づ(APRの最適増倍率
に@ptの変化を補償するように、第1@lの回路にお
けるサーiスタ12.15の**およびその他の部品定
数を選んでおくことによつて、周一温度の変化によって
APRの最適増倍率y・p#の値が変化しても、APD
Kおける増倍事の中心値が常にその温1における最適増
倍率y・ν霧であシ、かつ増幅器の出力信号振幅が一定
に保光れるように1第1111の受信回路KThけるム
GC励作を行わせることができる。
#Ii diagram K"sP%/-&, the signal is the transistor 11
input to the page and output from the collector. When the ambient temperature changes, the internal resistance of the t-i switch 2,15 changes, and therefore the gain between the input and output in the circuit of the Hs diagram changes, and the output level applied to the collector changes. The gain change in the circuit of 12.1 in the first circuit is such that the gain change in the circuit of 12. By selecting ** in No. 15 and other component constants, even if the value of the APR optimum multiplication factor y/p# changes due to a change in temperature, the APD
The 1st 1111 receiving circuit KTh is connected to the GC excitation so that the center value of the multiplication at K is always the optimum multiplication factor y·ν at the temperature 1, and the amplitude of the output signal of the amplifier is kept constant. can be made to work.

第4図は本発明の温度補償方式の他の実施例を示し、第
1図において、電気AG(: @路5から入力される制
御電圧−に対して温度補償t−施して、増幅器2におけ
る利得制御を行う場合を示してiる。
FIG. 4 shows another embodiment of the temperature compensation system of the present invention. In FIG. Figure i shows a case where gain control is performed.

第411において、旧は制御電圧入力端子、22゜23
、24.25はサーミスタを九拡ダイオード、26Ii
ト2ンジスタ、27はパリオロッサ、28.29. S
o。
In the 411th, the old control voltage input terminal, 22°23
, 24.25 replaces the thermistor with a nine-enlarged diode, 26Ii
Tondista, 27 is Paliorossa, 28.29. S
o.

51.52紘抵抗、  55紘信号入力端子、54は信
号出力端子である。サーミスタ22.25.24.25
紘受光素子として使用されるAIDの特性に応じて、−
ずれか1個所または2個所を使用する0例えば前述の長
波長ゲルマニウムダイオードの場合紘、サー(スタ22
のみt用−て他の部分は短絡するか、まえはサーンスタ
24のみt使用して他の部分を短絡する。また社す−ン
スタ22.24 t−組合わせて用いることもできる。
51, 52 is a Hiro resistor, 55 is a Hiro signal input terminal, and 54 is a signal output terminal. Thermistor 22.25.24.25
Depending on the characteristics of the AID used as a photodetector, -
For example, in the case of the long wavelength germanium diode mentioned above, the sensor (star 22) is used.
Either use only the sensor 24 and short-circuit the other parts, or use only the sensor 24 and short-circuit the other parts. Moreover, it can also be used in combination with the company star 22.24t.

&t+P第4図におiて、サー櫂スタの代)に感温性の
ダイオードを使用してもよ一0第411において、端子
21から入力し大制御電圧6は、抵抗28.サーミスタ
22.抵抗29.サーンスタ2Sからなる分圧器で分圧
器れる1分圧され大電圧はトランジスタ260ペースに
加えられ、これによってトランジスタ26の内部抵抗が
変化し、従うて電源Y#−から抵抗52.パリオロツt
27.サーミスタ25.抵抗51.トランジスタ26.
抵抗50゜サーミスタ24を経て接地KfILれる電流
値が変化する。バリオロッサ27はそれに流れる電流に
よって迩抗値が大幅に変化する。従って端子SSから入
力して端子34に出力する信号に対して与えられる損失
が変化して、jlImにつ−で説−し良ようなAGC動
作が行われる。この際、サーミスタ22.25゜24、
25拡周囲温度によりてその抵抗値が変化し、従ってl
14wAの回路における利得(損失)は温度によって変
化する。周囲温度の変化に対する嬉4図の回路における
利得変化が、周一温度の変化に基づ(AIDの最適増倍
率Ma%の変化を補償するように%1lX4Hの回路に
おけるナー(x I 22$ 25−24、25の特性
およびその他の部品定数を選んでおくことによって、第
11Ilの受信回路にお−で、所要の温度補償方式して
AGC動作を行わせることができる。
&t+P In FIG. Thermistor 22. Resistance 29. A large voltage divided by 1 and divided by a voltage divider consisting of Sernstar 2S is applied to the transistor 260, thereby changing the internal resistance of the transistor 26, and thus from the power supply Y#- to the resistor 52. Paliorotsu t
27. Thermistor 25. Resistance 51. Transistor 26.
The value of the current flowing to ground KfIL via the 50° thermistor 24 changes. The resistance value of the variosser 27 changes significantly depending on the current flowing through it. Therefore, the loss applied to the signal input from the terminal SS and output to the terminal 34 changes, and the AGC operation as explained in connection with jlIm is performed. At this time, thermistor 22.25°24,
25 The resistance value changes depending on the expanded ambient temperature, so l
The gain (loss) in a 14 wA circuit varies with temperature. The gain change in the circuit of Figure 4 with respect to the change in ambient temperature is based on the change in temperature (x I 22$ 25- By selecting the characteristics of 24 and 25 and other component constants, it is possible to cause the 11th Il receiving circuit to perform AGC operation using the required temperature compensation method.

以上説明し比ように本発明の温度補償方式、JIcよれ
ば、周囲温度が変化しても、受光素子であるAIDの増
倍率Mの中心値を富にその温1f!Kかける最適増倍率
M・ptに保りてiac@作を行わせることができる。
As explained above, according to the temperature compensation method of the present invention, JIc, even if the ambient temperature changes, the central value of the multiplication factor M of the AID, which is the light receiving element, is adjusted to 1f! The iac@ production can be performed while maintaining the optimum multiplication factor M·pt multiplied by K.

従って本発明の方式によれば、受信−路を常にその温直
における勢最良の状態で動作させることができるので、
同線品質向上の九めに極めて効果的である。
Therefore, according to the method of the present invention, the receiving path can always be operated in its best condition, so that
This is extremely effective in improving line quality.

【図面の簡単な説明】[Brief explanation of the drawing]

[111は光受信囲路の構成例を示すブロック図、1E
211は光入力レベルと増倍率Mおよび利得Gとの関係
の一例を示す図、第sgおよび$1411はそれぞれ本
発明の温度補償方式の一実施例の構成を示す回路層であ
る、。 1・・・アバランシェ・フォト・ダイオード(API)
)%2・・・増幅器、5・・・ピーク検出回路、4・・
・光AGO@路、5・・・電気AGOa路、11・・・
トランジスタ%12゜15・・・1−1スタ、  14
; 15−抵抗、21・・・制御入力端子、22.25
.24.25川サーミスタまたはダイオード% 26°
・・トランジスタ、27・・・バリオ口yt。 2B、 29.3G、 31.52・・・抵抗、55・
・・信号出力端子、54・・・信号出力端子 特許出願人富士通株式会社 代垣人弁理士玉蟲久五部 (外5名)
[111 is a block diagram showing an example of the configuration of the optical reception circuit, 1E
211 is a diagram showing an example of the relationship between the optical input level, the multiplication factor M, and the gain G, and sg and $1411 are circuit layers each showing the configuration of an embodiment of the temperature compensation system of the present invention. 1... Avalanche photo diode (API)
)%2...Amplifier, 5...Peak detection circuit, 4...
・Light AGO@ro, 5...Electric AGOa road, 11...
Transistor%12゜15...1-1 star, 14
; 15-resistance, 21... control input terminal, 22.25
.. 24.25 river thermistor or diode% 26°
...transistor, 27...vario mouth yt. 2B, 29.3G, 31.52...Resistance, 55.
...Signal output terminal, 54...Signal output terminal Patent applicant Fujitsu Ltd. Yagaki Patent attorney Gobe Tamamushi (5 others)

Claims (1)

【特許請求の範囲】[Claims] 受光素子としてアバランシェ・フォト・ダイオードを用
埴受光素子の増倍率を制御する光AGcと増幅器の利得
を制御する電気AGcとを併用して出力信号振幅を一定
にする光受信回路にお−て、増@器の利得を周−温[に
応じて変化させる手段を設け、受光素子における増倍率
の中心値を周■温KO変動に拘らず鋏受光素子のその温
度における最適増倍率に保つようにしたこと1**とす
る温度補償方式。
In an optical receiver circuit that uses an avalanche photodiode as a light-receiving element and uses both an optical AGc to control the multiplication factor of the light-receiving element and an electric AGc to control the gain of the amplifier, the output signal amplitude is kept constant. A means is provided to change the gain of the intensifier according to the ambient temperature, so that the center value of the multiplication factor in the light receiving element is maintained at the optimum multiplication factor at that temperature for the scissors light receiving element, regardless of ambient temperature fluctuations. Temperature compensation method that does 1**.
JP56101058A 1981-06-29 1981-06-29 Temperature compensating system Granted JPS583337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56101058A JPS583337A (en) 1981-06-29 1981-06-29 Temperature compensating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56101058A JPS583337A (en) 1981-06-29 1981-06-29 Temperature compensating system

Publications (2)

Publication Number Publication Date
JPS583337A true JPS583337A (en) 1983-01-10
JPS6362140B2 JPS6362140B2 (en) 1988-12-01

Family

ID=14290508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56101058A Granted JPS583337A (en) 1981-06-29 1981-06-29 Temperature compensating system

Country Status (1)

Country Link
JP (1) JPS583337A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370223A (en) * 1989-08-09 1991-03-26 Fujitsu Ltd Minimum light receiving level stabilizing method for light receiving circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370223A (en) * 1989-08-09 1991-03-26 Fujitsu Ltd Minimum light receiving level stabilizing method for light receiving circuit

Also Published As

Publication number Publication date
JPS6362140B2 (en) 1988-12-01

Similar Documents

Publication Publication Date Title
US4029976A (en) Amplifier for fiber optics application
JP4590974B2 (en) Optical receiver circuit
US6603110B2 (en) Temperature compensating circuit, temperature compensating logarithm conversion circuit and light receiver
JP4223304B2 (en) Optical receiver
US6919716B1 (en) Precision avalanche photodiode current monitor
JPS583337A (en) Temperature compensating system
JP2001068943A (en) Temperature compensation circuit, temperature compensated logarithmic conversion circuit and optical receiver
JPS5873251A (en) Optical reception circuit
EP1372261A1 (en) Control loop apparatus, current measuring circuit apparatus and methods therefor
JPS59230307A (en) Optical receiver
JPS6210939A (en) Gain control system for avalanche photodiode
JPS58165020A (en) Photoelectric converter
JP2674110B2 (en) Temperature compensation circuit for avalanche photodiode bias circuit
JP3299576B2 (en) Optical space communication device
JP2848495B2 (en) Optical receiver
JP2002217833A (en) Optical receiver
JP3039568B2 (en) Optical receiving circuit
EP0903564A2 (en) High-temperature two-wire photocurrent detector circuit
JPS6146075B2 (en)
JP2536412B2 (en) Optical AGC circuit
JPH098744A (en) Bias system for avalanche photodiode
JPH04265004A (en) Apd bias voltage control circuit
JPH07183559A (en) Electric supply circuit for particularly apd
JPS6014293B2 (en) optical receiver circuit
JP2002344077A (en) Wavelength holding circuit for light source