JPS5833309B2 - Corrosion prevention method for wastewater treatment equipment - Google Patents

Corrosion prevention method for wastewater treatment equipment

Info

Publication number
JPS5833309B2
JPS5833309B2 JP52015506A JP1550677A JPS5833309B2 JP S5833309 B2 JPS5833309 B2 JP S5833309B2 JP 52015506 A JP52015506 A JP 52015506A JP 1550677 A JP1550677 A JP 1550677A JP S5833309 B2 JPS5833309 B2 JP S5833309B2
Authority
JP
Japan
Prior art keywords
wastewater
cyanide
treatment equipment
corrosion
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52015506A
Other languages
Japanese (ja)
Other versions
JPS53101846A (en
Inventor
昭 岩崎
範義 荒井
義光 三室戸
秀治 松浦
三男 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP52015506A priority Critical patent/JPS5833309B2/en
Publication of JPS53101846A publication Critical patent/JPS53101846A/en
Publication of JPS5833309B2 publication Critical patent/JPS5833309B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は廃水処理装置の防食方法に関し、詳しくはシア
ンおよび硫化水素を含有する廃水に予め鉄イオンを添加
することによって廃水処理装置の腐食を有効に防止する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a corrosion prevention method for wastewater treatment equipment, and more particularly to a method for effectively preventing corrosion of wastewater treatment equipment by adding iron ions in advance to wastewater containing cyanide and hydrogen sulfide.

流動接触分解装置、水素化分解装置、水添脱硫装置など
の重質油分解装置から排出される廃水中にはシアンが含
まれているため、その廃水を処理する装置はシアンによ
り激しい腐食を受ける。
Wastewater discharged from heavy oil cracking equipment such as fluid catalytic cracking equipment, hydrocracking equipment, and hydrodesulfurization equipment contains cyanide, and equipment that processes that wastewater is subject to severe corrosion due to cyanide. .

従来、このような廃水処理装置の腐食を防止する方法と
しては、多硫化ソーダによりシアンを中和する方法、あ
るいはアミン系腐食防止剤により腐食を受ける面に被膜
を形成させる方法などが知られている。
Conventionally, known methods for preventing corrosion in wastewater treatment equipment include neutralizing cyanide with sodium polysulfide, or forming a film on surfaces subject to corrosion using amine-based corrosion inhibitors. There is.

しかしながら、前者の方法は多量の多硫化ソーダを使用
しなければ効果が小さいが、−吉事量に用いれば多硫化
ソーダの腐食性を無視できなくなると同時に多硫化ソー
ダの管路を閉塞しやすくなり、しかも空気に触れると硫
黄を析出し、また雨水系統に排出すると白濁するなどの
欠点がある。
However, the former method has little effect unless a large amount of sodium polysulfide is used; however, if used in a lucky amount, the corrosive nature of sodium polysulfide cannot be ignored, and at the same time, it becomes easy to block the sodium polysulfide pipes. Moreover, it has disadvantages such as precipitating sulfur when exposed to air and becoming cloudy when discharged into a rainwater system.

後者の方法はアミン系腐食防止剤を多量に使用しなけれ
ばならず、しかも形成した被膜を剥離しやすいなどの欠
点がある。
The latter method requires the use of a large amount of amine-based corrosion inhibitor, and has the disadvantage that the formed film is easily peeled off.

本発明者らはかかる従来法の欠点を解消し、簡易かつ効
果的に行ないうる廃水処理装置の防食方法を開発すべく
鋭意研究を重ねた。
The present inventors have conducted extensive research in order to eliminate the drawbacks of such conventional methods and to develop a corrosion prevention method for wastewater treatment equipment that can be carried out simply and effectively.

その研究過程において廃水中のシアンによる装置の腐食
のメカニズムを検討し、その結果廃水中にあらかじめ鉄
イオンを添加しておくことにより、廃水処理装置の腐食
が有効に防止されることを見出し本発明を完成するに至
った。
In the course of this research, we investigated the mechanism of corrosion of equipment due to cyanide in wastewater, and found that corrosion of wastewater treatment equipment can be effectively prevented by adding iron ions to wastewater in advance, which led to the invention of the present invention. I was able to complete it.

すなわち本発明は、シアンおよび硫化水素を含有する廃
水を廃水処理装置に導入するにあたり、あらかじめ廃水
に当該廃水中に含有されるシアンに対し少なくとも当モ
ルの鉄イオンを添加することを特徴とする廃水処理装置
の防食方法を提供するものである。
That is, the present invention provides wastewater characterized in that, before introducing wastewater containing cyanide and hydrogen sulfide into a wastewater treatment device, iron ions are added in advance to the wastewater in an amount equal to at least the molar amount of cyanide contained in the wastewater. A method for preventing corrosion of processing equipment is provided.

なお、本発明においてシアンとは水中で解離してシアン
イオンを生成しうる化合物をいう。
In the present invention, cyanide refers to a compound that can dissociate in water to generate cyanide ions.

本発明者らの研究によれば、廃水中のシアンによる処理
装置の腐食のメカニズムは次のように考えられる。
According to the research conducted by the present inventors, the mechanism of corrosion of treatment equipment by cyanide in wastewater is thought to be as follows.

まず廃水中には硫化水素が含まれており、これが処理装
置の鉄と次式のような反応をする。
First, wastewater contains hydrogen sulfide, which reacts with iron in the treatment equipment as shown in the following equation.

2十 Fe+H2S−+FeS+2H+(I) 本来、硫化第一鉄(Fed)はアルカリ領域において安
定な被膜をつくり腐食の進行は減衰する。
20Fe+H2S-+FeS+2H+(I) Originally, ferrous sulfide (Fed) forms a stable film in an alkaline region and the progress of corrosion is attenuated.

しかしながら、廃水中にシアンが存在すると、下式の反
応が進行し、腐食の進行が継続する。
However, if cyanide is present in wastewater, the reaction of the following formula will proceed, and corrosion will continue to progress.

FeS+6CN−−+ Fe(CN)7 +S2−
(II)これらの反応に関与する鉄イオン(Fe2+)
は、廃水処理装置から溶出したものであり、上記反応が
激しいほど装置の腐食が著しい。
FeS+6CN−−+ Fe(CN)7 +S2−
(II) Iron ion (Fe2+) involved in these reactions
is eluted from wastewater treatment equipment, and the more intense the reaction is, the more severe the corrosion of the equipment is.

そこで本発明の方法においては、処理装置に導入する前
の廃水にあらかじめ鉄イオンを添加しておくのである。
Therefore, in the method of the present invention, iron ions are added in advance to the wastewater before it is introduced into the treatment equipment.

この鉄イオンと廃水中の硫化水素ならびにシアンが上記
(I)および(n)式のように反応して安定な化合物た
とえばFe’(Fe(CN)6)3などのような鉄イオ
ンとシアンによる錯塩をつくり、この化合物はもはや腐
食能を有さなくなる。
This iron ion and hydrogen sulfide and cyanide in the wastewater react as shown in formulas (I) and (n) above to form a stable compound such as iron ion and cyanide such as Fe'(Fe(CN)6)3. A complex salt is formed and the compound no longer has corrosive potential.

このように廃水中のシアンを安定化してから処理装置内
に導入すれば、装置は廃水によって腐食を受けることは
なくなり、長時間の連続運転が可能となる。
By stabilizing the cyanide in the wastewater before introducing it into the treatment equipment, the equipment will not be corroded by the wastewater and can be operated continuously for a long time.

ここで廃水に添加すべき鉄イオンの量は、廃水中のシア
ンを安定な化合物にするのに必要な量としなければなら
ず、具体的には当該廃水中に含有されるシアンに対し少
なくとも当モルとし、好ましくはシアン1モルに対して
2〜40モルとする。
The amount of iron ions to be added to the wastewater must be the amount necessary to turn cyanide in the wastewater into a stable compound, and specifically, the amount of iron ions to be added to the wastewater must be at least equivalent to the amount of cyanide contained in the wastewater. mol, preferably 2 to 40 mol per mol of cyanide.

鉄イオンの添加量がシアンに対し当モル未満の場合には
、未反応のシアンが残り、これが処理装置の腐食を引き
起す。
If the amount of iron ions added is less than the equivalent mole of cyanide, unreacted cyanide remains, which causes corrosion of the processing equipment.

一方、鉄イオンの添加量を大過剰とすると、廃水中のシ
アンをすべて安定化することができ装置の防食上は効果
的であるが、余剰の鉄イオンのため装置内での廃水処理
効率が低下し降ましくない。
On the other hand, if the amount of iron ions added is too large, all of the cyanide in the wastewater can be stabilized, which is effective in preventing corrosion of the equipment, but the surplus iron ions reduce the efficiency of wastewater treatment within the equipment. It doesn't drop and it doesn't rain.

従って、鉄イオンの添加量は廃水中のシアン1モルに対
して多くとも40モル程度に抑えることが好ましいこと
となる。
Therefore, it is preferable to suppress the amount of iron ions added to at most about 40 moles per mole of cyanide in the wastewater.

また、本発明の方法において添加すべき鉄イオンの種類
は第一鉄イオン(Fe”)、第二鉄イオン(Fe”)の
いずれでもよく、また両者の混合物であっても差支えな
い。
Further, the type of iron ion to be added in the method of the present invention may be either ferrous ion (Fe'') or ferric ion (Fe''), or may be a mixture of both.

さらに、この鉄イオン源としては特に制限はなく第一鉄
イオン、第二鉄イオンを供給しうるものであればくず鉄
などの固体であっても、また鉄イオンを含有する水溶液
たとえば硫酸第一鉄の水溶液などの液体であっても利用
することができる。
Furthermore, the iron ion source is not particularly limited and may be a solid such as scrap iron as long as it can supply ferrous or ferric ions, or an aqueous solution containing iron ions such as ferrous sulfate. Even liquids such as aqueous solutions can be used.

以上のように本発明の方法に従えば、廃水中のシアンは
処理装置に導入される前にフェロシアン酸塩(たとえば
Fe (Fe (CN)6)3 )あるいはフェリシア
ン酸塩などとして安定化されるため、廃水処理装置を長
期間にわたって連続運転してもその腐食はほとんど進行
しない。
As described above, according to the method of the present invention, cyanide in wastewater is stabilized as ferrocyanate (for example, Fe (Fe (CN) 6) 3 ) or ferricyanate before being introduced into the treatment equipment. Therefore, corrosion hardly progresses even if the wastewater treatment equipment is operated continuously for a long period of time.

また、該装置の運転中に生ずる排出の際の処理液の白濁
化などというトラブルの心配もない。
Furthermore, there is no need to worry about troubles such as clouding of the processing liquid during discharge, which may occur during operation of the apparatus.

しかも、本発明の方法は、予め廃水中に所定量の鉄イオ
ンを添加するだけの極めて簡単な操作で十分であるため
、既設装置を変更することなくほとんどそのままの状態
で適用できる。
Moreover, since the method of the present invention requires only an extremely simple operation of adding a predetermined amount of iron ions to wastewater in advance, it can be applied almost as is without changing existing equipment.

したがって、本発明の方法はシアンを含有する各種産業
廃水の処理装置の運転の際に適用すれば、該装置の防食
を極めて効果的に行なうことができる。
Therefore, if the method of the present invention is applied to the operation of various industrial wastewater treatment equipment containing cyanide, the equipment can be extremely effectively protected against corrosion.

次に、本発明を実施例によりさらに詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 1(第1図参照) 重質油の流動接触分解装置(図示せず)から排出された
廃水(硫化水素2000 ppm、アンモニア1000
ppm1シアン(CN−) 100 ppm含有)に
鉄イオンタンク1から濃度20φの硫酸第一鉄(FeS
O4)水溶液を添加して、廃水中の鉄イオンが4000
ppmになるようにした。
Example 1 (see Figure 1) Wastewater discharged from a heavy oil fluid catalytic cracking unit (not shown) (hydrogen sulfide 2000 ppm, ammonia 1000 ppm)
Ferrous sulfate (FeS) with a concentration of 20φ was added from iron ion tank 1 to iron ion tank 1 (containing 100 ppm of cyanide (CN-)).
O4) By adding aqueous solution, iron ions in wastewater are reduced to 4000
It was set to ppm.

廃水中に生成した硫化第一鉄をフィルター2により除去
した後、廃水を温度116℃、圧力0.8に9/iGの
運転条件の廃水ストリッパー3に導入した。
After the ferrous sulfide generated in the wastewater was removed by the filter 2, the wastewater was introduced into the wastewater stripper 3 under operating conditions of a temperature of 116° C., a pressure of 0.8, and 9/iG.

次いで、廃水を該ストリッパー3の塔頂からクーラー4
へ導き、ここで冷却後受槽5を介して廃水ストリッパー
3に循環した。
Next, the wastewater is passed from the top of the stripper 3 to a cooler 4.
There, after cooling, it was circulated to the waste water stripper 3 via the receiving tank 5.

受槽5からはアンモニアその他の酸性ガスを回収捕集し
た。
Ammonia and other acidic gases were recovered and collected from the receiving tank 5.

廃水ストリッパー3により処理した処理廃水は硫化水素
30ppm以下、アンモニア50 ppm以下、シアン
lppm以下であった。
The treated wastewater treated by the wastewater stripper 3 had a hydrogen sulfide content of 30 ppm or less, ammonia content of 50 ppm or less, and cyanide content of 1 ppm or less.

上記の条件下で廃水を6ケ月間継続処理したが、廃水処
理装置全域(廃水ストリッパー3、クーラー4、受槽5
および配管など)にわたり腐食はほとんどみられず、所
期の成果が達成された。
The wastewater was continuously treated under the above conditions for 6 months.
The desired results were achieved, with almost no corrosion observed across the entire plant (including pipes, etc.).

なお、ここで用いた廃水処理装置の材料はクーラー4と
廃水ストリッパー3内のトレーがステンレス(SUS3
04)であり、その他は炭素鋼である。
The material of the wastewater treatment equipment used here is that the cooler 4 and the tray inside the wastewater stripper 3 are made of stainless steel (SUS3).
04), and the others are carbon steel.

実施例 2(第2図参照) 実施例1の同成分の廃水をまずくず鉄充填塔6に導いて
くず鉄(くず鉄量は廃水1トン/時間に対して旋盤くず
約3トン、1m3である。
Example 2 (see Fig. 2) Wastewater having the same components as in Example 1 was first led to a scrap iron packing tower 6 and was treated with scrap iron (the amount of scrap iron was approximately 3 tons of lathe scraps, or 1 m3, per 1 ton/hour of waste water).

)と接触させた。) was brought into contact with.

次いで、この廃水を廃水ストリッパー3に導入し、以下
実施例1と同様の運転条件にて操作を行なった。
Next, this wastewater was introduced into the wastewater stripper 3, and the following operation was performed under the same operating conditions as in Example 1.

その結果、処理廃水は硫化水素30 ppm以下、アン
モニア50 ppm以下、シアン11)pm以下であっ
た。
As a result, the treated wastewater contained less than 30 ppm of hydrogen sulfide, less than 50 ppm of ammonia, and less than 11) pm of cyanide.

上記の条件下で廃水を3ケ月間継続処理したところ、廃
水ストリッパー3のクーラー下流配管(炭素鋼)に若干
の減肉がみられたが、廃水に鉄イオンを添加しないとき
の腐食状況と比較して明らかに防食効果が発揮された。
When wastewater was continuously treated for three months under the above conditions, some thinning was observed in the cooler downstream piping (carbon steel) of wastewater stripper 3, but this was compared with the corrosion situation when no iron ions were added to the wastewater. The anticorrosion effect was clearly demonstrated.

実施例 3(第3図参照) 実施例1と同成分の廃水に鉄イオンタンク1から電気分
解によって調製した鉄イオンを添加して、廃水中の鉄イ
オンが2000 ppmになるようにした。
Example 3 (See Figure 3) Iron ions prepared by electrolysis from the iron ion tank 1 were added to wastewater having the same components as in Example 1, so that the iron ions in the wastewater were 2000 ppm.

この廃水を実施例1と同一の運転条件の廃水スl−IJ
ツバ−3に導入した。
This wastewater was processed into wastewater sl-IJ under the same operating conditions as in Example 1.
It was introduced into Tuba-3.

次いで、廃水処理装置の中でも廃水スl−IJツバ−3
のオーバーヘッド系(クーラー、配管)に腐食が激しい
ことを考慮して該ストリッパー3の塔頂から抜き出した
塔頂蒸気にさらに鉄イオンタンク1から鉄イオン200
0 ppmを新たに添加して、これをクーラー4へ導き
冷却後、フィルター2で廃水中の硫酸第一鉄等を除去し
受槽5を介して廃水スI−IJツバ−3に循環した。
Next, among wastewater treatment equipment, wastewater sl-IJ tube 3
Considering that the overhead system (cooler, piping) is severely corroded, 200% of iron ions are added to the top steam extracted from the top of the stripper 3 from the iron ion tank 1.
0 ppm was newly added, and after being led to the cooler 4 and cooled, ferrous sulfate and the like in the waste water were removed by the filter 2, and the waste water was circulated through the receiving tank 5 to the waste water bath I-IJ tube 3.

受槽5からはアンモニアその他の酸性ガスを回収捕集し
た。
Ammonia and other acidic gases were recovered and collected from the receiving tank 5.

処理廃水中の硫化水素は30 ppm以下、アンモニア
は50 ppm以下、シアンは11)pm以下であった
Hydrogen sulfide in the treated wastewater was 30 ppm or less, ammonia was 50 ppm or less, and cyanide was 11) pm or less.

上記の条件下で廃水を3ケ月間継続処理したが、廃水処
理装置全域にわたって腐食はほとんどみられなかった。
Wastewater was continuously treated for three months under the above conditions, but almost no corrosion was observed throughout the wastewater treatment equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図はそれぞれ本発明の方法を適用して廃水処理
を行なう設備の概略図である。 図中1は鉄イオンタンク、2はフィルター、3は廃水ス
トリッパー、4はクーラー 5は受槽、6はくず鉄充填
塔をそれぞれ示す。
1 to 3 are schematic diagrams of equipment for treating wastewater by applying the method of the present invention, respectively. In the figure, 1 is an iron ion tank, 2 is a filter, 3 is a wastewater stripper, 4 is a cooler, 5 is a receiving tank, and 6 is a scrap iron packed tower.

Claims (1)

【特許請求の範囲】 1 シアンおよび硫化水素を含有する廃水を廃水処理装
置に導入するにあたり、あらかじめ廃水に当該廃水中に
含有されるシアンに対し少なくとも当モルの鉄イオンを
添加することを特徴とする廃水処理装置の防食方法。 2 鉄イオンの添加量が、廃水中に含有されるシアンに
対し2〜40(モル比)である特許請求の範囲第1項に
記載の方法。 3 鉄イオンが第一鉄イオンおよび/あるいは第二鉄イ
オンである特許請求の範囲第1項記載の方法。
[Claims] 1. When introducing wastewater containing cyanide and hydrogen sulfide into a wastewater treatment device, iron ions are added in advance to the wastewater in an amount equal to at least the mole of cyanide contained in the wastewater. Corrosion prevention method for wastewater treatment equipment. 2. The method according to claim 1, wherein the amount of iron ions added is 2 to 40 (molar ratio) to cyanide contained in the wastewater. 3. The method according to claim 1, wherein the iron ion is a ferrous ion and/or a ferric ion.
JP52015506A 1977-02-17 1977-02-17 Corrosion prevention method for wastewater treatment equipment Expired JPS5833309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52015506A JPS5833309B2 (en) 1977-02-17 1977-02-17 Corrosion prevention method for wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52015506A JPS5833309B2 (en) 1977-02-17 1977-02-17 Corrosion prevention method for wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JPS53101846A JPS53101846A (en) 1978-09-05
JPS5833309B2 true JPS5833309B2 (en) 1983-07-19

Family

ID=11890682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52015506A Expired JPS5833309B2 (en) 1977-02-17 1977-02-17 Corrosion prevention method for wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JPS5833309B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915045A (en) * 1972-06-02 1974-02-09
JPS528937A (en) * 1975-07-11 1977-01-24 Kobe Steel Ltd Electrolytic method for iron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915045A (en) * 1972-06-02 1974-02-09
JPS528937A (en) * 1975-07-11 1977-01-24 Kobe Steel Ltd Electrolytic method for iron

Also Published As

Publication number Publication date
JPS53101846A (en) 1978-09-05

Similar Documents

Publication Publication Date Title
EP0166557B1 (en) Process for waste treatment
JPS5929317B2 (en) Wastewater treatment method
EP0272013B1 (en) Process for inhibiting scale formation
US5139679A (en) Treatment of wastewater containing citric acid and triethanolamine
JP2020032412A (en) Method and equipment for treating cyanide-containing water
US4481112A (en) Process of treating gas condensate
JP4954131B2 (en) Treatment method of water containing borofluoride
US5451327A (en) Compound and method for treating water containing metal ions and organic and/or inorganic impurities
US1931408A (en) Washing of flue gases from combustion furnaces and the like
JPS5833309B2 (en) Corrosion prevention method for wastewater treatment equipment
US4654148A (en) Process for the removal of iron cyanide complex or complexes from an aqueous solution
US4731232A (en) Process for the purification of industrial gases or waste gases
US4176060A (en) Process for soluble cyanide removal from wastewater streams
JP2721740B2 (en) Chemical cleaning waste liquid treatment method
RU2057992C1 (en) Waste solution treatment method
US4717429A (en) Process for the removal of alkali metal nitrite from nitrate containing salt baths
JP3690610B2 (en) Treatment method for organic wastewater containing heavy metals
US3647686A (en) Method of treating industrial waste water without contamination of the environment
US3640895A (en) Inhibition of corrosion using alkyl aryl ketones
SU975589A1 (en) Process for the stabilization purification of water
JP3739935B2 (en) Wastewater treatment method
RU2182924C1 (en) Method of cleaning oil and gas condensate to eliminate hydrogen sulfide and mercaptans
SU668882A1 (en) Encrustation preventing method
SU966058A1 (en) Method for treating slag melt
US3468797A (en) Pickle liquor disposal