JPH0791104B2 - Heat insulating material and manufacturing method thereof - Google Patents

Heat insulating material and manufacturing method thereof

Info

Publication number
JPH0791104B2
JPH0791104B2 JP1020391A JP2039189A JPH0791104B2 JP H0791104 B2 JPH0791104 B2 JP H0791104B2 JP 1020391 A JP1020391 A JP 1020391A JP 2039189 A JP2039189 A JP 2039189A JP H0791104 B2 JPH0791104 B2 JP H0791104B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
weight
silica
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1020391A
Other languages
Japanese (ja)
Other versions
JPH02199071A (en
Inventor
敬一 阪下
敏司 山本
寿松 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP1020391A priority Critical patent/JPH0791104B2/en
Publication of JPH02199071A publication Critical patent/JPH02199071A/en
Publication of JPH0791104B2 publication Critical patent/JPH0791104B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は高温電池の断熱材やアルミニウム溶解炉等の
炉のバックアップ材、蓄熱ヒータの断熱材等として利用
される断熱材及びその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a heat insulating material used as a heat insulating material for a high temperature battery, a backup material for a furnace such as an aluminum melting furnace, a heat insulating material for a heat storage heater, and a method for manufacturing the same. It is a thing.

[従来の技術] 従来、燃料電池等に使用される断熱材としては、例えば
平均粒子径20mμ程度の合成シリカ(例えば日本アエロ
ジル株式会社製商品名アエロジル)、酸化チタン及びセ
ラミックファイバーを乾式で混合し、乾式プレス成形を
行った後、機械加工することによって得られたものが知
られている。
[Prior Art] Conventionally, as a heat insulating material used in a fuel cell or the like, for example, a synthetic silica having an average particle diameter of about 20 mμ (for example, Aerosil, manufactured by Nippon Aerosil Co., Ltd.), titanium oxide, and ceramic fibers are dry-mixed. A material obtained by performing dry press molding and then machining is known.

また、前記各成分が均一に分散されることにより、酸化
チタンの熱輻射散乱特性や、微粒シリカの気体対流防止
特性が十分に発揮されて、所望の熱伝導率を有する断熱
材が得られることが知られている。
Further, by uniformly dispersing each of the components, the heat radiation scattering characteristics of titanium oxide and the gas convection prevention characteristics of finely divided silica are sufficiently exhibited, and a heat insulating material having a desired thermal conductivity can be obtained. It has been known.

[発明が解決しようとする課題] ところが、上記従来の断熱材は各成分を乾式で混合して
プレスするため、各成分が分散した状態で均一に混合さ
れにくく、得られる断熱材の断熱性が不十分であるとい
う問題があった。また、乾式プレスをするため、プレス
時にセラミックファイバーが折れ、得られる断熱材の曲
げ強度や圧縮強度が小さいという問題があった。さら
に、乾式プレスでは、複雑な形状を有する断熱材を精度
良く成形することが難しいため、後加工をする必要があ
るという問題があった。
[Problems to be Solved by the Invention] However, since the above conventional heat insulating material mixes and presses each component in a dry manner, it is difficult to uniformly mix each component in a dispersed state, and the heat insulating property of the obtained heat insulating material is high. There was a problem of being insufficient. Further, since the dry pressing is performed, there is a problem that the ceramic fiber is broken at the time of pressing, and the resulting heat insulating material has a small bending strength and compressive strength. Further, in the dry press, since it is difficult to accurately form a heat insulating material having a complicated shape, there is a problem that post-processing is required.

この発明は上記問題を解消するためになされたものであ
って、その目的は断熱性が向上し、曲げ強度や圧縮強度
が大きく、しかも後加工の不要な断熱材及びその製造方
法を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a heat insulating material having improved heat insulating properties, large bending strength and compressive strength, and requiring no post-processing, and a method for manufacturing the same. It is in.

[課題を解決するための手段及び作用] 上記の目的を達成するために、この発明ではシリカ60〜
90重量%、酸化チタン5〜30重量%及びセラミックファ
イバー3〜15重量%を含み、嵩密度が0.2〜0.5g/cm3
あるようにしている。
[Means and Actions for Solving the Problems] In order to achieve the above-mentioned object, according to the present invention, silica 60-
It contains 90% by weight, 5 to 30% by weight of titanium oxide and 3 to 15% by weight of ceramic fiber, and has a bulk density of 0.2 to 0.5 g / cm 3 .

また、この断熱材の製造方法として上記配合割合のシリ
カ、酸化チタン及びセラミックファイバーを分散媒中に
分散させた後、湿式成形するようにしている。
Further, as a method of manufacturing this heat insulating material, silica, titanium oxide and ceramic fibers having the above-mentioned mixing ratios are dispersed in a dispersion medium and then wet-molded.

次に、この発明の構成を詳細に説明する。Next, the configuration of the present invention will be described in detail.

微粒シリカは空気の対流防止に必要な空気の平均分子間
衝突距離(常温常圧時0.1μm以下)よりも小さい空孔
を形成するための基材であり、例えばホワイトカーボン
等が使用される。断熱材中のシリカの配合割合は60〜90
重量%の範囲である。この割合が60重量%未満では、空
隙が大きくなり空気の対流を防止する効果が十分発揮さ
れず、90重量%を超えると相対的に他の成分が少なくな
って十分な断熱効果や強度が得られない。
The finely divided silica is a base material for forming pores smaller than the average intermolecular collision distance of air (0.1 μm or less at room temperature and normal pressure) necessary to prevent air convection, and for example, white carbon is used. Mixing ratio of silica in insulation is 60-90
It is in the range of% by weight. If this ratio is less than 60% by weight, the voids become large and the effect of preventing air convection is not sufficiently exerted, and if it exceeds 90% by weight, other components are relatively reduced and sufficient heat insulating effect and strength are obtained. I can't.

また、その粒子径は1〜40mμの範囲で、シリカ粒子内
部の表面積が全表面積の20〜80%であることが好まし
い。20%未満では空隙が大きくなり対流が許容されやす
く、80%を超えると得られる断熱材の嵩密度が高くなり
熱伝導が大きくなるため断熱特性が低下する。このシリ
カ粒子は水等の分散媒中で表面のシラノール基(SiOH)
に水素架橋結合が生じて、鎖状、網状の二次凝集体を形
成し、見掛け粒子径が極めて大きくなるため、界面活性
剤等の分散剤を使用したり、ζ電位の絶対値を大きくす
るためのpH調整を行ったりすることが好適である。
The particle diameter is preferably in the range of 1 to 40 mμ, and the surface area inside the silica particles is preferably 20 to 80% of the total surface area. If it is less than 20%, the voids become large and convection is easily allowed, and if it exceeds 80%, the bulk density of the obtained heat insulating material becomes high and the heat conduction becomes large, so that the heat insulating property deteriorates. The silica particles are surface silanol groups (SiOH) in a dispersion medium such as water.
Hydrogen cross-linking occurs in the chain to form chain-like or net-like secondary aggregates, and the apparent particle size becomes extremely large.Therefore, use a dispersant such as a surfactant or increase the absolute value of ζ potential. Therefore, it is preferable to adjust the pH.

断熱材中の酸化チタンの配合割合は5〜30重量%の範囲
である。この割合が5重量%未満では、断熱性を左右す
る1つの要因である輻射熱の抑制、特に赤外線を散乱さ
せることができず、30重量%を超える量配合すると、相
対的にシリカの配合割合が減少し、得られる成形体の嵩
密度が増加し、断熱特性が劣ってしまうこととなる。
The compounding ratio of titanium oxide in the heat insulating material is in the range of 5 to 30% by weight. If this ratio is less than 5% by weight, it is not possible to suppress radiant heat, which is one factor that affects the heat insulation properties, and especially infrared rays cannot be scattered. If the amount is more than 30% by weight, the silica content is relatively high. This results in a decrease in the bulk density of the obtained molded product, resulting in poor heat insulating properties.

セラミックファイバーは補強材としての機能を有し、シ
リカ成分を含むアルミノシリケート製であることが望ま
しい。又、平均繊維径が2.1μm以下で、かつ粒子径49
μm以上の非繊維状粒子(ショット)が20%未満である
ことが好ましい。セラミックファイバーの配合割合は3
〜15重量%の範囲である。この割合が3重量%未満で
は、得られる断熱材の曲げ強度や圧縮率等の強度が不十
分となり、15重量%を超えると断熱性が低下する。
The ceramic fiber has a function as a reinforcing material and is preferably made of aluminosilicate containing a silica component. Also, the average fiber diameter is 2.1 μm or less, and the particle diameter is 49
It is preferable that the non-fibrous particles (shot) having a size of μm or more are less than 20%. Mixing ratio of ceramic fiber is 3
Is in the range of up to 15% by weight. If this ratio is less than 3% by weight, the strength of the resulting heat insulating material such as bending strength and compressibility will be insufficient, and if it exceeds 15% by weight, the heat insulating property will be deteriorated.

上記各成分をスラリー状態にするために分散媒を使用す
るが、その分散媒としては水の他、メタノール、エタノ
ール等の極性溶媒を使用することもできる。
A dispersion medium is used to make each of the above components into a slurry state. As the dispersion medium, a polar solvent such as methanol or ethanol can be used in addition to water.

得られる断熱材の嵩密度は、熱伝導の面から0.2〜0.5g/
cm3の範囲である。0.2g/cm3未満では、対流又は輻射が
大きくなり、0.5g/cm3を超えると伝導が大きくなってし
まう。
The bulk density of the obtained heat insulating material is 0.2 to 0.5 g / in terms of heat conduction.
It is in the range of cm 3 . If it is less than 0.2 g / cm 3 , convection or radiation will be large, and if it exceeds 0.5 g / cm 3 , conduction will be large.

次に、この発明の断熱材の製造方法について説明する。Next, a method for manufacturing the heat insulating material of the present invention will be described.

まず、前記セラミックファイバーを水等の分散媒中で攪
拌してスラリーとし、これにホワイトカーボン等のシリ
カを添加して攪拌混合し、さらに酸化チタンを添加して
攪拌混合する。望ましくは、真空中で脱泡する。この混
合スラリーを湿式成形法により、即ち所定形状の型に流
し込んで所望の成形体を成形する。得られた成形体を乾
燥し、必要に応じて焼成することにより、目的とする断
熱材が得られる。この焼成を行うことによって、有機分
を除去することができるとともに、得られる断熱材の強
度を向上させることができる。
First, the ceramic fibers are stirred in a dispersion medium such as water to form a slurry, and silica such as white carbon is added thereto and stirred and mixed, and titanium oxide is further added and stirred and mixed. Desirably, degassing is performed in a vacuum. This mixed slurry is cast by a wet molding method, that is, poured into a mold having a predetermined shape to mold a desired molded body. The obtained heat-insulating material is obtained by drying the obtained molded body and firing it if necessary. By performing this firing, the organic components can be removed and the strength of the obtained heat insulating material can be improved.

そして、上記の断熱材ではシリカによって、断熱材内部
における空気の対流が防止されるとともに、酸化チタン
によって熱の輻射が散乱され、嵩密度が所定の範囲内に
あることによって、断熱材内部に存在する空隙内での空
気の対流と断熱材の固形部分を介する熱の伝導が抑制さ
れ、しかも断熱材の熱源側表層部における熱線の反射が
促進されるので、その断熱性が向上するものと推定され
る。
In the above heat insulating material, silica prevents the convection of air inside the heat insulating material, and the radiation of heat is scattered by titanium oxide, and the bulk density is within a predetermined range. It is presumed that the heat insulation is improved because the convection of air in the air gap and the conduction of heat through the solid part of the heat insulating material are suppressed, and the reflection of heat rays at the heat source side surface layer of the heat insulating material is promoted. To be done.

また、前記断熱材の製造方法によれば、各成分を液状で
混合するため、全成分が均一に分散され、セラミックフ
ァイバーも粉末化せず、所定の繊維状態で存在するの
で、対流、輻射及び伝導をいずれも抑えることができ、
しかもセラミックファイバーが断熱材全体に均一に存在
し、三次元網目構造を形成するため、断熱材の曲げ強度
や圧縮強度を向上させることができるものと推定され
る。
Further, according to the method for manufacturing the heat insulating material, since the respective components are mixed in a liquid state, all the components are uniformly dispersed, the ceramic fibers are not pulverized, and exist in a predetermined fiber state, so that convection, radiation and You can suppress any conduction,
Moreover, since the ceramic fibers are uniformly present throughout the heat insulating material and form a three-dimensional mesh structure, it is presumed that the bending strength and compressive strength of the heat insulating material can be improved.

次に、この発明を具体化した実施例及び比較例について
説明する。
Next, examples and comparative examples embodying the present invention will be described.

[実施例1] 水7lにアルミノシリケート繊維として、大きな粒子を除
いたいわゆる脱ショットバルク(イビデン株式会社製、
商品名イビウールバルクM1−u20)を50g添加し、5000rp
mの高速ミキサーで2分間攪拌して0.7重量%のスラリー
を得た。続いて、上記ミキサーからスラリーを取り出
し、攪拌機付真空脱気装置で真空状態において、100〜2
00rpmの攪拌速度で6分間脱気攪拌を行った。次に、真
空解除した状態で上記スラリーに、シリカとしてホワイ
トカーボン(シオノギ製薬株式会社製、商品名カープレ
ックス#80、粒径0.8mμ)を添加し、再び真空状態で6
分間100〜200rpmの攪拌速度で攪拌した。その後、同様
に液状チタニア(林化学株式会社製商品名チタンペース
トR−65)を150g添加し、真空攪拌を8分間行った。
[Example 1] So-called de-shot bulk (manufactured by Ibiden Co., Ltd., obtained by removing large particles from 7 l of water as aluminosilicate fiber)
Product name Ibiwool Bulk M1-u20) 50g, 5000rp
The mixture was stirred for 2 minutes with a m high speed mixer to obtain a 0.7 wt% slurry. Then, take out the slurry from the mixer, and in a vacuum state with a vacuum deaerator equipped with a stirrer, 100 to 2
Degassing was performed for 6 minutes at a stirring speed of 00 rpm. Next, white carbon (Shionogi Pharmaceutical Co., Ltd., trade name Carplex # 80, particle size 0.8 mμ) was added as silica to the above slurry in a vacuum-released state, and again in vacuum state.
The mixture was stirred at a stirring speed of 100 to 200 rpm for 1 minute. Then, similarly, 150 g of liquid titania (trade name: Titanium paste R-65, manufactured by Hayashi Chemical Co., Ltd.) was added, and vacuum stirring was performed for 8 minutes.

得られた混合スラリーを所望の形状の石膏型に流し込
み、泥奨成形(湿式成形)を行った。この成形体を常温
で24時間乾燥放置した後、150℃で5時間乾燥を行っ
た。得られた乾燥物を大気雰囲気中700℃で1時間焼成
した。焼成物はセラミックファイバーとしてのアルミノ
シリケート繊維5重量%、シリカ80重量%、チタニア15
重量%であった。また、焼成物の熱伝導率、曲げ強度、
圧縮率及び嵩密度を表−1に示した。
The obtained mixed slurry was poured into a plaster mold having a desired shape, and mud molding (wet molding) was performed. The molded body was left to dry at room temperature for 24 hours and then dried at 150 ° C. for 5 hours. The obtained dried product was calcined at 700 ° C. for 1 hour in the atmosphere. The fired product is 5% by weight of aluminosilicate fiber as ceramic fiber, 80% by weight of silica, 15 titania.
% By weight. Also, the thermal conductivity, bending strength,
The compressibility and bulk density are shown in Table-1.

[比較例1] 従来の乾式混合、乾式プレスで成形した市販の断熱材に
ついて、常法により熱伝導率、曲げ強度、圧縮率及び嵩
密度を測定した。その結果を表−1に示す。
Comparative Example 1 The thermal conductivity, bending strength, compressibility and bulk density of a commercially available heat insulating material formed by conventional dry mixing and dry pressing were measured by a conventional method. The results are shown in Table-1.

上記表−1に示したように、実施例1の断熱材は比較例
1の断熱材に比べて、熱伝導率は10%以上低くなり、そ
れだけ断熱性が向上したことがわかる。これは、湿式で
各成分を均一に分散した後、そのまま湿式成形したの
で、シリカに備わる空気の平均分子間衝突距離よりも小
さいサイズの空孔によって空気の対流を防止するととも
に、チタニアが赤外線を散乱して輻射を促進するためと
推測される。また、嵩密度は0.2〜0.5(g/cm3)の好適
な範囲にあり、対流及び輻射を防ぐことができる。さら
に、実施例1の断熱材の曲げ強度は比較例1のそれの30
%近く高く、圧縮率は50(kg/cm3)の荷重で25%高いの
で、それだけ強度が向上したことがわかる。
As shown in Table 1 above, it can be seen that the heat insulating material of Example 1 has a thermal conductivity of 10% or more lower than that of the heat insulating material of Comparative Example 1, and the heat insulating property is improved accordingly. This is because each component is uniformly dispersed by a wet method and then wet-molded as it is. Therefore, the pores of a size smaller than the average intermolecular collision distance of air provided in silica prevent air convection, and titania emits infrared rays. It is presumed that it is scattered to promote radiation. Further, the bulk density is in a suitable range of 0.2 to 0.5 (g / cm 3 ) and convection and radiation can be prevented. Furthermore, the bending strength of the heat insulating material of Example 1 is 30 times that of Comparative Example 1.
%, And the compressibility is 25% higher at a load of 50 (kg / cm 3 ), so it can be seen that the strength is improved accordingly.

[発明の効果] 以上詳述したように、この発明の断熱材は、断熱性が向
上し、曲げ強度や圧縮強度が大きく、しかも後加工が不
要となるという効果を奏する。
[Effects of the Invention] As described in detail above, the heat insulating material of the present invention has the effects of improved heat insulating properties, high bending strength and compressive strength, and no need for post-processing.

また、断熱材の製造方法によれば、各成分を均一に分散
することが容易にでき、得られる断熱材は上記効果を確
実に発揮できるという効果を奏する。
Further, according to the method for producing a heat insulating material, it is easy to uniformly disperse each component, and the obtained heat insulating material has the effect of reliably exhibiting the above effects.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】シリカ60〜90重量%、酸化チタン5〜30重
量%及びセラミックファイバー3〜15重量%を含み、嵩
密度が0.2〜0.5g/cm3である断熱材。
1. A heat insulating material comprising 60 to 90% by weight of silica, 5 to 30% by weight of titanium oxide and 3 to 15% by weight of ceramic fiber, and having a bulk density of 0.2 to 0.5 g / cm 3 .
【請求項2】シリカ60〜90重量%、酸化チタン5〜30重
量%及びセラミックファイバー3〜15重量%を分散媒中
に分散させた後、湿式成形して嵩密度0.2〜0.5g/cm3
断熱材を得ることを特徴とする断熱材の製造方法。
2. 60 to 90% by weight of silica, 5 to 30% by weight of titanium oxide and 3 to 15% by weight of ceramic fiber are dispersed in a dispersion medium and then wet-molded to obtain a bulk density of 0.2 to 0.5 g / cm 3. A method for manufacturing a heat insulating material, comprising:
JP1020391A 1989-01-30 1989-01-30 Heat insulating material and manufacturing method thereof Expired - Lifetime JPH0791104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1020391A JPH0791104B2 (en) 1989-01-30 1989-01-30 Heat insulating material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1020391A JPH0791104B2 (en) 1989-01-30 1989-01-30 Heat insulating material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02199071A JPH02199071A (en) 1990-08-07
JPH0791104B2 true JPH0791104B2 (en) 1995-10-04

Family

ID=12025720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1020391A Expired - Lifetime JPH0791104B2 (en) 1989-01-30 1989-01-30 Heat insulating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0791104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333093A (en) * 2001-05-09 2002-11-22 Hitachi Plant Kensetsu Service Kk Heat reflector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562554B1 (en) * 1992-03-23 2000-01-12 KKW Kulmbacher Klimageräte-Werk GmbH Heater, in particular electric storage heater
JP5876668B2 (en) * 2011-05-17 2016-03-02 旭化成ケミカルズ株式会社 Manufacturing method of molded body and manufacturing method of cutting body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3105595C2 (en) * 1981-02-16 1985-06-20 Didier-Werke Ag, 6200 Wiesbaden Refractory or fire-resistant composite component with a molded part made of any type of refractory or fire-resistant material and an insulating layer with higher thermal insulation or an expansion compensation layer and a method for producing this composite component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333093A (en) * 2001-05-09 2002-11-22 Hitachi Plant Kensetsu Service Kk Heat reflector

Also Published As

Publication number Publication date
JPH02199071A (en) 1990-08-07

Similar Documents

Publication Publication Date Title
JP6026504B2 (en) Heat insulating material composition, heat insulating material using the same, and method for manufacturing heat insulating material
CN101328073B (en) Self-reinforcing type ceramic fibre pouring material and preparation thereof
CN1308263C (en) Multiporous ceramic heating element and its mfg. method
WO2011127827A1 (en) Filter used for filtering molten metal and preparation method thereof
US6555032B2 (en) Method of making silicon nitride-silicon carbide composite filters
JP6456857B2 (en) Particles for irregular refractories
JPH0791104B2 (en) Heat insulating material and manufacturing method thereof
JP4679324B2 (en) Insulation
JPH059083A (en) Heat insulating material and its production thereof
JPS5829269B2 (en) Manufacturing method of carbonaceous bricks
JPS6116753B2 (en)
JPH09263465A (en) Lightweight refractory and its production
TWI385127B (en) Paper sludge-geopolymer composite and fabrication method thereof
JP3388782B2 (en) Insulation
JP3305032B2 (en) Insulation material composition
JP2003202099A (en) Heat insulating material composition
US2243219A (en) Porous refractory and process of manufacture
JP3207819B2 (en) Insulation material composition
KR19990012088A (en) Far Infrared Radiation Wall Material and Manufacturing Method Thereof
JPS6158434B2 (en)
JP2000094121A (en) Manufacture of plate for slide gate
RU2615007C1 (en) Composition for lightweight refractory production
JPH1072269A (en) High alumina heat insulating refractory for use at high temperature
JPS6153141A (en) Manufacture of calcium silicate formed body
JPH0597497A (en) Heat insulating material and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081004

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091004

Year of fee payment: 14