JPS5833363A - Producing circuit of synchronizing signal - Google Patents

Producing circuit of synchronizing signal

Info

Publication number
JPS5833363A
JPS5833363A JP13023181A JP13023181A JPS5833363A JP S5833363 A JPS5833363 A JP S5833363A JP 13023181 A JP13023181 A JP 13023181A JP 13023181 A JP13023181 A JP 13023181A JP S5833363 A JPS5833363 A JP S5833363A
Authority
JP
Japan
Prior art keywords
signal
phase
subcarrier
output
reference signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13023181A
Other languages
Japanese (ja)
Inventor
Iwao Ayusawa
鮎沢 「巌」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13023181A priority Critical patent/JPS5833363A/en
Publication of JPS5833363A publication Critical patent/JPS5833363A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • H04N5/06Generation of synchronising signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Synchronizing For Television (AREA)

Abstract

PURPOSE:To always supply a subcarrier in correct phase relation with a solid- state-image pickup element, by always securing phase locking between the working of a frequency dividing circuit which generates the subcarrier to the same phase mode and preventing the change of the orthogonal phase relation of the subcarrier when the application of the power supply is repeated. CONSTITUTION:The reference clock signal (a) of the TV signal given from a reference clock generator 1 is supplied to the input of a T-FF2. The signal (a) is divided into two parts by the T-FF2, and the divided signals (b) and signal (c) are delivered. These signals (b) and (c) delivered from the T-FF2 are turned into input signals (j) and (k) of a waveform shaping circuit 9. The circuit 9 produces horizontal scanning clock pulses (l) and (m) of a solid-state image pickup element. While signals (a), (b) and (c) are applied to NAND gates 4 and 5 plus T-FF3 respectively, and the timing to actuate T-FF6 and 7 is obtained through the gates 4 and 5 plus the T-FF3. Then subcarriers (f) and (i) which have the same phase mode at all times are delivered from the T-FF6 and 7 and supplied to the solid-state image pickup element.

Description

【発明の詳細な説明】 本発明は、固体撮像素・子を用い友カラーテレビジョン
撮像装置の同期信号発生回路K1141する。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a solid-state image pickup device to produce a synchronization signal generation circuit K1141 for a color television image pickup device.

テレビジョン撮像装置を動・作させるtめKは、水平、
垂−直の同期信号やブランキングパルスなど種々の駆動
信号を必要とするが、さらに固体撮像素子ケ用いたカラ
ーチーレビジョン撮像装置においては色情報を伝送する
ための8111搬、送波と固体撮像素子の撮像画−素を
水平方向に走査する几めのりpツクパルスが必要になる
The point K that operates the television imaging device is horizontal,
Various driving signals such as vertical synchronization signals and blanking pulses are required, but in addition, in a color chi-revision imaging device using a solid-state image sensor, 8111 carrier, wave transmission, and solid-state imaging are required to transmit color information. A narrow p-scan pulse is required to horizontally scan the imaging pixel of the device.

ところで、NTSC方式のカラーテレビジョン装置にお
いては、上記副搬送波はテレビジ目ン信号の水平周波数
の455/2倍の周波数に規定されており、そのため、
一般的には水平周波数の910倍の周波数り基準クロッ
クを4分周し、相互に90度の位相差を有する2相の副
搬送波パルスを得、これン基準にして各種の色信号を生
成するようKなっている。そして、色信号のうち色相情
報は上記位相が直交(90度位相差)−fる2相の副搬
送波から合成される各種の位相として伝送されるように
なる。
By the way, in an NTSC color television device, the subcarrier is specified to have a frequency that is 455/2 times the horizontal frequency of the television signal.
Generally, a reference clock with a frequency of 910 times the horizontal frequency is divided into four to obtain two-phase subcarrier pulses with a phase difference of 90 degrees, and various color signals are generated using this as a reference. It's like K. Hue information among the color signals is transmitted as various phases synthesized from the two-phase subcarriers whose phases are orthogonal (90 degree phase difference) -f.

一方、上記した固体撮像素子l走査するための10ツク
パルスについては −般pf、テレビジョン信号の水平
周波数の整数倍の周波数に設定され、かつ上記副搬送波
の整数倍(主として2倍)の周波数となるよ5Km定さ
れている。
On the other hand, for the 10 pulses for scanning the solid-state image sensor described above, - general pf is set to a frequency that is an integral multiple of the horizontal frequency of the television signal, and a frequency that is an integral multiple (mainly twice) of the above-mentioned subcarrier. It has been decided that the distance will be 5km.

そのため、これらの副搬送波とクロックパルスとは同一
の基準クロック信号から生成されるのが一般的で、その
ための同期信号発生回路としては例えば第1図に示すよ
うな回路が従来から用いられてい友。
Therefore, these subcarriers and clock pulses are generally generated from the same reference clock signal, and a synchronization signal generation circuit for this purpose, for example, as shown in Figure 1, has traditionally been used. .

このwJ1図において、1は基準クロック発生器、2.
3.8はTフリラグプロップ(以下、T−FFという)
、4,5はナントゲート、6.7はDアリツブ70ツブ
(以下、D−FFという)、9は波形整形回路である。
In this wJ1 diagram, 1 is a reference clock generator, 2.
3.8 is T-free lag prop (hereinafter referred to as T-FF)
, 4 and 5 are Nant gates, 6.7 is a D-arbit 70 tube (hereinafter referred to as D-FF), and 9 is a waveform shaping circuit.

次に、この回路の動作wll、2図のタイミングチャー
トで説明する。
Next, the operation of this circuit will be explained using the timing chart shown in FIG.

基準クロック発生器1からはテレビジ璽ン信号の水平周
波数の910倍の周波数をもつ基準り四ツク信号aが第
2図(1)K示すように発生され、 T −FF2のT
入力に供給される。そこでT−FF2の出力からは信号
a’Y2分周し良信号すとそれの反転信号Cが得られる
。この信号bt’g2図(2)k示す0 この2分周信号すは次のT−FF3の入力に供給さn、
そのQ出力に第2図(5)K示すような基準クロック信
号aの4分周信号dが得られる。
The reference clock generator 1 generates a reference clock signal a having a frequency 910 times the horizontal frequency of the television signal as shown in FIG. 2 (1) K, and T of T - FF2.
supplied to the input. Therefore, from the output of T-FF2, if the signal a'Y2 is frequency-divided and a good signal is obtained, an inverted signal C is obtained. This signal bt'g2 (2) k shows 0 This 2 frequency divided signal is supplied to the input of the next T-FF3 n,
A 4-frequency divided signal d of the reference clock signal a as shown in FIG. 2(5)K is obtained as the Q output.

ま友、2分周信号すは、一方の入力に基準クロック信号
1が入力されているナントゲート4の他方の入力にも供
給され、その出方に第2図(4)に示す信号eか取や出
される。
Friend, the frequency-divided signal S is also supplied to the other input of the Nantes gate 4, which has the reference clock signal 1 inputted to one input, and the signal e shown in FIG. 2 (4) is output. taken or taken out.

そこで、この信号dvD−FF6のD入力に供給すると
共に、そのクロック入力φに信号C乞供給丁れげ、この
D−FF6のQ出力にはWJ2図(5)K示すような基
準クロック信号aを4分周した副搬送波fか得らnるこ
とKなる。
Therefore, this signal is supplied to the D input of dvD-FF6, the signal C is supplied to its clock input φ, and the reference clock signal a as shown in FIG. The subcarrier f obtained by dividing the frequency by 4 is obtained by n, which is K.

同様圧して、T−FF3のQ出力に得られる纂2図(6
)K示すような信号g’kD−FF7のD入力に供給し
、そのクロック入力φKaJRZ図(7)K示すよウナ
信号aとC′%:入力とするナントゲート5の出力信号
hン供給することにより、このD−FF7のQ出力から
第2図(8)に示すような基準クロック信号aを4分周
し次側搬送波lが得られ、位相差θが90度の2相の副
搬送波f、iを得ることができる。なお、以上は公知の
同期信号発生回路と同じであルカ、さらに固体撮像素子
な用いたカラーテレビジョン撮像装置としては、前述の
とおり、水平走査用のクロックパルス生成回路な付加す
る必要がある。
Similarly, the Q output of T-FF3 is obtained in Figure 2 (6
) A signal g'kD as shown in K is supplied to the D input of FF7, and its clock input φKaJRZ is supplied to the output signal h of the Nantes gate 5 which is used as an input. As a result, the next carrier wave l is obtained by dividing the reference clock signal a by 4 from the Q output of this D-FF7 as shown in FIG. f, i can be obtained. Note that the above is the same as a known synchronizing signal generating circuit, but as described above, a clock pulse generating circuit for horizontal scanning must be added for a color television image pickup apparatus using a solid-state image pickup element.

そこで、基準クロック発生器1からの基準クロック信号
aをT−FF@のT入力に供給し、そのQ出力に第2図
(16)に示すような信号aの2分周信号jを得、これ
ン波形整形回路9に供給してその出力に第2図07)K
示すようなりリックパルスJY得ると共に、T−FF8
のQ出力に得られる信号jの反転出力信号kを波形整形
回路8に供給してその出力に#!2図θ8)に示すよう
なりpツクパルスmf得る。そして、こnらのクロック
パルス1 、 mを2相のクロックパルスとして固体撮
像素子に供給すればよい。なお、固体撮像素子の駆動用
クロックパルスは2相の奄のに限らないが、ここでは−
例として2相のクロックパルスl、mKついテ示しであ
る。
Therefore, the reference clock signal a from the reference clock generator 1 is supplied to the T input of T-FF@, and the 2-frequency divided signal j of the signal a as shown in FIG. 2 (16) is obtained at its Q output. This is supplied to the waveform shaping circuit 9 and its output is
As shown, get lick pulse JY and T-FF8
The inverted output signal k of the signal j obtained at the Q output of is supplied to the waveform shaping circuit 8, and the output signal #! A p-suck pulse mf is obtained as shown in Fig. 2 θ8). Then, these n clock pulses 1 and m may be supplied to the solid-state image sensor as two-phase clock pulses. Note that the clock pulse for driving the solid-state image sensor is not limited to two-phase clock pulses, but here -
As an example, two-phase clock pulses l and mK are shown.

ところで、以上の説明では、副搬送波生成用のT−FF
2とクロックパルス生成用のT−F’F lの分周位相
が友′tたま一致しており、それらの出力信号すとjと
が同極性となってい友場合にりいて示したが、実際には
電源投入時などKおけるT−FF2.8の初期状llI
Cよってこれらの分局位相が互に逆にな夛、信号すとj
の極性が反対になった状態で動作する場合がある。この
ときには第2図Q)〜(8) K示しt信号b 、 i
は同図(9)〜(15)K信号b′〜i′で示すような
動作タイミングとなる。つまり、第1図の回路Sは、電
源投入時などの初期状態の違い罠より副搬送波fとiは
固体撮像素子の水平走査用クロックパルスl、mに対し
て第2図の(5)。
By the way, in the above explanation, T-FF for subcarrier generation
2 and the frequency division phase of T-F'Fl for clock pulse generation coincide with each other, and their output signals and j have the same polarity. In reality, the initial state of T-FF2.8 when the power is turned on, etc.
C, these branching phases become opposite to each other, and the signal becomes j
It may operate with the polarity reversed. At this time, Fig. 2 Q) to (8) K indicates t signals b, i
The operation timings are as shown in (9) to (15) K signals b' to i' in the figure. That is, in the circuit S of FIG. 1, due to the difference in the initial state such as when the power is turned on, the subcarriers f and i are set as (5) in FIG. 2 with respect to the horizontal scanning clock pulses l and m of the solid-state image sensor.

(8)K示す信号f、iと、第2図の(12)と05)
K示す信号f’、 i’の2種の位相モードをと9得る
ことKなる。
(8) Signals f and i indicating K and (12) and 05 in Fig. 2)
Two phase modes of the signals f' and i' shown by K are obtained as follows.

しかして、基準クロック信号息のデユーティが正確に1
対1となっている場合にはいずれの位相モードであって
も副搬送波fとI、またはf’ト!’との位相差はいず
れの場合も正1K90度に保几れ、動作上全く問題はな
い。
Therefore, the duty of the reference clock signal is exactly 1.
If the pair is 1, the subcarriers f and I or f't!, regardless of the phase mode. The phase difference with ' is maintained at a positive 1K90 degree in all cases, and there is no problem in operation.

しかしながら、一般に固体撮像素子の水平走査用クロッ
クパルス入力端の人力インピーダンスはかなり大きな容
量性を呈し、クロックパルス人力に対して大きな容量性
負荷(数十〜数百pF)となっており、この九め、同期
信号発生回路の動作tmt比に水平走査用のクロックパ
ルス周波数のリップル成分が混入し易くなり、これを完
全に防止するのは極めて困難でほとんど不可能に近い。
However, in general, the human power impedance at the horizontal scanning clock pulse input terminal of a solid-state image sensor exhibits a fairly large capacitance, and this results in a large capacitive load (several tens to hundreds of pF) for the clock pulse human power. Therefore, the ripple component of the clock pulse frequency for horizontal scanning is likely to be mixed into the operating tmt ratio of the synchronization signal generation circuit, and it is extremely difficult and almost impossible to completely prevent this.

その上、この固体撮像素子の水平走査用クロック入力の
容量性インピーダンスはそれぞれの入力ごとにかなシの
バラツキがある霞め、上記し几ように同期信号発生回路
の電源電圧に水平走査用クロックパルス周波数のリップ
ルが混入し友場合には、等測的に基準りpツク信号aが
水平走査用クロッ、クパルス周波数でパルス幅変調され
几形となって例えば第2図(1)の破線で示すような波
形になり、従って他の信号の動作タイミングも第2図の
(2)〜(16)で破線で示すように変化することにな
る。
Moreover, the capacitive impedance of the horizontal scanning clock input of this solid-state image sensor has slight variations for each input, and as described above, the horizontal scanning clock pulse is applied to the power supply voltage of the synchronization signal generation circuit. If a frequency ripple is mixed in, the reference P clock signal a is isometrically modulated in pulse width by the horizontal scanning clock pulse frequency, resulting in a rectangular shape, as shown by the broken line in Fig. 2 (1), for example. Therefore, the operation timings of other signals also change as shown by broken lines in (2) to (16) in FIG. 2.

この結果、副搬送波fとi、ま几Fif’とi′の位相
差θ、θ′は第2図の(s) 、 (s) e (j2
)、ぐ5)の破線の波形から明らかなように90度から
ずれたものとなってしまう。
As a result, the phase differences θ and θ' between subcarriers f and i, and between Fif' and i' are (s), (s) e (j2
) and 5), the waveforms are deviated from 90 degrees, as is clear from the broken line waveforms.

既に説明したように、カラーテレビジョン装置において
は、色信号の色相情報が直交する2相の副搬送波!基準
にして伝送されるようKなっているから、上記したよう
に副搬送波の位相差θ、ま友はθ′が90度からずれ、
直交関係か崩nると正17iaな色情報の伝送が困ll
Kなってくる。しかして、この位相ずれが常に一定に保
几れていれば、位相補正回路などにより容易に補正でき
、正しい色情報の伝送か可能になるが、上記のように基
準クロック信号aがパルス幅変m’tt受けたときKは
、特別な場合(例えば、上記従来例において!2図θ)
の基準クロック信号aの破線で示す立ち上シエツジの間
隔がたまたま実線で示す立ち上シエツジの間隔と等しく
なるようにパルス幅変調されたような場合)ン除いては
位相差θとθ′とが常に異なつ几ものとなってし筐う。
As already explained, in a color television device, two-phase subcarriers whose hue information of color signals are orthogonal! Since K is set to be transmitted based on the reference, as mentioned above, the phase difference θ of the subcarrier, and θ' in the subcarrier wave, deviates from 90 degrees,
If the orthogonal relationship breaks down, it will be difficult to transmit color information that is accurate to 17ia.
K is coming. However, if this phase shift is always kept constant, it can be easily corrected using a phase correction circuit, etc., and the correct color information can be transmitted. When m'tt is received, K is determined in special cases (for example, in the conventional example above, θ in Figure 2)
The phase difference θ and θ' is It is always different and elaborate.

そして、このように位相差が異った場合には、上記のよ
うな位相補正は困難でほとんど不可能になってしまう。
When the phase difference differs in this way, the above phase correction becomes difficult and almost impossible.

従って、上記し几従来1fikおいては、IL源投入の
繰り返しなどにエフ上記し九位相モードが変化するたび
K11l搬送波の直交関係が変化し、正しい色相のカラ
ーテレビジョン信号を得るのに必要な正確な位相関係l
有する副搬送波を供給することができないという欠点が
あつ几。
Therefore, in the conventional 1FIK as described above, each time the nine-phase mode changes due to repeated turning on of the IL source, the orthogonal relationship of the K11l carrier wave changes, and the orthogonal relationship of the K11l carrier changes, which is necessary to obtain a color television signal with the correct hue. accurate phase relationship l
It has the disadvantage of not being able to supply subcarriers with

本発明の目的は、上記し几従来技術の欠点な#き、電源
投入動作なaシ返しても副搬送波の直交位相関係が変化
しないようkした同期信号発生回路を提供するにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a synchronization signal generation circuit which avoids the drawbacks of the prior art as described above and which prevents the orthogonal phase relationship of subcarriers from changing even after repeated power-on operations.

この目的を達成するため、本発明は、副搬送波生成のた
めの分周回路の動作が常に同じ位相モードK1g1勘す
るようにしt点を特徴とする。
To achieve this objective, the invention is characterized in that the operation of the frequency divider circuit for subcarrier generation always assumes the same phase mode K1g1 at point t.

以下、不発F93による同期信号発生回路の冥施例〉図
面について説明する。
Hereinafter, an explanation will be given of a drawing showing an example of a synchronization signal generation circuit using a misfiring F93.

側3図は本発明の一実施例で、第1図に示した従来例と
同一もしくは同等の部分には同じ符号を付しである。そ
して、この第3図の実施例が第1図の従来例と異なって
いる点は、第1図の従来例におけるT−FF8が省略さ
れ、T−FF2のQ出力の信号すと互出力の信号Cがそ
れぞれ波形整形回路90入力信号JとkKなっておシ、
これKより固体撮像素子の水平走査用2相クロックパル
ス信号J、mが生成されるようKなっている点だけであ
り、その他は第1図の従来間と同じである。
Figure 3 on the side shows an embodiment of the present invention, in which the same or equivalent parts as in the conventional example shown in Figure 1 are given the same reference numerals. The difference between the embodiment shown in FIG. 3 and the conventional example shown in FIG. 1 is that T-FF8 in the conventional example shown in FIG. 1 is omitted, and the Q output signal of T-FF2 is Signal C becomes waveform shaping circuit 90 input signal J and kK, respectively.
The only difference is that K is set so that two-phase clock pulse signals J and m for horizontal scanning of the solid-state image pickup device are generated from K, and the rest is the same as the conventional device shown in FIG.

従って、その動作も菖2図のタイ之ングチャートのうち
で(2)の信号すと96)の信号jが同一の信号にたつ
友ものとなり、第2図06)に示す信号jに対して当然
のことながら信JI!jbは同図(2)K示すように同
じ位相となり、決して同図(9)に示すような反対の極
性の信号b′となることはない。
Therefore, the operation is similar to the signal (2) in the tying chart of Diagram 2, and the signal j of 96) is the same signal, and for the signal j shown in Figure 2 06). Of course Shinji! The signals jb have the same phase as shown in (2) K in the same figure, and never become the signals b' of opposite polarity as shown in (9) in the same figure.

その定め、この実施例によれば、T−FF3とナントゲ
ート4,5.それにD−FF8.7の動作タイミングは
第2図(3)〜(8)K示す信号d−iが得られるよう
なタイミングだけとなり、従って、D−FF6と7のQ
出力に得られる信号f、i(即ち11J 轡送波)相互
間での位相差も電源投入の、i#p返しなどと全(無関
係に第2図のθに固定さ1rL7tままとんり、θ′と
なることは決してなく、常に同じ位相差を保った副搬送
波を得ることができる。
According to this embodiment, T-FF3 and Nantes Gate 4, 5. In addition, the operation timing of D-FF8.7 is only such that the signal d-i shown in FIG. 2 (3) to (8)K is obtained, and therefore the Q
The phase difference between the signals f and i (i.e., 11J transmission waves) obtained at the output is also the same as when the power is turned on, i#p return, etc. θ', and it is possible to obtain subcarriers that always maintain the same phase difference.

次に、第4図は本発明の他の一実施例で、この実施例に
おいても第1図の従来例と同等もしくは同一の部分には
同じ符号を付し、異なっている点についてだけ説明する
Next, FIG. 4 shows another embodiment of the present invention. In this embodiment, the same reference numerals are given to the same or the same parts as in the conventional example shown in FIG. 1, and only the different points will be explained. .

第4図において、10はナンドゲー)、11はD−FF
、12はインバータ、13はT−FF、14は2回路2
接点の切換スイッチ回路である。
In Figure 4, 10 is Nando Game), 11 is D-FF
, 12 is an inverter, 13 is a T-FF, 14 is a 2-circuit 2
This is a contact changeover switch circuit.

この第4図に示した実施例は、T−FF2の出力とT−
FF8の出力とをナンドゲー) j OKよって検出し
、こrしらの出力条件が所定の状態となるようにスイッ
チ回路14を切換え制御することKよシ副搬送波f、i
と水平走査用クロックパルス!。
In the embodiment shown in FIG. 4, the output of T-FF2 and T-
The output of FF8 is detected by OK, and the switch circuit 14 is switched and controlled so that these output conditions are in a predetermined state.
and clock pulse for horizontal scanning! .

mとの位相モードが−′1Mhに収斂固定されるように
したもので、以下、その動作を第5図のタイミングチャ
ー)Kより説明する。なお、この菖5図の(1)に示し
文元準りpツク信号1は第2図(1)K破線で示したパ
ルス幅変調を受けたものとなっている。
The phase mode with m is convergently fixed to -'1Mh, and its operation will be explained below with reference to the timing chart (K) in FIG. Note that the PTS signal 1 according to the original text shown in (1) of FIG. 5 has been subjected to pulse width modulation as shown by the broken line K in FIG. 2 (1).

にT−FF13がセット状態になり、そのQ出力の信号
pが1pJs図(7)VC示すように「1」となってい
てスイッチ回w114か第4図に示すように上方の接点
に切換えらnていたとする。そして、このときT−FF
8の出力係号jとT −F’ F2の出力信号す。
T-FF13 is set to the set state, and its Q output signal p is 1 pJs as shown in Figure (7) VC, and it is switched to the upper contact at switch turn w114 as shown in Figure 4. Suppose there were n. And at this time, T-FF
The output coefficient j of 8 and the output signal of T-F' F2.

Cとの位相関係が第5図の(2) 、 (3) 、 (
4)で示すような状態になってい友とする。
The phase relationship with C is (2), (3), (
4) When they are in the state shown, they become friends.

そうするとナンドゲー)10の出力に現われる信号・n
Vi第5図(5)のようKなシ、この信号nと基準クロ
ック信号aが共Kr1JKなったときD−FF11のQ
出力の信号Oが[j)cなる。そして、その直後に基準
りpツク信号段が再び「1」に立上った時点、即ち時刻
t。)CおいてT−FF13がリセットされ、第5図(
7)K示すようKそのQ′出力である(U号pが「0」
K変シ、スイッチ回路14の接点Vi第4図の状態から
切換わって下方の接点に移る。
Then, the signal that appears at the output of Nando Game) 10, n
When the signal n and the reference clock signal a are both Kr1JK as shown in Fig. 5 (5), the Q of D-FF11 is
The output signal O becomes [j)c. Immediately after that, the reference PTS signal stage rises to "1" again, that is, time t. )C, the T-FF13 is reset, and as shown in FIG.
7) As shown by K, the output of K is Q' (if U p is 0)
The contact Vi of the switch circuit 14 is switched from the state shown in FIG. 4 to the lower contact.

この結果、スイッチ回路14の出力信号である(b4−
c)と(c+b )は時ill’sでそれ以前の状態か
ら反転し、それ以後の期間においては信号すとCとを入
れ吾えてT−FF3とナンドゲー)4.5に供給するよ
うKなる。  ・ ま友、電源投入などKより動作を開始し九とき、最初か
ら第5図の時刻to以後の状態と同じ状態にあつ定とき
Kは、ナントゲート1oの出力信号nは「1」ICなっ
たままでjOJKはならないから、D−FF11(7)
Q出力の信号oハ「1」がらrOJに変化せず、そのた
めT−FF−13の出力信号pは「1」または「0」の
いず牡か一方に保几れでスイッチ回路14も切換えられ
ない。  − 従って、この実施例によれば、T−FF’2と8のQ出
力の信号すとjの位相が反対になつ友とき、即ち第2′
図の(9)と06)のよう超関係になつ几゛ときKはス
イッチ回路14が自動的に9J換わるのでその後は常に
第2図の(1)〜(8)と(16)〜(18)に示すタ
イミングでだけ動作することKなシ、副搬送波f、五の
位相差はθに固定さn、θ′になったtまで動作を継続
してしまうことがなくなるので正しい位相関係ン保った
副搬送波!容易に供給することができる。
As a result, the output signal of the switch circuit 14 (b4-
c) and (c+b) are reversed from the previous state at ill's, and in the subsequent period, the signal becomes K so that C is input and supplied to T-FF3 and NAND game)4.5. .・When the operation starts from K, such as when the power is turned on, the state from the beginning is the same as that after time t in Fig. 5. When K is in the same state as the state after time t in Fig. 5, the output signal n of the Nant gate 1o becomes "1" IC. Because jOJK will not become like this, D-FF11 (7)
The signal o of the Q output does not change from "1" to rOJ, so the output signal p of T-FF-13 is kept at either "1" or "0" and the switch circuit 14 is also switched. I can't do it. - Therefore, according to this embodiment, when the signals of the Q outputs of T-FF'2 and 8 and the phase of j are opposite to each other, that is, the second'
When a super relationship is reached as shown in (9) and 06) in the figure, the switch circuit 14 automatically changes K by 9J. ) The phase difference between the subcarriers f and 5 is fixed at θ, and the operation will not continue until t when n and θ′ are reached, so the correct phase relationship can be maintained. subcarrier! Can be easily supplied.

第6図は第4図の実施例におiるスイッチ回路14の一
実施例で、1個のインバータ15と6個のナントゲート
16〜21で構成し友もので、これKよれば簡単な構成
で動作が確実なスイッチ回路を容易に得ることができる
FIG. 6 shows an embodiment of the switch circuit 14 in the embodiment of FIG. With this configuration, it is possible to easily obtain a switch circuit that operates reliably.

なお、第4図の実施例ではT−FF2の出力信号をスイ
ッチ回路14で切換えているが、T−FF8の出力信号
を切換えるようにしてもよい。
In the embodiment shown in FIG. 4, the output signal of the T-FF 2 is switched by the switch circuit 14, but the output signal of the T-FF 8 may be switched.

−17′j、以上の実施例では、いずれも固体撮像素子
の水平走査用クロックパルスが2相のものについて示し
たが、本発明はこれに限らず、その繰り返し周波数が副
搬送波の周波数の2倍である限り4相あるいはそれ以上
の相数のクロックパルスのものKも適用可能な□ことは
いうまでもない。
-17'j, In the above embodiments, the horizontal scanning clock pulse of the solid-state image sensor is shown as having two phases, but the present invention is not limited to this. It goes without saying that a clock pulse K having four or more phases is also applicable as long as it is double the number of phases.

以上説明し友ように、本発明によれば、固体撮像素子の
水平走、査用りpツクパルスに対する副搬送波の位相関
係を−に一方のモードに保ち、これKより1搬送波あ直
交位相関係が電源投入の繰シ返しなどKよって変化する
虞れをなくすことができるから、従来技袴の欠点な除き
、常に正しい直交位相関係にある副搬送波を門体操像素
子によるカラーテレビジョン撮像装置に供給して正しい
色相ノカラーテレビジョン信号を得ることのできる同期
信号発生回路を提供することができる。
As explained above, according to the present invention, the phase relationship of the subcarrier with respect to the horizontal scanning and scanning p-sku pulses of the solid-state image sensor is maintained in one mode, and the orthogonal phase relationship of one carrier wave is maintained from K. Since it eliminates the risk of changes due to repeated power-on, etc., it eliminates the drawbacks of conventional technology and always supplies subcarriers with the correct orthogonal phase relationship to a color television imaging device using a gated image element. Accordingly, it is possible to provide a synchronizing signal generating circuit that can obtain a color television signal with correct hue.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は同期信号発生回路の従来例を示す回路図、第2
図(1)〜(18)はその動作説明用のタイミングチャ
ート、第3図は本発明による同期信号発生回路の一実施
例を示す回路図、第4図は同じく他の一実施例Z示す回
路図、第5図(1)〜(7)はその動作説明用のタイミ
ングチャート、第6図はスイッチ回路の一実施例を示す
回路図である。 1・・・・・・基準クロック発生器、2.3,8.13
・・・・・・T7リツプ70ツブ(T−FF)、6,7
.11・・・D7リツプ70ツブ(D−FF)、4,5
.10゜16〜21・・・・・・ナントゲート、12.
15・・・・・・インバータ、14・・・・・・スイッ
チ回路、a・・・・・・基準クロック信号、f、l・・
・・・・副搬送波、l、m・・・・・・固体撮像素子の
水平走査用クロックパルス 第1図 第2図 a8)iL−丁l−」]−]一ロシー1−」−第3図 第5図 y。 第6図
Figure 1 is a circuit diagram showing a conventional example of a synchronization signal generation circuit;
Figures (1) to (18) are timing charts for explaining its operation, Figure 3 is a circuit diagram showing one embodiment of the synchronizing signal generation circuit according to the present invention, and Figure 4 is a circuit diagram showing another embodiment Z of the same. 5(1) to 5(7) are timing charts for explaining the operation thereof, and FIG. 6 is a circuit diagram showing one embodiment of the switch circuit. 1...Reference clock generator, 2.3, 8.13
...T7 lip 70 tube (T-FF), 6,7
.. 11...D7 lip 70 knob (D-FF), 4,5
.. 10°16~21... Nantes Gate, 12.
15... Inverter, 14... Switch circuit, a... Reference clock signal, f, l...
...Subcarrier, l, m...Clock pulse for horizontal scanning of the solid-state image sensor Fig. 1 Fig. 2 a8) Figure 5 y. Figure 6

Claims (1)

【特許請求の範囲】 (1)  同一基準信号からの、分周処理によシテレビ
ジョン信号の副搬送波と該副搬送波の2倍の繰り返し周
波数をもつ7t2相のクロックツく、ルスとyt発生す
るようにした固体撮像装置の同期信号発生装置において
、上記副搬送波に対する上記基準信号の分局位相と上記
クロックツくルスに対する上記基準信号の分周位相とを
一致させる位相同期手段を設け、初期動作条件の違いに
よるi11*送波の位相変化!防止するように構成し念
ことを特徴とする同期信号発生回路。 (2、特許請求の範囲第1項において、上記基準信号を
人力どする7リツプ70ツブの出力を上記副搬送波発生
用の分周回路の入力と上記クロックパルス発生用の分周
回路の入力とに共通に供給する手段を設け、該手段によ
シ上記位相同期手段な構成したことな特徴とする同期信
号発生回路。 (3)特許請求の範囲第1項において、上記基準−信号
を人力とする上記副搬送波発生用の7リツグ70ツブの
、出力位相と上記基準信号を入力とする上記クロックパ
ルス発生用の7リツプ70ツブの出力位相とを比較し、
その比較結果に応じてこれら7リツ、2.70ツブの一
方の出力位相を切換える手段、を設け、該手段にニジ上
記位相同期手段を構成したことを特徴とする同期信号発
生回路。
[Claims] (1) A subcarrier of a television signal and a 7t two-phase clock having a repetition frequency twice that of the subcarrier are generated by frequency division processing from the same reference signal. In the synchronization signal generation device for a solid-state imaging device, a phase synchronization means is provided for matching the division phase of the reference signal with respect to the subcarrier and the division phase of the reference signal with respect to the clock pulse, and Phase change of i11* transmission due to difference! A synchronization signal generation circuit characterized in that it is configured to prevent such occurrence. (2. In claim 1, the output of the 7-lip 70-tube that manually converts the reference signal is used as the input of the frequency divider circuit for generating the subcarrier and the input of the frequency divider circuit for generating the clock pulse. A synchronizing signal generating circuit characterized in that the synchronizing signal generating circuit is provided with a means for supplying the reference signal in common to the phase synchronizing means, and the means is configured to supply the reference signal in common to the phase synchronizing means. Compare the output phase of the 7 rigs and 70 tubes for subcarrier generation with the output phase of the 7 rigs and 70 tubes for clock pulse generation which input the reference signal,
A synchronizing signal generating circuit characterized in that means is provided for switching the output phase of one of these 7 liters and 2.70 tsubu depending on the comparison result, and the above-mentioned phase synchronization means is configured in the means.
JP13023181A 1981-08-21 1981-08-21 Producing circuit of synchronizing signal Pending JPS5833363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13023181A JPS5833363A (en) 1981-08-21 1981-08-21 Producing circuit of synchronizing signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13023181A JPS5833363A (en) 1981-08-21 1981-08-21 Producing circuit of synchronizing signal

Publications (1)

Publication Number Publication Date
JPS5833363A true JPS5833363A (en) 1983-02-26

Family

ID=15029232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13023181A Pending JPS5833363A (en) 1981-08-21 1981-08-21 Producing circuit of synchronizing signal

Country Status (1)

Country Link
JP (1) JPS5833363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128437A (en) * 1983-12-16 1985-07-09 Konishiroku Photo Ind Co Ltd Heat-developable color photosensitive material
JPS6249086A (en) * 1985-08-29 1987-03-03 Hitachi Ltd Method and device for testing steam valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60128437A (en) * 1983-12-16 1985-07-09 Konishiroku Photo Ind Co Ltd Heat-developable color photosensitive material
JPH0548901B2 (en) * 1983-12-16 1993-07-22 Konishiroku Photo Ind
JPS6249086A (en) * 1985-08-29 1987-03-03 Hitachi Ltd Method and device for testing steam valve
JP2527712B2 (en) * 1985-08-29 1996-08-28 株式会社日立製作所 Steam valve test method and test apparatus

Similar Documents

Publication Publication Date Title
JP2538217B2 (en) Phase constraint loop circuit
JPS5871784A (en) Generating circuit of synchronizing signal for solid-state color video camera
JPS5979685A (en) Field number converting circuit
US4001498A (en) Video mixing and/or keying system
JPS5833363A (en) Producing circuit of synchronizing signal
JPS63181572A (en) Superimposing device
US4558349A (en) Color subcarrier generator
US5153712A (en) Apparatus for inserting color character data into composite video signal
JPS63161776A (en) Clock generator for solid-state image pickup element
JPS62216588A (en) Horizontal phase shifting circuit
JPS6153880A (en) Display and control device of character picture
US6433829B1 (en) Signal processing apparatus for setting up vertical blanking signal of television set
JPS6037594Y2 (en) Scanning line position detection synchronization circuit
KR880000809Y1 (en) Step signal generating apparatus
JPH0771214B2 (en) Television camera device
JP3518317B2 (en) Dot clock automatic reproduction device for image display device
US5463475A (en) Semiconductor delay line driven by an input signal-derived reference signal
JPS61228726A (en) Oscillation output control circuit
JP2687484B2 (en) Automatic frequency control circuit
JP2841392B2 (en) Video signal circuit
KR900000027B1 (en) Cctv camera for artificial visual system
JPS61158271A (en) Horizontal blanking pulse producing circuit of multi-scan type television receiver
JPH0562871B2 (en)
JPS5813078B2 (en) Synchronous combiner for PAL color television signals
JPS6041371A (en) Driving pulse generating circuit for solid-state image pickup device