JPS5833183B2 - Manufacturing method of fibrous monolithic fireproof insulation material - Google Patents

Manufacturing method of fibrous monolithic fireproof insulation material

Info

Publication number
JPS5833183B2
JPS5833183B2 JP54099770A JP9977079A JPS5833183B2 JP S5833183 B2 JPS5833183 B2 JP S5833183B2 JP 54099770 A JP54099770 A JP 54099770A JP 9977079 A JP9977079 A JP 9977079A JP S5833183 B2 JPS5833183 B2 JP S5833183B2
Authority
JP
Japan
Prior art keywords
water
fibers
added
insulation material
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54099770A
Other languages
Japanese (ja)
Other versions
JPS5626791A (en
Inventor
美明 三井
良光 早川
鋭二 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP54099770A priority Critical patent/JPS5833183B2/en
Publication of JPS5626791A publication Critical patent/JPS5626791A/en
Publication of JPS5833183B2 publication Critical patent/JPS5833183B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は耐火性繊維、特にセラミックファイバーを主体
とした不定形耐火断熱材の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a monolithic fire-resistant heat insulating material mainly made of fire-resistant fibers, particularly ceramic fibers.

熱伝導率が小さく、スポーリング抵抗性の大きい耐火断
熱材の一つとして従来よりセラミックファイバーがある
Ceramic fiber has traditionally been used as a fireproof insulation material with low thermal conductivity and high spalling resistance.

セラミックファイバーはバルク状、ブランケット状、ペ
ーパー状、ボード状としては製造されているが、従来の
不定形耐火断熱材(軽量キャスタブル耐火物、軽量プラ
スチック耐火物、断熱モルタル等)の様に流し込み、あ
るいはスタンプ等の施工方法が要求される場所に使用出
来る形態のものはまだ開発されていない。
Ceramic fibers are manufactured in bulk, blanket, paper, and board shapes, but they can also be poured or poured like conventional monolithic refractory insulation materials (lightweight castable refractories, lightweight plastic refractories, insulation mortar, etc.). A form that can be used in places where a construction method such as a stamp is required has not yet been developed.

粉粒状の耐火骨材を用いた耐火プラスチック、耐火キャ
スタブル、耐火モルタル、耐火吹付材等の不定形耐火(
断熱)材では、使用法に適した粘度とするには、主とし
て水の配合量を調節することによって行なわれている。
Fireproof plastics using powdered fireproof aggregate, fireproof castables, fireproof mortars, fireproof spray materials, etc.
In the case of heat insulating materials, the viscosity suitable for the usage is mainly achieved by adjusting the amount of water added.

しかしセラミックファイバーを耐火原料とする不定形耐
火断熱材では、セラミックファイバーに単に水を加えて
も、水が透過してしまい所望の水を保持せしめることが
できない。
However, in a monolithic refractory heat insulating material using ceramic fibers as a refractory raw material, even if water is simply added to the ceramic fibers, the water permeates through the material, making it impossible to retain the desired amount of water.

また水中にセラミックファイバーを分散してもセラミッ
クファイバーを水から引上げると、水とセラミックファ
イバーとが分離してしまい所望の水をセラミックファイ
バーに含ませることはできない。
Furthermore, even if ceramic fibers are dispersed in water, when the ceramic fibers are pulled up from the water, the water and the ceramic fibers separate, making it impossible to incorporate the desired water into the ceramic fibers.

一般にセラミックファイバーを用いた耐火断熱成形体を
うる場合には、繊維の長さにもよるが繊維重量の5〜2
0倍重量の水に繊維を投入し、耐火粉末を加えあるいは
加えず、水中で数時間攪拌して、水中で均一に分散し、
これにコロイダルアルミナ、コロイダルシリカ等のゲル
化剤を加えて分散状態に保った上、凝集剤を加えて凝集
した上、圧縮成形、吸引成形等して脱水成形を行なって
いる。
Generally, when obtaining a fireproof heat insulating molded article using ceramic fibers, 5 to 2
Add fibers to 0 times the weight of water, with or without adding refractory powder, stir in water for several hours, and disperse uniformly in water.
A gelling agent such as colloidal alumina or colloidal silica is added to this to keep it in a dispersed state, a flocculant is added to agglomerate it, and dehydration molding is performed by compression molding, suction molding, etc.

この方法において繊維に対する水の量が少ないと、繊維
は団粒状となり均一に分散しない。
In this method, if the amount of water relative to the fibers is small, the fibers will form aggregates and will not be uniformly dispersed.

勿論耐火粉末に水を加えたものに繊維を分散させる場合
も、同様である。
Of course, the same applies when fibers are dispersed in a mixture of fireproof powder and water.

上記のように凝集剤を加えて凝集せしめた繊維から水を
適当に絞る等して所望の水分を保有せしめることにより
、耐火キャスタブル、プラスチック、モルタル等使用法
に適した粘度のものとすることも可能である。
By appropriately squeezing the water from the fibers that have been coagulated by adding a coagulant as described above to retain the desired moisture content, it is possible to create a product with a viscosity suitable for use in fireproof castables, plastics, mortar, etc. It is possible.

しかしこのような方法によって不定形耐火物をうるとき
は、上記のように数時間を要するだけでなく、製品に必
要としない水や、ゲル化剤を必要とし、用いた凝集剤も
ロスを生ずることはまねかれない。
However, when obtaining monolithic refractories using this method, it not only takes several hours as described above, but also requires water and gelling agents that are not needed for the product, and the flocculant used also causes loss. That cannot be imitated.

本発明は極めて短時間に、製品に必要とする材料だけを
無駄なく使用して繊維質不定形耐火断熱材を製造する方
法を提供するものである。
The present invention provides a method for manufacturing a fibrous monolithic fire-resistant heat insulating material in an extremely short period of time, using only the materials necessary for the product without waste.

本発明はセラミックファイバーに直接ポリアクリルアミ
ド系高分子凝集剤を加え混練した後、水を添加混合して
繊維質不定形耐火断熱材とするものである。
In the present invention, a polyacrylamide-based polymer flocculant is directly added to ceramic fibers, kneaded, and then water is added and mixed to obtain a fibrous monolithic fire-resistant heat insulating material.

本発明で使用するセラミックファイバーは繊維長さ10
0朋程度のもの、あるいはこれを5〜lQmm程度の長
さに切断したものが用いられる。
The ceramic fiber used in the present invention has a fiber length of 10
A length of approximately 0 mm or a length of approximately 5 to 1Q mm is used.

繊維長さがlQQmmより長いと混線が困難になるだけ
でなく、使用の際、流し込みや、こて塗りがしにくくな
る。
If the fiber length is longer than 1QQmm, not only will it be difficult to mix wires, but also it will be difficult to pour or apply with a trowel during use.

また繊維長さがあまり小さいと、乾燥後のカサ比重が大
きくなり、断熱性が低下してセラミックファイバーを使
用することの意味が薄れる。
Furthermore, if the fiber length is too short, the bulk specific gravity after drying will increase, the heat insulation properties will decrease, and the purpose of using ceramic fibers will be diminished.

ポリアクリルアミド系高分子凝集剤は、乾燥したままの
セラミックファイバーに直接加えてもよいし水で濡らし
たセラミックファイバーに加えてもよい。
The polyacrylamide-based polymer flocculant may be added directly to the ceramic fibers as they are dry, or may be added to the ceramic fibers wetted with water.

この高分子凝集剤は出来るだけ高粘度の方が効果的に使
用できる。
This polymer flocculant can be used more effectively if it has as high a viscosity as possible.

その添加量は製品の使用方法や繊維の長短にもよるが、
セラミックファイバー100重量部に対し普通0.1〜
10重量部が用いられる。
The amount added depends on how the product is used and the length of the fiber.
Normally 0.1 to 100 parts by weight of ceramic fiber
10 parts by weight are used.

また製品の使用方法によっては水で希釈して用いても良
い。
Depending on how the product is used, it may also be diluted with water.

不定形耐火物に粘性を与えるための材料として、カルボ
キシメチルセルロース、メチルセルロース、ポリエチレ
ンオキサイド、トリエタノールアミン、ポリビニールア
ルコール、デンプン等が知られている。
Carboxymethylcellulose, methylcellulose, polyethylene oxide, triethanolamine, polyvinyl alcohol, starch, and the like are known as materials for imparting viscosity to monolithic refractories.

これらは増粘性はあるが、これらとセラミックファイバ
ーを混合すると繊維の分散性が悪く、繊維が団粒になり
、製品の使用時、伸びが悪く、また混線物に圧力を加え
た場合、繊維と水が分離し易い欠点を有している。
These have thickening properties, but when mixed with ceramic fibers, the fibers have poor dispersibility, the fibers become aggregated, and the product has poor elongation when used, and when pressure is applied to the mixed wire, the fibers may It has the disadvantage that water easily separates.

ポリアクリルアミド系高分子凝集剤では、この様な欠点
はなく繊維分散は手で数分混練した程度でも充分に分散
し、施工時の伸びもよく、水を増加しても繊維と水の分
離はなく、プラスチック状のスタンプ施工、水を増加し
たキャスタブル状の流し込み施工、更に水を増加してモ
ルタル状の施工まで可能である。
Polyacrylamide-based polymer flocculants do not have these drawbacks; the fibers are sufficiently dispersed even after a few minutes of hand kneading, they spread well during application, and the separation of fibers and water does not occur even when water is added. Instead, it is possible to perform plastic-like stamp construction, castable-like pouring with increased water, and even mortar-like construction with increased water.

更にこうして得られた製品は乾燥収縮が小さいと云う特
長も有している。
Furthermore, the product thus obtained also has the feature of low drying shrinkage.

更にこうして得られたねり生状あるいはモルタル状の製
品に、耐火性を与えるために各種の耐火性骨材を加える
こと、または高温での強度を与えるために無機のバイン
ダーを加えることも可能である。
Furthermore, it is also possible to add various types of refractory aggregates to the dough-like or mortar-like product thus obtained to impart fire resistance, or to add an inorganic binder to impart strength at high temperatures. .

この場合、耐火性骨材を混入するには繊維を完全に分散
させてから混入する方が有効であるが、繊維に耐火性骨
材を加えたものに凝集剤を加えて混練することもできる
In this case, it is more effective to mix the refractory aggregate after completely dispersing the fibers, but it is also possible to mix the refractory aggregate with the fibers and add a flocculant. .

また、繊維を事前に機械的に解綿してお(と繊維の分散
にはより効果的である。
It is also more effective to disperse the fibers mechanically in advance.

以下に実施例を示す。Examples are shown below.

繊維に対して上記各配合割合の分散剤を加え乾式混合し
、更に水を加えた後手で5〜10分混練した。
The dispersants in the above blending ratios were added to the fibers and mixed in a dry manner, and then water was added and kneaded by hand for 5 to 10 minutes.

実施例5については繊維が充分に分散した※※後更に合
成ムライト及びコロイダルシリカを加え混合し更に水で
粘度を調節して下記の性状のものを得た。
In Example 5, after the fibers were sufficiently dispersed, synthetic mullite and colloidal silica were further added and mixed, and the viscosity was adjusted with water to obtain the following properties.

実施例1は繊維の比較的短いものを使用しプラスチック
状にしたものであり、比較例は実施例1と比較するため
高分子凝集剤の代りにOMOを使用したものである。
In Example 1, relatively short fibers were used and made into plastic, and in Comparative Example, OMO was used instead of the polymer flocculant in order to compare with Example 1.

実施例2は比較的長い繊維を使用した例であり、実施例
3.4は水を増加した例であり、3では流し込みが可能
であり、実施例4はモルタルとして鏝作業が可能である
Example 2 is an example in which relatively long fibers are used, Examples 3 and 4 are examples in which water is increased, and in 3, it is possible to pour, and in Example 4, it is possible to use a trowel as a mortar.

実施例5は強度及び耐火性を上げるため、耐火シャモッ
トを配合したものである。
Example 5 contains refractory chamotte in order to increase strength and fire resistance.

本発明はこのようにして、水の添加量を加減して耐火繊
維質プラスチック耐火物、同じくキャスタブル耐火物、
同じくモルタル、同コーチング材として広く利用できる
繊維質不定形耐火断熱材を容易に数〜10数分で材料の
ロスを生ずることなく製造でき、また作業性良く、収縮
の小さい不定形材をうろことができる。
In this way, the present invention adjusts the amount of water added to produce fire-resistant fibrous plastic refractories, as well as castable refractories.
Similarly, the fibrous monolithic fireproof insulation material, which can be widely used as mortar and coating material, can be easily produced in a few to 10 minutes without material loss. Can be done.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミックファイバーにポリアクリルアミド系高分
子凝集剤を直接に加え混練した後、水を添加混合する繊
維質不定形耐火断熱材の製造方法。
1. A method for producing a fibrous monolithic fireproof insulation material, in which a polyacrylamide-based polymer flocculant is directly added to ceramic fibers, kneaded, and then water is added and mixed.
JP54099770A 1979-08-03 1979-08-03 Manufacturing method of fibrous monolithic fireproof insulation material Expired JPS5833183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54099770A JPS5833183B2 (en) 1979-08-03 1979-08-03 Manufacturing method of fibrous monolithic fireproof insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54099770A JPS5833183B2 (en) 1979-08-03 1979-08-03 Manufacturing method of fibrous monolithic fireproof insulation material

Publications (2)

Publication Number Publication Date
JPS5626791A JPS5626791A (en) 1981-03-14
JPS5833183B2 true JPS5833183B2 (en) 1983-07-18

Family

ID=14256194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54099770A Expired JPS5833183B2 (en) 1979-08-03 1979-08-03 Manufacturing method of fibrous monolithic fireproof insulation material

Country Status (1)

Country Link
JP (1) JPS5833183B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033279A (en) * 1983-08-03 1985-02-20 日本碍子株式会社 Refractory coating material and refractories coated therewith
JPH02175669A (en) * 1988-12-28 1990-07-06 Nippon Steel Chem Co Ltd Unshaped refractory heat insulating material composition and production thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975604A (en) * 1972-07-03 1974-07-22
JPS5221015A (en) * 1975-08-11 1977-02-17 Yamagishi Fukujirou Manufacture of heattinsulating refractories
JPS5221016A (en) * 1975-08-11 1977-02-17 Yamagishi Fukujirou Manufacture of heattinsulating refractories

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4975604A (en) * 1972-07-03 1974-07-22
JPS5221015A (en) * 1975-08-11 1977-02-17 Yamagishi Fukujirou Manufacture of heattinsulating refractories
JPS5221016A (en) * 1975-08-11 1977-02-17 Yamagishi Fukujirou Manufacture of heattinsulating refractories

Also Published As

Publication number Publication date
JPS5626791A (en) 1981-03-14

Similar Documents

Publication Publication Date Title
JPH02307853A (en) Conductive cement composition and conductive hardening body obtained from composition thereof
JPS5833183B2 (en) Manufacturing method of fibrous monolithic fireproof insulation material
JP2001233653A (en) Method for producing fiber-reinforced inorganic plate
JPS61174159A (en) Cementitious forming material
JP3024723B2 (en) Insulated castable
JPH0218299B2 (en)
JPS5835380A (en) Fibrous amorphous refractory heat insulating composition
JP2908494B2 (en) Method for producing asbestos-free extruded product
JPH0816020B2 (en) Method for producing inorganic extrudate
JP2538928B2 (en) Extruded building material composition
JP2638123B2 (en) Rock wool fiberboard
JP3849760B2 (en) Hydraulic composition for extrusion molding and cured body thereof
JPS5921566A (en) Manufacture of pasty fiber mixture, fiber mixture and use
JP4198868B2 (en) Manufacturing method of fiber reinforced inorganic board
JPS60186453A (en) Manufacture of ceramic fiber sleeve
JPH05117047A (en) High-temperature spaying heat insulating material
JPS58130150A (en) Lightweight inorganic hardened body
JP2715300B2 (en) Ceramic fiber based heat insulating refractory composition
JPS5932418B2 (en) Manufacturing method of extrusion molding material
RU2068818C1 (en) Concrete mixture
JP2001192278A (en) Refractory and heat insulating formed body and method of producing the same
JPH10182208A (en) Production of hydraulic inorganic composition and production of inorganic hardened body
JPH0791104B2 (en) Heat insulating material and manufacturing method thereof
SU1728158A1 (en) Heat insulating fibers-containing material
JPS6367109A (en) Method of dispersing and kneading short fiber