JPS6079839A - Optical reception circuit - Google Patents

Optical reception circuit

Info

Publication number
JPS6079839A
JPS6079839A JP58186949A JP18694983A JPS6079839A JP S6079839 A JPS6079839 A JP S6079839A JP 58186949 A JP58186949 A JP 58186949A JP 18694983 A JP18694983 A JP 18694983A JP S6079839 A JPS6079839 A JP S6079839A
Authority
JP
Japan
Prior art keywords
circuit
temperature
apd
preamplifier
apd7
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58186949A
Other languages
Japanese (ja)
Inventor
Osamu Kono
修 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58186949A priority Critical patent/JPS6079839A/en
Publication of JPS6079839A publication Critical patent/JPS6079839A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/691Arrangements for optimizing the photodetector in the receiver
    • H04B10/6911Photodiode bias control, e.g. for compensating temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Optical Communication System (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the compensating accuracy of temperature characteristics of an avalanche diode by connecting a preamplifier taking an FET as front end and a bias voltage generating circuit to the avalanche photodiode. CONSTITUTION:The cathode of the avalanche photodiode APD7 is connected to the preamplifier circuit 10 taking an FET11 as a front end via a capacitor C1. The circuit 10 is a feedback amplifier and a resistor R8 is transfer impedance. The anode of the APD7 is connected to the bias generating circuit 60 via a resistor R5. The circuit 60 consists of the temperature compensating circuit including a DC amplifier circuit 61 and a diode 63 and resistors R1-R4 are set so that the temperature characteristic of a bias voltage compensates the temperature characteristic of the APD7. Since the circuit 10 is formed by using an FET front end, the optimum amplification factor of the APD is decreased to attain ease of temperature compensation.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は光受信回路に関し、特に、アバランシェホトダ
イオード(以下、 APDと略称す)を受光素子とする
光受信回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical receiving circuit, and more particularly to an optical receiving circuit using an avalanche photodiode (hereinafter abbreviated as APD) as a light receiving element.

従来技術 APDを受光素子とする光受信回路の回路構成はtAP
DO増倍率Mの制御方法により、 (A)全AGC方式
The circuit configuration of an optical receiver circuit using a conventional APD as a light receiving element is tAP.
Depending on the method of controlling the DO multiplication factor M, (A) All AGC method.

(B) M固定方式に分けられる。(B) Divided into M fixed method.

全AGC方式は、第1図に示すように、受光電力の変動
およびAPDの温度特性を、前置増幅回路(APDを含
む)1.受信増幅回路2.♂−り検出回路3.及び高圧
発生回路4の負帰景ルーツによって補償する方法であシ
、受光電力の変動および温度変化に対しても安定な受信
特性が得られる。
As shown in FIG. 1, the all-AGC method uses a preamplifier circuit (including the APD) 1. Reception amplifier circuit 2. ♂-ri detection circuit 3. In this method, compensation is performed using the negative background roots of the high voltage generation circuit 4, and stable reception characteristics can be obtained even with fluctuations in received light power and temperature changes.

なお、第1図の5は受信増幅回路2の出力を受ける識別
回路を示している。しかし、 AGCループに時定数が
あるために、電源投入時の立上シ時間および受光電力が
急激に変動した場合の回復時間が長くなる欠点がある。
Note that 5 in FIG. 1 indicates an identification circuit that receives the output of the reception amplifier circuit 2. However, since the AGC loop has a time constant, it has the drawback that the startup time when the power is turned on and the recovery time when the received light power fluctuates rapidly are lengthened.

これに対し2M固固定式は、第2図に示すように、 A
PDに固定バイアスを与える方法であるが。
On the other hand, the 2M fixed type, as shown in Figure 2,
This is a method of giving a fixed bias to the PD.

当然APDの温度特性を温度補償型バイアス発生回路6
で補償する必要がある。この方式の長所は。
Naturally, the temperature characteristics of the APD are determined by the temperature compensated bias generation circuit 6.
need to be compensated for. What are the advantages of this method?

AGCループが無いため、電源投入時の立上シ時間が短
く、受光電力の変動に対しても高速に応答するという点
である。このために、データ通信システム等において受
光電力の変動に対する応答速度を極力速くしたい場合に
は、極めて有効々方式であるx所は、固定バイアス法で
あるためAPDの温度特性を十分補償しないと、受信特
性が温度変化により劣化するという点である。
Since there is no AGC loop, the startup time when the power is turned on is short, and it responds quickly to fluctuations in the received light power. For this reason, if you want to make the response speed as fast as possible to fluctuations in received light power in a data communication system, etc., the fixed bias method is an extremely effective method, so it is necessary to sufficiently compensate for the temperature characteristics of the APD. The problem is that the reception characteristics deteriorate due to temperature changes.

本発明は1M固固定式において、 APDの温度特性の
補償精度を向上させる回路方式に関するものである。
The present invention relates to a circuit system for improving the compensation accuracy of the temperature characteristics of an APD in a 1M fixed type.

以下、従来のM固定方式の光受信回路の具体的回路構成
および欠点について説明する。
The specific circuit configuration and drawbacks of the conventional M-fixed type optical receiving circuit will be described below.

従来1M固固定式の光受信回路において、前置増幅回路
1はバイポーラトランジスタをフロントエンドとしてい
る。この理由は■APDを受光素子とする受信器の受信
感度はAPDのショット雑音で決定され増幅回路の雑音
は二次的要因にすぎない■一般にバイポーラトランジス
タによる構成の方が広帯域性が得られる2等の理由によ
る。
In the conventional 1M fixed optical receiver circuit, the preamplifier circuit 1 has a bipolar transistor as its front end. The reason for this is: ■ The receiving sensitivity of a receiver that uses an APD as a light-receiving element is determined by the shot noise of the APD, and the noise of the amplifier circuit is only a secondary factor. ■ In general, a configuration using bipolar transistors provides a wider band2. Due to reasons such as.

しかし、この回路構成では2次に述べる理由によシ、 
APDの温度特性を精度良く補償することが困難になシ
、受信感度の劣化をもたらす。すなわち・最大受信感度
を得るための最適増倍率Moptは増幅回路の熱雑音B
と次の関係にある。
However, with this circuit configuration, due to the second reason,
It becomes difficult to accurately compensate for the temperature characteristics of the APD, resulting in deterioration of reception sensitivity. In other words, the optimum multiplication factor Mopt for obtaining the maximum receiving sensitivity is the thermal noise B of the amplifier circuit.
has the following relationship.

ここで、X:過剰雑音指数、 −h−: ffルッマ定
数T:絶対温度、 R: APDの負荷抵抗、 N (
f) :増幅回路の雑音特性、 Heq (f) :等
化特性。
Here, X: Excess noise figure, -h-: ff Lumma constant T: Absolute temperature, R: APD load resistance, N (
f): Noise characteristics of the amplifier circuit, Heq (f): Equalization characteristics.

上式は熱雑音Bが大きくなると最適増倍率Moptも大
きくなることを示している。バイポーラトランジスタを
前置増幅回路1のフロントエンドとする構成の場合、入
力インピーダンスあるいは、伝達インピーダンスが十分
大きくとれないために。
The above equation shows that as the thermal noise B increases, the optimum multiplication factor Mopt also increases. In the case of a configuration in which a bipolar transistor is used as the front end of the preamplifier circuit 1, the input impedance or transfer impedance cannot be made sufficiently large.

電界効果トランジスタ(以下、 FETと略称す)の場
合に比較して熱雑音Bが大きくなる。従って。
Thermal noise B is larger than in the case of a field effect transistor (hereinafter abbreviated as FET). Therefore.

最適増倍率Moptが犬きくな、j) 、 APDのバ
イアス電圧が降服電圧に近づくために、温度補償が困難
になる。特に5i−APDを使用するディジタル光受信
回路の場合には、最適増倍率Moptは100〜200
程度になシ、このような大きな最適増倍率Moptにお
いて精度よく温度補償することが困難となる。
If the optimum multiplication factor Mopt is too low, the temperature compensation becomes difficult because the bias voltage of the APD approaches the breakdown voltage. Especially in the case of a digital optical receiver circuit using 5i-APD, the optimum multiplication factor Mopt is 100 to 200.
To some extent, it becomes difficult to accurately compensate for the temperature at such a large optimum multiplication factor Mopt.

発明の目的 本発明の目的は、光受信回路の受信感度を最大にする最
適増倍率Moptの状態においてAPDの温度特性を精
度良く補償し、温度変化に対しても安定な受信特性を有
するM固定方式の光受信回路を提供することにある。
OBJECTS OF THE INVENTION It is an object of the present invention to accurately compensate for the temperature characteristics of an APD in the state of the optimum multiplication factor Mopt that maximizes the receiving sensitivity of the optical receiving circuit, and to provide a fixed M device that has stable receiving characteristics even with temperature changes. The object of the present invention is to provide an optical receiving circuit based on the method.

発明の構成 本発明の光受信回路は、 APDを受光素子とする光受
信回路において、前記APDに接続されFETをフロン
トエンドとする前置増幅回路および前記APDにバイア
ス電圧を供給し前記APDの温度特性を補償するバイア
ス発生回路を構成要素とすることを特徴とする。
Structure of the Invention The optical receiving circuit of the present invention includes an optical receiving circuit that uses an APD as a light receiving element, and includes a preamplifier circuit that is connected to the APD and has an FET as a front end, and a preamplifier circuit that supplies a bias voltage to the APD and adjusts the temperature of the APD. It is characterized by having a bias generation circuit that compensates for the characteristics as a component.

このように1本発明においては前置増幅回路をFETフ
ロントエンドで構成することに最大の特徴があり、最適
増倍率Moptが小さくなるためにAPDの温度補償が
容易になる。例えば、伝送速度が数Mb/sの受信回路
を考えると、 FETフロントエンドの場合、バイポー
ラトランジスタの場合に比較して前置増幅回路の入力イ
ンピーダンスあるいは伝達インピーダンスを10倍以上
大きくできるため。
As described above, the greatest feature of the present invention is that the preamplifier circuit is configured with an FET front end, and since the optimum multiplication factor Mopt is reduced, temperature compensation of the APD is facilitated. For example, considering a receiving circuit with a transmission speed of several Mb/s, in the case of a FET front end, the input impedance or transfer impedance of the preamplifier circuit can be made more than 10 times larger than in the case of a bipolar transistor.

(1)式によシ、最適増倍率Moptは1/3程度にな
る。
According to equation (1), the optimum multiplication factor Mopt is approximately 1/3.

発明の実施例 第3図に本発明の実施例を示す。Examples of the invention FIG. 3 shows an embodiment of the present invention.

APD 7のカソードはコンデンサCI を介して。The cathode of APD 7 is connected via capacitor CI.

FET 11をフロントエンドとする前置増幅回路10
に接続される。前置増幅回路10は帰還型増幅器であり
、抵抗R8が伝達インピーダンスである。APD 7の
アノードは抵抗R5を介してバイアス発生回路60に接
続される。バイアス発生回路60は、直流増幅回路61
とダイオード63を含む温度補償回路によシ構成される
。抵抗R1〜R4はバイアス電圧の温度特性がAPD 
7の温度特性を補償するように設定される。
Preamplifier circuit 10 with FET 11 as front end
connected to. The preamplifier circuit 10 is a feedback amplifier, and the resistor R8 is a transfer impedance. The anode of APD 7 is connected to bias generation circuit 60 via resistor R5. The bias generation circuit 60 includes a DC amplifier circuit 61
The temperature compensation circuit includes a diode 63 and a diode 63. The temperature characteristics of the bias voltage of resistors R1 to R4 are APD.
It is set to compensate for the temperature characteristics of 7.

本実施例によると、5i−APDに対しては一定の温度
補償ゲイン(R,〜R4)に設定しても、受信特性の温
度変動を1〜2 dBm程度のバラツキに抑えることが
できる。
According to this embodiment, even if a constant temperature compensation gain (R, to R4) is set for the 5i-APD, temperature fluctuations in reception characteristics can be suppressed to about 1 to 2 dBm.

発明の効果 以上の説明から明らかなように2本発明のM固定方式光
受信回路においては1個々のAPDに対して温度補償回
路の調整を行なわなくても、全AGC方式と同程度に安
定な受信特性が得られる。従って・受信電力の変動に対
する高速応答性というM固定方式の本来の長所を生がし
て、データ通信システム等に幅広く応用することができ
る。
Effects of the Invention As is clear from the above explanation, the M fixed type optical receiver circuit of the present invention can achieve the same level of stability as the entire AGC type without adjusting the temperature compensation circuit for each APD. Reception characteristics can be obtained. Therefore, it is possible to take advantage of the inherent advantage of the fixed M system, such as high-speed response to fluctuations in received power, and to apply it to a wide range of data communication systems and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は全AGC方式の光受信回路の構成を示すブロッ
ク図、第2図はM固定方式の光受信回路の構成を示すブ
ロック図、第3図は本発明による一実施例の構成を示す
回路図である。 1・・・前置増幅回路(APDを含む)、2・・・受信
増@回路、3・・・ピーク検出回路、4・・・高圧発生
回路。 5・・・識別回路、6・・・温度補償型バイアス発生回
路。 7・・・アバシンシェホトダイオード(APD ) 、
 10・・・本発明による前置増幅回路、11・・・電
界効果トランジスタ(FET ) 、 12 、13・
・・パイポー2トランジスタ、60・・・温度補償型バ
イアス発生回路・61・・・TM、流増幅a 、 62
・・・基準電圧、63・・・ダイオードeR1〜RIG
・・・抵抗IC1+C2・・・コンデンサ。
FIG. 1 is a block diagram showing the configuration of an optical receiving circuit for all AGC systems, FIG. 2 is a block diagram showing the configuration of an M fixed optical receiving circuit, and FIG. 3 shows the configuration of an embodiment according to the present invention. It is a circuit diagram. 1... Preamplifier circuit (including APD), 2... Receiving boost @ circuit, 3... Peak detection circuit, 4... High voltage generation circuit. 5... Identification circuit, 6... Temperature compensated bias generation circuit. 7...Abacinche photodiode (APD),
10... Preamplifier circuit according to the present invention, 11... Field effect transistor (FET), 12, 13...
... Pipo 2 transistor, 60... Temperature compensated bias generation circuit, 61... TM, current amplification a, 62
...Reference voltage, 63...Diode eR1~RIG
...Resistor IC1+C2...Capacitor.

Claims (1)

【特許請求の範囲】[Claims] ]、アバランシェホトダイオードを受光素子とする光受
信回路において、前記アバランシェホトダイオードに接
続され電界効果トランジスタをフロントエンドとする前
置増幅回路と、前記アバランシェホトダイオードにバイ
アス電圧を供給し、前記アバランシェホトダイオードの
温度4?性を補償する温度補償型バイアス発生回路を有
する光受信回路。
], in an optical receiving circuit having an avalanche photodiode as a light receiving element, a preamplifier circuit connected to the avalanche photodiode and having a field effect transistor as a front end; ? An optical receiver circuit with a temperature-compensated bias generation circuit that compensates for
JP58186949A 1983-10-07 1983-10-07 Optical reception circuit Pending JPS6079839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186949A JPS6079839A (en) 1983-10-07 1983-10-07 Optical reception circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186949A JPS6079839A (en) 1983-10-07 1983-10-07 Optical reception circuit

Publications (1)

Publication Number Publication Date
JPS6079839A true JPS6079839A (en) 1985-05-07

Family

ID=16197540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186949A Pending JPS6079839A (en) 1983-10-07 1983-10-07 Optical reception circuit

Country Status (1)

Country Link
JP (1) JPS6079839A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297963A (en) * 1986-06-18 1987-12-25 Fujitsu Ltd Allocating circuit for time slot
JPS6349839U (en) * 1986-09-18 1988-04-04
JPS6422122A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Light reception circuit
JPH0191508A (en) * 1987-10-01 1989-04-11 Nec Corp Current amplifier for photo diode sensor
US5625181A (en) * 1994-01-12 1997-04-29 Fujitsu Limited Light-receipt system with current bias circuit and pre-amplifier for use in optical digital communication

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62297963A (en) * 1986-06-18 1987-12-25 Fujitsu Ltd Allocating circuit for time slot
JPS6349839U (en) * 1986-09-18 1988-04-04
JPS6422122A (en) * 1987-07-17 1989-01-25 Fujitsu Ltd Light reception circuit
JPH0191508A (en) * 1987-10-01 1989-04-11 Nec Corp Current amplifier for photo diode sensor
US5625181A (en) * 1994-01-12 1997-04-29 Fujitsu Limited Light-receipt system with current bias circuit and pre-amplifier for use in optical digital communication

Similar Documents

Publication Publication Date Title
JP5138990B2 (en) Preamplifier and optical receiver
JPH05304422A (en) Preamplifier for optical communication
US4882482A (en) Thermally stabilized optical preamplifier
US6778021B2 (en) Wide dynamic range transimpedance amplifier with a controlled low frequency cutoff at high optical power
JPH08242127A (en) Optical trans-impedance receiver with compensation circuit
JP2653018B2 (en) Transimpedance type amplifier circuit
US6879217B2 (en) Triode region MOSFET current source to bias a transimpedance amplifier
JPS6079839A (en) Optical reception circuit
CN116633284A (en) High-gain transimpedance amplifier and high-gain photoelectric converter
US6844784B1 (en) Wide dynamic range transimpedance amplifier
US5087892A (en) Gain stabilizing amplifier
JPH04274607A (en) Pre-amplifier
JPH06244801A (en) Optical receiver
US6121834A (en) Signal compressing apparatus
PL89521B1 (en)
US6759900B1 (en) High bandwidth and wide dynamic range preamplifier with high stability
JP2536412B2 (en) Optical AGC circuit
JPS58165020A (en) Photoelectric converter
JP2662216B2 (en) Optical receiving circuit
JP3470887B2 (en) Photoelectric conversion circuit
JPH06314815A (en) Apd bias circuit
JPH0732370B2 (en) APD light receiving circuit
JPH03106133A (en) Optical transmission circuit
JPH0644197Y2 (en) Optical receiver
JP2003174337A (en) Optical receiver circuit