JPH04119959A - Production of low-density heat insulating structural material - Google Patents

Production of low-density heat insulating structural material

Info

Publication number
JPH04119959A
JPH04119959A JP23447990A JP23447990A JPH04119959A JP H04119959 A JPH04119959 A JP H04119959A JP 23447990 A JP23447990 A JP 23447990A JP 23447990 A JP23447990 A JP 23447990A JP H04119959 A JPH04119959 A JP H04119959A
Authority
JP
Japan
Prior art keywords
fibers
fiber
boron oxide
low
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23447990A
Other languages
Japanese (ja)
Other versions
JP2819352B2 (en
Inventor
Tomoyuki Kobayashi
智之 小林
Motohiro Atsumi
基広 渥美
Motoyasu Taguchi
元康 田口
Masayuki Oshima
大島 正征
Kenichi Shibata
研一 柴田
Koichi Kimura
康一 木村
Tomohiko Hara
智彦 原
Toshiyuki Anchi
敏行 安治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Mitsubishi Heavy Industries Ltd
Nichias Corp
Original Assignee
National Space Development Agency of Japan
Mitsubishi Heavy Industries Ltd
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan, Mitsubishi Heavy Industries Ltd, Nichias Corp filed Critical National Space Development Agency of Japan
Priority to JP23447990A priority Critical patent/JP2819352B2/en
Publication of JPH04119959A publication Critical patent/JPH04119959A/en
Application granted granted Critical
Publication of JP2819352B2 publication Critical patent/JP2819352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a low-density heat-insulating structural material excellent in heat resistance, etc., by mixing specified three kinds of inorg. fibers, an org. fiber and boron oxide by a specified weight ratio in water, dehydrating, molding, drying and calcining in order to join the inorg. fibers with boron oxide. CONSTITUTION:To the total amount of three kinds of inorg. fibers consisting of 100 pts.wt. silica-type fiber of 0.3-3mum average fiber diameter, 5-100 pts.wt. of alumina fiber of 1-5mum average fiber diameter, and 5-30 pts.wt. of aluminoborosilicate fiber of 3-15mum average fiber diameter, 5-30wt.% of org. fiber and 0.5-10wt.% of boron oxide are blended by dispersing in water. Then the obtd. slurry is dehydrated, molded, dried and calcined at the temp. at which boron oxide melts. Thereby, the org. fiber is removed by burning, while the inorg. fibers are joined with boron-contg. glass to form a three-dimensional mesh structure. Thus, the low-density heat-insulating structural material is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1200°Cを超えるような苛酷な温度条件
下で使用する断熱材として適当な、高度の耐熱性と耐熱
衝撃性を備えた低密度断熱構造体を製造する方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a material having high heat resistance and thermal shock resistance that is suitable as a heat insulating material used under severe temperature conditions exceeding 1200°C. The present invention relates to a method of manufacturing a low density insulation structure.

〔従来の技術〕[Conventional technology]

米国NAsAのスペースシャトルの表面保護材のように
著しい高温や激しい熱的衝撃に耐え、低密度で断熱性に
すぐれる一方、一定水準以上の強度と機械加工性を備え
ていることを要求される断熱構造体の代表的なものとし
ては、耐熱性無機繊維を主材とする多孔質成形体が知ら
れている。
It is required to withstand extremely high temperatures and severe thermal shock, to have low density and excellent insulation properties, such as the surface protection material of the US NASA Space Shuttle, and to have strength and machinability above a certain level. A porous molded body mainly made of heat-resistant inorganic fibers is known as a typical heat-insulating structure.

この種の材料で最初に用いられたものは、バインダーと
してのコロイダルシリカの存在下に高純度シリカ繊維を
成形し約1300’C!で焼成して作られたシリカタイ
ルと呼ばれる材料である。この材料は強度が低く、また
劣化も早く、使用時の機械的衝撃によって欠けたり、接
着したものが剥落したりする欠点があった。バインダー
を使用することによるシリカタイルの上述のような欠点
を解消するため、特開昭55−37500号の発明では
、ンリカ繊維、アルミノシリケート繊維および酸化ホウ
素の混合物、またはシリカ繊維とアルミノボロシリケー
ト繊維の混合物を、成形したのち焼成することにより繊
維間融着を生じさせたものを提案している。また特開昭
60−151269号の発明では、特定の繊維径のシリ
カ繊維とアルミナ繊維とを酸化ホウ素により融着させた
ものが開示されている。
The first material of this kind to be used was formed by molding high purity silica fibers in the presence of colloidal silica as a binder at temperatures of about 1300'C! It is a material called silica tile made by firing. This material has low strength, deteriorates quickly, and has the disadvantage of chipping or peeling of adhesives due to mechanical impact during use. In order to eliminate the above-mentioned drawbacks of silica tiles caused by the use of a binder, the invention of JP-A No. 55-37500 discloses a mixture of silica fiber, aluminosilicate fiber and boron oxide, or a mixture of silica fiber and aluminoborosilicate fiber. We have proposed a mixture in which fibers are fused together by molding and firing the mixture. Further, the invention of JP-A-60-151269 discloses a method in which silica fibers and alumina fibers having a specific fiber diameter are fused together using boron oxide.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記各発明による低密度断熱構造体はすでにかなり高い
水準の性能を達成しているが、宇宙開発の進展にともな
い、より低密度で強度も耐久性もある高性能のものを求
める声が強くなっている。
The low-density insulation structures made by the inventions mentioned above have already achieved a fairly high level of performance, but as space development progresses, there is a growing demand for high-performance structures with lower density, strength, and durability. ing.

本発明の目的は、かかる要望に応え、−屑紙密度で強度
、耐熱性、耐熱衝撃性等にも優れた断熱構造体を製造す
る方法を提供することにある。
An object of the present invention is to meet such demands and provide a method for manufacturing a heat insulating structure that has excellent strength, heat resistance, thermal shock resistance, etc. at a waste paper density.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成することに成功した本発明は、平均繊維
径が0.3〜3.07+mのシリカ質繊維100重量部
、平均繊維径が1〜5μmのアルミナ繊維5〜100重
量部、平均繊維径が3〜15μmのアルミノボロシリケ
ート繊維5〜30重量部、ならびに上記3種類の無機繊
維の合計量に対して5〜30重量%の有機繊維および0
.5〜10重量%の酸化ホウ素を水中に分散させて混合
し、得られたスラリーを脱水成形し、乾燥後、酸化ホウ
素が溶融する温度で焼成することを特徴とする低密度断
熱構造体の製造法である。
The present invention, which has succeeded in achieving the above object, consists of 100 parts by weight of siliceous fibers with an average fiber diameter of 0.3 to 3.07+m, 5 to 100 parts by weight of alumina fibers with an average fiber diameter of 1 to 5 μm, 5 to 30 parts by weight of aluminoborosilicate fibers with a diameter of 3 to 15 μm, and 5 to 30% by weight of organic fibers based on the total amount of the above three types of inorganic fibers and 0
.. Production of a low-density heat insulating structure characterized by dispersing and mixing 5 to 10% by weight of boron oxide in water, dehydrating the resulting slurry, drying, and firing at a temperature at which the boron oxide melts. It is the law.

〔作用〕[Effect]

従来の製造法と比べた場合、上記本発明の製造法の要点
は、無機繊維の配合に改良を加えたことと、最終的には
焼失させる有機繊維を用いて均質な多孔質構造を形成さ
せるようにしたことにある。
When compared with the conventional manufacturing method, the main points of the manufacturing method of the present invention are that the blend of inorganic fibers has been improved and that a homogeneous porous structure is formed using organic fibers that are ultimately burned out. That's what I did.

すなわち、無機繊維としてシリカ繊維、アルミナ繊維、
およびアルミノボロシリケート繊維の3種を用いる新規
な配合は、それぞれ特徴ある物性を有する3種類の耐熱
性繊維からなる独特の三次元網目状構造を生じさせ、そ
れにより、断熱構造体を低密度でありながら極めて高い
水準の強度、耐熱性および耐熱衝撃性を有するものにす
る。上記新規な断熱構造体の構成は、構成繊維間の空隙
の大きさが均一で局部的な密度変動のない成形体になっ
て靭めで優れた性能の断熱構造体を与えるが、製造原料
に配合された有機繊維は、無機繊維と均一に混合され成
形されたのち焼成工程で焼失し、それにより、有機繊維
が用いられなかった場合よりもはるかに均一な空隙を容
易に形成させる。何機繊維はまた、焼失してそのあとに
空隙を残すことにより、無機繊維と酸化ホウ素のみから
なる原料混合物を成形する場合には側底製造不可能な低
密度成形体の形成を可能にする。
That is, silica fiber, alumina fiber,
A novel formulation using three types of heat-resistant and aluminoborosilicate fibers creates a unique three-dimensional network of three types of heat-resistant fibers, each with distinct physical properties, thereby creating a low-density thermal insulation structure. However, it has an extremely high level of strength, heat resistance, and thermal shock resistance. The structure of the above-mentioned novel heat insulating structure has uniform void sizes between the constituent fibers, resulting in a molded body with no local density fluctuations, providing a tough and excellent heat insulating structure, but it is not included in the manufacturing raw materials. The organic fibers are homogeneously mixed with the inorganic fibers, shaped and then burned off in the firing process, thereby facilitating the formation of much more uniform voids than if no organic fibers were used. Also, by burning out the fibers and leaving voids behind, it is possible to form a low-density molded body that would not be possible to produce a side sole when molding a raw material mixture consisting only of inorganic fibers and boron oxide. .

以下、本発明の製造法につき詳述する。The manufacturing method of the present invention will be explained in detail below.

原料の無機繊維は前述のように平均繊維径が0.3〜3
0μmのシリカ繊維、平均繊維径が1〜Sμのアルミナ
繊維、および平均繊維径が3〜15umのアルミノボロ
シリケート繊維であるが、シリカ繊維としては、平均繊
維径が約0.5〜2メ■で、5102含有率が98%以
上の高純度シリカ繊維を用いるこ・とが望ましい。
As mentioned above, the raw material inorganic fiber has an average fiber diameter of 0.3 to 3.
These include silica fibers with an average fiber diameter of 0 μm, alumina fibers with an average fiber diameter of 1 to Sμ, and aluminoborosilicate fibers with an average fiber diameter of 3 to 15 μm. Therefore, it is desirable to use high-purity silica fibers with a 5102 content of 98% or more.

アルミナ繊維としては、A1.O,約72〜100%、
5i02約0〜28%のものが好ましい。また、アルミ
ノボロシリケート繊維としては、A I、0 、約62
〜70%、5i02約24〜28%、B20.約2〜1
4%の組成を有し、かつ平均繊維長が0.5〜15m園
であるものが好ましい。この範囲よりも短い繊維を用い
たのでは、断熱構造体の強度が低くなり、また、低比重
の成形体を得ることが困雌になる。一方、これよりも長
い繊維を用いると、剛直なこの繊維が成形工程において
プレス面に平行な方向に強度の配向を生じ易く、それに
つれて他の繊維も同じ方向に配向するので、層状剥離を
起こし易い、また厚さ方向の圧縮強度の低い成形体を与
える。
As the alumina fiber, A1. O, about 72-100%,
About 0 to 28% of 5i02 is preferred. In addition, as aluminoborosilicate fiber, A I,0, about 62
~70%, 5i02 approx. 24-28%, B20. Approximately 2-1
It is preferable to have a composition of 4% and an average fiber length of 0.5 to 15 m. If fibers shorter than this range are used, the strength of the heat insulating structure will be low, and it will be difficult to obtain a molded article with a low specific gravity. On the other hand, if longer fibers are used, these rigid fibers tend to have their strength oriented in the direction parallel to the pressing surface during the molding process, and other fibers will also be oriented in the same direction, resulting in delamination. It provides a molded product that is easy to use and has low compressive strength in the thickness direction.

各無機繊維の量比は前述のとおりとするが、/リカ繊維
を100重量部としたときのアルミナ繊維の量が5重量
部未満では製品の耐熱性および強度が低くなり、また1
00重量部を超えると、熱膨張率および熱伝導率の増加
を招く。特に好ましいアルミナ繊維の量は約5〜70重
fiffFiである。また、アルミノボロシリケート繊
維の量が5重量部未満ではやはり製品が強度および耐熱
性の劣るものとなり、30重量部を超えると高温での熱
収縮を大きくするなど耐熱性に悪影響があり、さらに熱
膨張率と熱伝導率を大きくする。
The amount ratio of each inorganic fiber is as described above, but if the amount of alumina fiber is less than 5 parts by weight based on 100 parts by weight of Rica fiber, the heat resistance and strength of the product will be low;
If it exceeds 0.00 parts by weight, the coefficient of thermal expansion and thermal conductivity will increase. A particularly preferred amount of alumina fiber is about 5 to 70 weight fiffFi. In addition, if the amount of aluminoborosilicate fiber is less than 5 parts by weight, the product will still have poor strength and heat resistance, and if it exceeds 30 parts by weight, it will have an adverse effect on heat resistance, such as increasing heat shrinkage at high temperatures, and Increase expansion coefficient and thermal conductivity.

上記3種類の無機繊維と共に用いる有機繊維としては、
製紙用またはレーヨン製造用の木材パルプ、コツ[・ン
リンターパルプ、レーヨンステープル等、焼成したとき
溶融することなく焼失するものが適当である。
Organic fibers used together with the above three types of inorganic fibers include:
Suitable materials include wood pulp for papermaking or rayon production, linter pulp, rayon staple, etc., which burn out without melting when fired.

パルプを用いる場合は、あらかじめミキサー、パルパー
等で処理して解砕し、繊維を分散させておく。レーヨン
ステーブルを用いる場合、繊維長は約15+am以下と
することが望ましく、長すぎるときは無機繊維と混合す
るときもつれを生じて均一混合が困離になる。有機繊維
は過剰に使用すると無機繊維間の接合を妨げ、製品の強
度を低下させるから、無機繊維の合計量に対して5〜3
5重量%とする。
When using pulp, it is treated in advance with a mixer, pulper, etc. to crush it and disperse the fibers. When using rayon stable, it is desirable that the fiber length is about 15+am or less; if it is too long, it will become tangled when mixed with inorganic fibers, making it difficult to mix uniformly. If organic fiber is used in excess, it will interfere with the bonding between inorganic fibers and reduce the strength of the product, so it should be
The amount shall be 5% by weight.

上述のような無機繊維および有機繊維の混合物に、さら
に酸化ホウ素を混合する。その量は、無機繊維の合計量
に対して0.5〜10重量%とする。酸化ホウ素は十分
量を使用しないと繊維間結合が不十分になって強度の低
い製品を与えるが、多すぎると、それから生成するガラ
スが繊維を被覆し、各無機繊維がそれらの特性を最高度
に発揮するのを妨げて耐熱性を悪くする。
Boron oxide is further mixed into the mixture of inorganic fibers and organic fibers as described above. The amount thereof is 0.5 to 10% by weight based on the total amount of inorganic fibers. If boron oxide is not used in sufficient amounts, the interfiber bonding will be poor, giving a product with low strength, but if too much boron oxide is used, the glass it forms coats the fibers, allowing each inorganic fiber to develop its properties to the best of its ability. This impairs heat resistance.

無機繊維、有機繊維および酸化ホウ素は、均一に混合し
てから水中に分散させ、得られたスラリーを適当な濃度
に脱水し、最終的に嵩密度約0.08〜0.15g/c
ra’の成形体が得られるような条件で、所望の形状に
プレス成形する。得られた成形物を乾燥後、空気中で焼
成してまず有機繊維を焼失させ、その後昇温し、最終的
には約1100〜1400℃の高温で焼成して酸化ホウ
素の溶融とそれによる繊維間融着を生じさせる。冷却後
、必要に応じて切削加工を施し、目的とする低密度断熱
構造体を得る。
Inorganic fibers, organic fibers, and boron oxide are mixed uniformly and then dispersed in water. The resulting slurry is dehydrated to an appropriate concentration, and the final bulk density is approximately 0.08 to 0.15 g/c.
It is press-molded into a desired shape under conditions such that a molded product of ra' can be obtained. After drying the resulting molded product, it is fired in air to first burn out the organic fibers, then raised in temperature, and finally fired at a high temperature of about 1100 to 1400°C to melt the boron oxide and the resulting fibers. Causes interfusion. After cooling, cutting is performed as necessary to obtain the desired low-density heat insulating structure.

なお、本発明の製造法においては、輻射熱の透過を妨げ
て断熱性を良くする熱輻射材たとえば炭化ケイ素粉末、
炭化ケイ素ウィスカ、ホウ化ケイ素粉末等を、シリカ繊
維100重量部当たり20重量部を超えない範囲で原料
に添加混合し、製品の繊維表面に付着させてもよい。
In addition, in the manufacturing method of the present invention, a heat radiating material that blocks the transmission of radiant heat and improves insulation properties, such as silicon carbide powder,
Silicon carbide whiskers, silicon boride powder, etc. may be added to and mixed with the raw material in an amount not exceeding 20 parts by weight per 100 parts by weight of silica fibers, and may be adhered to the fiber surface of the product.

〔実施例〕〔Example〕

平均繊維径約0.9μ+*、5iO198%以上の高純
度ンリカ繊維(短繊維)100重量部、平均繊維径3μ
m1A+、0.95%のアルミナ繊維(短繊維)46重
量部、平均繊維径11μm、A1.0362%、820
.14%、S+0z24%、平均繊維長6mmのアルミ
ノボロシリケート繊維23重量部、酸化ホウ素7.7重
量部、および無機繊維合計量に対して0〜30重量%の
製紙用木材パルプを水に分散させて混合し、濃度が1.
5%のスラリーにする。このスラリーを、濃度が3%に
なるまで予備脱水し、次いでフィルタープレスで板状に
脱水成形する。得られた成形物は105°Cで16時間
乾燥した後、120°C/brの昇温速度で1350℃
まで昇温し、1350 ’C!で10時間保持して焼成
する。冷却後、切削加工を施して、厚さ50mm、−辺
が200mINの板状断熱構造体を得る。
Average fiber diameter: approx. 0.9μ+*, 100 parts by weight of high purity Nrica fiber (short fiber) with 5iO 198% or more, average fiber diameter: 3μ
m1A+, 0.95% alumina fiber (short fiber) 46 parts by weight, average fiber diameter 11 μm, A1.0362%, 820
.. 14% S + 0z 24%, 23 parts by weight of aluminoborosilicate fibers with an average fiber length of 6 mm, 7.7 parts by weight of boron oxide, and 0 to 30% by weight of papermaking wood pulp based on the total amount of inorganic fibers are dispersed in water. Mix until the concentration is 1.
Make a 5% slurry. This slurry is preliminarily dehydrated to a concentration of 3%, and then dehydrated and formed into a plate shape using a filter press. The obtained molded product was dried at 105°C for 16 hours and then heated to 1350°C at a heating rate of 120°C/br.
The temperature rose to 1350'C! Hold for 10 hours and bake. After cooling, cutting is performed to obtain a plate-shaped heat insulating structure having a thickness of 50 mm and a negative side of 200 mIN.

上記製造法の脱水成形工程における脱水度を加減するこ
とにより製品の嵩密度をある範囲内で変更することがで
きるが、その方法で製造可能な最低密度の断熱構造体を
製造し、製品について、木材パルプの添加量と密度d 
ll1nおよび厚さ方向引張強さの関係を調べ、結果を
図1に示した。
The bulk density of the product can be changed within a certain range by adjusting the degree of dehydration in the dehydration molding step of the above manufacturing method, but by manufacturing a heat insulating structure with the lowest density that can be manufactured by this method, for the product, Addition amount and density of wood pulp d
The relationship between ll1n and the tensile strength in the thickness direction was investigated, and the results are shown in FIG.

この種の断熱構造体では強度よりも低密度化を優先する
ものの厚さ方向引張強さは約1 、5 it I/cm
!以上であることが望ましいとされているが、パルプを
添加すると、この必要強度を確保しながら密度0 、1
5 t/cm3未満の低密度断熱構造体が確実に製造可
能になることがわかる。
Although this type of heat insulating structure prioritizes low density over strength, the tensile strength in the thickness direction is approximately 1.5 it I/cm.
! It is said that it is desirable that the above is the same, but if pulp is added, the density is 0 or 1 while ensuring the required strength.
It can be seen that low density insulation structures of less than 5 t/cm3 can be manufactured reliably.

上記による断熱構造体のうちパルプ添加量17.8重量
%の場合(本発明実施例)およびパルプ添加量なしの場
合(比較例)の製品について特性試験を行なった結果を
第1表に示す。なお熱膨張率は30〜800℃における
平均値であり、 他の特記してない物性値は すべて室温における値である。
Table 1 shows the results of characteristic tests conducted on products of the above-mentioned heat insulating structure in which the amount of pulp added was 17.8% by weight (example of the present invention) and the case where no amount of pulp was added (comparative example). Note that the coefficient of thermal expansion is an average value at 30 to 800°C, and all other physical property values unless otherwise specified are values at room temperature.

第1表 室温→1200℃→室温30サイクル 〔発明の効果〕 上述のように、本発明は原料無機繊維を有機繊維と共に
成形し、そのご有機繊維を焼失させると共にホウ素含有
ガラスによる無機繊維間結合を生じさせて三次元網目構
造を形成させるものであるから、従来は製造不可能であ
ったような低比重で均質な多孔質断熱構造体を容易に製
造することができる。
Table 1 Room temperature → 1200°C → Room temperature 30 cycles [Effects of the invention] As described above, the present invention involves molding raw inorganic fibers together with organic fibers, burning out the organic fibers, and bonding between the inorganic fibers using boron-containing glass. , thereby forming a three-dimensional network structure, it is possible to easily produce a homogeneous porous heat insulating structure with a low specific gravity, which was previously impossible to produce.

本発明の製造法はまた改良された独特の配合の原料無機
繊維を採用しているので、それら無機繊維の協同作用に
より、強度、耐熱性、耐熱衝撃性など、熱的機械的性質
のすぐれた構造が形成される。
The manufacturing method of the present invention also employs an improved and unique combination of raw material inorganic fibers, so the cooperative action of these inorganic fibers results in excellent thermomechanical properties such as strength, heat resistance, and thermal shock resistance. A structure is formed.

上記二つの特長が相乗的に作用する結果、本発明の製造
法によれば容易に従来の水準を超える高性能低密度断熱
構造体を得ることができる。
As a result of the synergistic effect of the above two features, according to the manufacturing method of the present invention, it is possible to easily obtain a high-performance low-density heat-insulating structure that exceeds the conventional level.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は実施例の結果を示すグラフである。 FIG. 1 is a graph showing the results of Examples.

Claims (1)

【特許請求の範囲】[Claims] 平均繊維径が0.3〜3.0μmのシリカ質繊維100
重量部、平均繊維径が1〜5μmのアルミナ繊維5〜1
00重量部、平均繊維径が3〜15μmのアルミノボロ
シリケート繊維5〜30重量部、ならびに上記3種類の
無機繊維の合計量に対して5〜30重量%の有機繊維お
よび0.5〜10重量%の酸化ホウ素を水中に分散させ
て混合し、得られたスラリーを脱水成形し、乾燥後、酸
化ホウ素が溶融する温度で焼成することを特徴とする低
密度断熱構造体の製造法。
Siliceous fiber 100 with an average fiber diameter of 0.3 to 3.0 μm
Part by weight, 5 to 1 alumina fiber with an average fiber diameter of 1 to 5 μm
00 parts by weight, 5 to 30 parts by weight of aluminoborosilicate fibers with an average fiber diameter of 3 to 15 μm, and 5 to 30 parts by weight of organic fibers and 0.5 to 10 parts by weight based on the total amount of the above three types of inorganic fibers. % of boron oxide is dispersed and mixed in water, the resulting slurry is dehydrated and molded, and after drying, it is fired at a temperature at which the boron oxide melts.
JP23447990A 1990-09-06 1990-09-06 Manufacturing method of low-density insulation structure Expired - Fee Related JP2819352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23447990A JP2819352B2 (en) 1990-09-06 1990-09-06 Manufacturing method of low-density insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23447990A JP2819352B2 (en) 1990-09-06 1990-09-06 Manufacturing method of low-density insulation structure

Publications (2)

Publication Number Publication Date
JPH04119959A true JPH04119959A (en) 1992-04-21
JP2819352B2 JP2819352B2 (en) 1998-10-30

Family

ID=16971664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23447990A Expired - Fee Related JP2819352B2 (en) 1990-09-06 1990-09-06 Manufacturing method of low-density insulation structure

Country Status (1)

Country Link
JP (1) JP2819352B2 (en)

Also Published As

Publication number Publication date
JP2819352B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
CN101638324B (en) Light porous heat-insulating refractory material and preparation method and applications thereof
JP2684518B2 (en) Method for producing fine porous body having heat insulating property
PL192902B1 (en) Microporous heat insulating body
CN106518115A (en) Refractory material and preparation method thereof
US5071798A (en) Heat-resistant and inorganic shaped article
JP3094148B2 (en) Manufacturing method of lightweight refractory
JPS6116753B2 (en)
JP3195266B2 (en) Multi-layer heat insulating material and its manufacturing method
JPH04119959A (en) Production of low-density heat insulating structural material
JP2990320B2 (en) Insulation material and its manufacturing method
JPS63222027A (en) Production of reinforcing material-containing inorganic foam
JP3388782B2 (en) Insulation
JPS6158434B2 (en)
JPS6213302B2 (en)
JPS62125060A (en) Heat insulating material and its production
JP2003202099A (en) Heat insulating material composition
JPH04119958A (en) Heat-insulating structural material
JPH0323499B2 (en)
JP3094149B2 (en) Manufacturing method of lightweight refractory
KR880002431B1 (en) Refractory brick for used slag
JP3186993B2 (en) Insulation
JP2614800B2 (en) Inorganic fiber refractory brick
JPH0794347B2 (en) Insulation
RU2104252C1 (en) Composition for manufacturing heat insulating products
RU2069204C1 (en) Blend for producing quartz ceramics

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070828

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090828

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees