JPS6158434B2 - - Google Patents

Info

Publication number
JPS6158434B2
JPS6158434B2 JP57216898A JP21689882A JPS6158434B2 JP S6158434 B2 JPS6158434 B2 JP S6158434B2 JP 57216898 A JP57216898 A JP 57216898A JP 21689882 A JP21689882 A JP 21689882A JP S6158434 B2 JPS6158434 B2 JP S6158434B2
Authority
JP
Japan
Prior art keywords
heat
sio
resistant inorganic
fine particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57216898A
Other languages
Japanese (ja)
Other versions
JPS59107983A (en
Inventor
Toshihiro Minaki
Koichi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP57216898A priority Critical patent/JPS59107983A/en
Publication of JPS59107983A publication Critical patent/JPS59107983A/en
Publication of JPS6158434B2 publication Critical patent/JPS6158434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 本発明は、約1800℃の高温域まで使用可能な、
高度の耐熱性を有する無機質成形体に関するもの
である。 常用温度が1000℃をこえる各種加熱炉の断熱材
としては古くから耐火レンガが使われているが、
近年、これにかわるものとして、セラミツク繊維
を主原料とする耐熱性成形体が使われるようにな
つた。レンガと比べた場合のセラミツク繊維質耐
熱性成形体の特長は、軽量で熱容量および熱伝導
率が小さく、これを使うことによる省エネルギー
効果が顕著なことである。しかしながら、従来も
つとも普通に使われているものはセラミツク繊維
として非晶質のアルミノシリケート質繊維を使用
しているから、1000℃以上の高温域では同繊維の
結晶化にともなう収縮が大きく、約1300℃が使用
限界温度である。最近になつて、更に苛酷な温度
条件でも使用可能なものとして、アルミノシリケ
ート質繊維に多結晶質セラミツク繊維を混用した
もの、あるいは多結晶質セラミツク繊維のみを用
いたものなどが生産されるようになつたが、これ
らのものの耐熱性も、用いられた多結晶質セラミ
ツク繊維の熱収縮開始温度に支配され、約1600℃
以下でしか使用できない。 前記セラミツク繊維質成形体の特長は、使用温
度が高いほど顕著な効果をもたらすから、マグネ
シアやアルミナなどの耐火物焼成炉のように1600
℃以上で操業される炉にも使用可能なものの出現
が強く望まれていた。 本発明は、上述のような現状を背景に、1600℃
をこえる高温域でも使用可能なセラミツク繊維質
成形体を提供することを目的として行われた研究
の結果、完成されたものである。 本発明による耐熱性成形体は、A2O3/SiO2
(重量比)が0.65〜1.80の範囲にあり且つA2O3
+SiO2が95重量%以上である組成のアルミノシ
リケート系ガラス質物質の微粒子(以下、ガラス
質微粒子という)および多結晶高アルミナ質繊維
の混合物が耐熱性無機質結合剤で結合され且つ成
形されてなるものである。 この成形体は、1600〜1800℃の高温においても
実質的に収縮を起こさず、物性の劣化も少ないか
ら、上記温度領域において、断熱材または構造材
として使用することができる。多結晶高アルミナ
質繊維が約1600℃以上で徐々に収縮するにもかか
わらずこれを用いた本発明の成形体が同温度領域
でも安定な理由は、まだ完全に解明されたわけで
はないが、次のように考えられる。すなわち、高
温においてはガラス質微粒子からシリカが遊離
し、これが多結晶高アルミナ質繊維のほうへ拡散
移動して同繊維中のアルミナと反応する。この反
応により、繊維のアルミナは一部がムライト化す
るが、ムライトはアルミナ結晶よりも密度が小さ
いから、上記反応は体積膨張を伴うことになり、
これが多結晶高アルミナ質繊維の熱による収縮を
相殺する。 以下、本発明の成形体について、その製法を示
して詳細に説明する。 まず原料について述べると、多結晶高アルミナ
質繊維としてはA2O3を72重量%以上、望まし
くは90重量%以上含み、かつ平均繊維径が1〜10
μm程度のものを用いることができる。 またガラス質微粒子としては、前記組成のもの
を用いるが、特に好ましいのは、A2O3/SiO2
比が0.85〜1.40のものである。A2O3/SiO2
は成形体の耐熱性に密接な関係があり、この値が
1.80より大きいか0.65より小さいと、目的とする
水準の耐熱性を備えたものは得られない。これ
は、A2O3/SiO2が1.80をこえるものの場合、
反応性SiO2の量が少ないため、前記機構による
ムライトの生成が十分に行われないことによるも
のであり、またA2O3/SiO2比が0.65よりも小
さいものの場合、ムライトの生成に関与しない過
剰のSiO2が成形体の耐熱性に悪影響を及ぼすこ
とによるものと思われる。またガラス質微粒子
は、望ましくは平均粒径(粒子が球状でない場合
は径の最大値についての平均値)が1000μm以
下、特に望ましくは200μm以下の、なるべく微
細なものを用い、それによりガラス質微粒子が多
結晶高アルミナ質繊維の表面のなるべく多くの部
分と接触できるようにすることが望ましい。なお
このようなガラス質微粒子は、所望の組成になる
ような比率でケイ酸原料およびアルミナ原料を混
合して電気炉等で加熱し、得られた融体を急冷し
てガラス質の塊状物とし、これを微粉砕すること
により製造すればよく、上記融体を繊維状に成形
してから微粉砕してもよい。 耐熱性無機質結合剤としては、1600〜1800℃の
高温においても安定で、上記二種類の原料を強固
に結合し得る結合剤が用いられ、そのような結合
剤の好ましい例としては、コロイダルシリカおよ
びコロイダルアルミナがある。 成形に当り上記緒原料を配合する際は、ガラス
質微粒子と多結晶高アルミナ質繊維との比率(重
量比)を50:50ないし10:90とし、無機質結合剤
の使用量を全原料固形分あたり5〜20重量%とす
ることが望ましい。またこれらのほかに、凝集剤
(例えば硫酸アルミニウム)、有機質結合剤、界面
活性剤、充填剤などの少量を添加し混合してもよ
い。 成形は、全原料を水とよく混合してから、真空
成形、脱水プレス成形など任意の方法により成形
すればよい。成形形状は特に制限されるものでは
なく、レンガ状、板状、管状その他の特殊形状
等、任意である。成形後、100〜200℃の熱風で乾
燥するか、500℃以上で焼成すれば、本発明の成
形体が得られる。 本発明による耐熱性成形体は、前述のような高
度の耐熱性とセラミツク繊維質耐熱性成形体特有
の軽量性に基づく有利な性質とを兼備し、機械的
強度もすぐれたものであるから、マグネシア、ア
ルミナ等の耐火物焼成炉のような高温炉の構築材
料として特に好適のものである。 以下実施例および比較例を示して本発明を説明
する。 実施例および比較例 多結晶高アルミナ質繊維(A2O395重量%、
SiO25重量%、繊維径約3μm)、ガラス質微粒
子、コロイダルシリカ・スノーテツクス30
(SiO2含有率30重量%;日産化学工業株式会社製
品)および硫酸アルミニウムを、表1に示した重
量比で水と共に混合した。なお用いたガラス質微
粒子は、A2O3/SiO2重量比=1.08、A2O3
SiO2=99.7重量%、平均粒径約200μmのもので
ある(但し、比較例5に用いたものはA2O3
SiO2が80重量%である点で、また比較例6およ
び比較例7に用いたものはA2O3/SiO2比がそ
れぞれ0.3および2.0である点で、さらにまた比較
例4に用いたものは平均粒径が約1300μmである
点で、いずれも実施例に用いたものと異なる。)。 上記原料混合物を厚さ25mmの板状に成形し、
150℃で乾燥した。得られた板状成形体につい
て、高温加熱試験(加熱時間24時間)を行なつた
結果を表1に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention can be used up to a high temperature range of about 1800°C.
This invention relates to an inorganic molded body having a high degree of heat resistance. Firebrick has long been used as an insulator for various heating furnaces whose operating temperature exceeds 1000℃.
In recent years, as an alternative to this, heat-resistant molded bodies made primarily of ceramic fibers have come into use. Compared to bricks, ceramic fiber heat-resistant molded bodies have the advantage of being lightweight and have low heat capacity and thermal conductivity, and their use has a remarkable energy-saving effect. However, since the conventionally and commonly used ceramic fibers use amorphous aluminosilicate fibers, the fibers shrink significantly due to crystallization in the high temperature range of 1,300℃ or higher. ℃ is the limit temperature for use. Recently, products that use aluminosilicate fibers mixed with polycrystalline ceramic fibers or only polycrystalline ceramic fibers have been produced as products that can be used under even harsher temperature conditions. However, the heat resistance of these materials is also controlled by the temperature at which the polycrystalline ceramic fibers used start shrinking, and is approximately 1600°C.
Can only be used below. The feature of the ceramic fibrous molded body is that the higher the temperature at which it is used, the more pronounced the effect is.
There was a strong desire for a product that could be used in furnaces operated at temperatures above ℃. The present invention was developed against the background of the above-mentioned current situation.
This was completed as a result of research conducted with the aim of providing a ceramic fibrous molded product that can be used even in high temperature ranges exceeding The heat-resistant molded article according to the present invention is made of A 2 O 3 /SiO 2
(weight ratio) is in the range of 0.65 to 1.80 and A 2 O 3
A mixture of fine particles of aluminosilicate glassy material having a composition of +SiO 2 of 95% by weight or more (hereinafter referred to as glassy fine particles) and polycrystalline high alumina fibers are bonded with a heat-resistant inorganic binder and shaped. It is something. This molded product does not substantially shrink even at high temperatures of 1,600 to 1,800°C, and its physical properties hardly deteriorate, so it can be used as a heat insulating material or a structural material in the above temperature range. Although the polycrystalline high alumina fiber gradually shrinks at temperatures above about 1,600°C, the reason why the molded article of the present invention using it is stable even in the same temperature range has not yet been completely elucidated, but the following It can be thought of as follows. That is, at high temperatures, silica is liberated from the glassy fine particles, diffuses toward the polycrystalline high alumina fibers, and reacts with the alumina in the fibers. Due to this reaction, some of the alumina in the fiber turns into mullite, but since mullite has a lower density than alumina crystals, the above reaction is accompanied by volumetric expansion.
This offsets the thermal shrinkage of the polycrystalline high alumina fibers. Hereinafter, the molded article of the present invention will be explained in detail by showing its manufacturing method. First, regarding raw materials, polycrystalline high alumina fibers contain A 2 O 3 in an amount of 72% by weight or more, preferably 90% by weight or more, and have an average fiber diameter of 1 to 10% by weight.
A thickness of approximately μm can be used. Further, as the glassy fine particles, those having the above composition are used, but particularly preferred are A 2 O 3 /SiO 2
The ratio is between 0.85 and 1.40. The A 2 O 3 /SiO 2 ratio is closely related to the heat resistance of the molded product, and this value
If it is larger than 1.80 or smaller than 0.65, it will not be possible to obtain the desired level of heat resistance. This means that when A 2 O 3 /SiO 2 exceeds 1.80,
This is because the amount of reactive SiO 2 is small, so the formation of mullite by the above mechanism is not carried out sufficiently, and if the A 2 O 3 /SiO 2 ratio is smaller than 0.65, it is not involved in the formation of mullite. This is thought to be due to the fact that excess SiO 2 that is not present has a negative effect on the heat resistance of the molded product. In addition, the glassy fine particles are preferably as fine as possible, with an average particle size (if the particles are not spherical, the average value of the maximum diameter) of 1000 μm or less, particularly preferably 200 μm or less, so that the glassy fine particles It is desirable that the polycrystalline high alumina fibers be able to contact as much of the surface of the polycrystalline high alumina fibers as possible. Note that such glassy fine particles are produced by mixing a silicic acid raw material and an alumina raw material in a ratio to obtain a desired composition, heating the mixture in an electric furnace, etc., and rapidly cooling the resulting melt to form a glassy lump. , may be produced by finely pulverizing this, or the melt may be formed into a fiber shape and then finely pulverized. As the heat-resistant inorganic binder, a binder is used that is stable even at high temperatures of 1600 to 1800°C and can firmly bind the above two types of raw materials. Preferred examples of such binders include colloidal silica and colloidal silica. There is colloidal alumina. When blending the above raw materials for molding, the ratio (weight ratio) of glassy fine particles to polycrystalline high alumina fibers is 50:50 to 10:90, and the amount of inorganic binder used is equal to the total raw material solid content. It is desirable that the amount is 5 to 20% by weight. In addition to these, a small amount of a flocculant (for example, aluminum sulfate), an organic binder, a surfactant, a filler, etc. may be added and mixed. For molding, all raw materials may be thoroughly mixed with water, and then molded by any method such as vacuum molding or dehydration press molding. The shape of the molding is not particularly limited, and may be any shape such as a brick, a plate, a tube, or other special shapes. After molding, the molded product of the present invention can be obtained by drying with hot air at 100 to 200°C or firing at 500°C or higher. The heat-resistant molded product according to the present invention has both the above-mentioned high heat resistance and the advantageous properties based on the light weight characteristic of the ceramic fiber heat-resistant molded product, and also has excellent mechanical strength. It is particularly suitable as a construction material for high-temperature furnaces such as furnaces for firing refractories such as magnesia and alumina. The present invention will be explained below with reference to Examples and Comparative Examples. Examples and Comparative Examples Polycrystalline high alumina fiber (A 2 O 3 95% by weight,
SiO 2 5% by weight, fiber diameter approximately 3 μm), glassy fine particles, colloidal silica snowtex 30
(SiO 2 content: 30% by weight; manufactured by Nissan Chemical Industries, Ltd.) and aluminum sulfate were mixed with water at the weight ratio shown in Table 1. The glassy fine particles used had a weight ratio of A 2 O 3 /SiO 2 = 1.08, A 2 O 3 +
SiO 2 =99.7% by weight, average particle size of about 200 μm (However, the one used in Comparative Example 5 was A 2 O 3 +
The SiO 2 content was 80% by weight, and the A 2 O 3 /SiO 2 ratios used in Comparative Examples 6 and 7 were 0.3 and 2.0, respectively. They differ from those used in Examples in that they have an average particle size of about 1300 μm. ). Form the above raw material mixture into a plate shape with a thickness of 25 mm,
Dry at 150°C. Table 1 shows the results of a high-temperature heating test (heating time 24 hours) performed on the obtained plate-shaped molded product. 【table】

Claims (1)

【特許請求の範囲】 1 A2O3/SiO2(重量比)が0.65〜1.80の範
囲にあり且つA2O3+SiO2が95重量%以上であ
る組成のアルミノシリケート系ガラス質物質の微
粒子および多結晶高アルミナ質繊維の混合物が耐
熱性無機質結合剤で結合され且つ成形されてなる
耐熱性無機質成形体。 2 アルミノシリケート系ガラス質物質の微粒子
が平均粒径1000μm以下のものである特許請求の
範囲第1項記載の耐熱性無機質成形体。 3 耐熱性無機質結合剤がコロイダルシリカまた
はコロイダルアルミナである特許請求の範囲第1
項記載の耐熱性無機質成形体。 4 アルミノシリケート系ガラス質物質の微粒子
と多結晶高アルミナ質繊維との混合比(重量比)
が50:50ないし10:90である特許請求の範囲第1
項記載の耐熱性無機質成形体。
[Claims] 1. Fine particles of an aluminosilicate glassy substance having a composition in which A 2 O 3 /SiO 2 (weight ratio) is in the range of 0.65 to 1.80 and A 2 O 3 +SiO 2 is 95% by weight or more. and a heat-resistant inorganic molded body formed by bonding a mixture of polycrystalline high alumina fibers with a heat-resistant inorganic binder and molding the mixture. 2. The heat-resistant inorganic molded article according to claim 1, wherein the fine particles of the aluminosilicate glassy substance have an average particle size of 1000 μm or less. 3 Claim 1 in which the heat-resistant inorganic binder is colloidal silica or colloidal alumina
The heat-resistant inorganic molded article described in . 4 Mixing ratio (weight ratio) of fine particles of aluminosilicate glassy substance and polycrystalline high alumina fiber
Claim 1 in which the ratio is 50:50 to 10:90
The heat-resistant inorganic molded article described in .
JP57216898A 1982-12-13 1982-12-13 Heat resistant formed body Granted JPS59107983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57216898A JPS59107983A (en) 1982-12-13 1982-12-13 Heat resistant formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216898A JPS59107983A (en) 1982-12-13 1982-12-13 Heat resistant formed body

Publications (2)

Publication Number Publication Date
JPS59107983A JPS59107983A (en) 1984-06-22
JPS6158434B2 true JPS6158434B2 (en) 1986-12-11

Family

ID=16695637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216898A Granted JPS59107983A (en) 1982-12-13 1982-12-13 Heat resistant formed body

Country Status (1)

Country Link
JP (1) JPS59107983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222223A (en) * 1992-02-10 1993-08-31 Tokai Univ Method for modifying surface of acrylic resin

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288452A (en) * 1988-09-26 1990-03-28 Nichias Corp Heat-resistant inorganic compact
JPH0676626A (en) * 1992-08-31 1994-03-18 Toshiba Corp Insulating joint material and mhd power generator using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222223A (en) * 1992-02-10 1993-08-31 Tokai Univ Method for modifying surface of acrylic resin

Also Published As

Publication number Publication date
JPS59107983A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
CN101638324B (en) Light porous heat-insulating refractory material and preparation method and applications thereof
JPH0228546B2 (en)
JPH0572341B2 (en)
JP4612415B2 (en) Silicone composition
CN106278202A (en) Light fire brick and preparation method thereof
JP2023004797A (en) Sintering assisting agent for manufacturing silica brick, composite silica brick, and manufacturing method of the same
JPS6158434B2 (en)
CN114436631A (en) Preparation method of fly ash-based porous ceramic
CN106495736A (en) A kind of low body density high-strength degree light silicious brick and preparation method thereof
JPH0794347B2 (en) Insulation
JPH1087365A (en) Thermal shock resistant ceramics and its production
US2425891A (en) Refractories and method of making
JP2990320B2 (en) Insulation material and its manufacturing method
JP2001278676A (en) Inorganic fiber reinforced article
JP3094147B2 (en) Firing jig
CN112919890B (en) Light mullite-alumina hollow sphere-aluminum titanate sagger and preparation method and application thereof
KR960004393B1 (en) Castable composition
JP2715300B2 (en) Ceramic fiber based heat insulating refractory composition
JPH02199071A (en) Heat-insulation material and production thereof
SU1146296A1 (en) Charge for manufacturing refractory heat-insulating material
JPS6215510B2 (en)
JPH02311B2 (en)
JP3388782B2 (en) Insulation
CN117105680A (en) Semi-siliceous high-temperature foaming heat-insulating refractory material and preparation method thereof
JPH04119959A (en) Production of low-density heat insulating structural material