JPS5832979A - Driving circuit for electromagnetic pump - Google Patents

Driving circuit for electromagnetic pump

Info

Publication number
JPS5832979A
JPS5832979A JP13169081A JP13169081A JPS5832979A JP S5832979 A JPS5832979 A JP S5832979A JP 13169081 A JP13169081 A JP 13169081A JP 13169081 A JP13169081 A JP 13169081A JP S5832979 A JPS5832979 A JP S5832979A
Authority
JP
Japan
Prior art keywords
transistor
electromagnetic pump
voltage
drive current
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13169081A
Other languages
Japanese (ja)
Inventor
Hitoshi Tanaka
均 田中
Shuji Morio
周次 守尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP13169081A priority Critical patent/JPS5832979A/en
Publication of JPS5832979A publication Critical patent/JPS5832979A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetic Pumps, Or The Like (AREA)

Abstract

PURPOSE:To heighten the accuracy of control, by composing a driving circuit of a semiconductor element connected to an electromagnetic pump, a current detecting resistor, a reference voltage source and a comparator for cutting off an input signal to the semiconductor element. CONSTITUTION:When an input signal Vin is supplied, it is impressed on the inverting input terminal of a voltage comparator U2 through a transistor Q3 so that the comparator sends out an output signal of positive voltage to turn on the transistor Q3. As a result, a transistor Q1 is also turned on to supply a driving current IL to an electromagnetic pump SOP. When the driving current IL has increased over a prescribed value and the output voltage VR of a resistor R1 has exceeded a reference level Vref, the output signal of the voltage comparator U2 is inverted from the positive voltage to negative one to turn off a transistor Q2. Consequently, the transistor Q1 is also turned off.

Description

【発明の詳細な説明】 本発明は電磁ポンプの駆動回路に関するものである。[Detailed description of the invention] The present invention relates to a drive circuit for an electromagnetic pump.

従来、流体等を目標値に一致するように供給する装置に
おいては電磁ポンプが多く使用されているが、この場合
における電磁ポンプの駆動方式には、(へ)電磁ポンプ
に対する駆動電圧を目標値に応じて制御する電圧制御方
式と、(ロ)電磁ポンプに対する駆動電流な目標値に応
じて制御する電流制御方式とがある。
Conventionally, electromagnetic pumps are often used in devices that supply fluids etc. to match the target value. (2) A current control method that controls the drive current for the electromagnetic pump according to a target value.

ところが、前者の電圧制御方式においては電磁ポンプの
抵抗値が周囲温度や自己の発熱によって変動してしまい
、高精度の制御が行なえないという問題点がある。これ
に対し、後者の電流制御方式は上記のような問題点はな
いので多く使用されているが、電磁ボyプの立上シ特性
を曳くするために電源電圧を高くすると、駆動電流を送
出するトランジスタに発熱が生じ、放熱フィンが大型化
すると共に、信頼性が低下するという欠点がある。
However, the former voltage control method has the problem that the resistance value of the electromagnetic pump fluctuates depending on the ambient temperature and its own heat generation, making it impossible to perform highly accurate control. On the other hand, the latter current control method is widely used because it does not have the above-mentioned problems, but if the power supply voltage is increased to overcome the start-up characteristics of the electromagnetic voice pump, the drive current cannot be transmitted. This has disadvantages in that heat is generated in the transistor, the heat dissipation fin becomes larger, and reliability decreases.

すなわち、従来における電流制御方式の駆動の一例を掲
げると第1図に示すようなものがある。
That is, an example of conventional current control type driving is shown in FIG.

第1図において、電磁ポンプ80FにはトランジスタQ
lが直列接続されると共に、トランジスタQlのエミッ
タと接地電位端子間には駆動電流ILを検出するための
抵抗R1が接続されていゐ。そして、前記トランジスタ
Q1のベース入力には入力信号Vlnと前記抵抗R1の
端子間電圧VB(=IL−&l)とを差動入力とする差
動増幅器U1の出力信号が供給され、電磁ポンプ80P
に対し、で表わされる一定駆動電流It、を供給するよ
うに構成されている。
In FIG. 1, the electromagnetic pump 80F has a transistor Q.
A resistor R1 for detecting the drive current IL is connected between the emitter of the transistor Ql and the ground potential terminal. The base input of the transistor Q1 is supplied with an output signal of a differential amplifier U1 having the input signal Vln and the voltage VB (=IL-&l) between the terminals of the resistor R1 as differential inputs, and the electromagnetic pump 80P
, it is configured to supply a constant drive current It expressed as .

しかしこのような駆動回路においては、電磁ポンプのイ
ンダクタンス成分のため駆動電流の立上り時間に遅れが
生じ、電磁ポンプの立上〕特性が悪くなシ、制御精度に
誤差要因を生じさせている。
However, in such a drive circuit, the inductance component of the electromagnetic pump causes a delay in the rise time of the drive current, resulting in poor start-up characteristics of the electromagnetic pump and causing errors in control accuracy.

そこで、この問題点を解消するために電磁ポンプの電源
電圧を高くすると、トランジスタQlを比例動作領域で
使用しているため、トランジスタQlのエミッタ・コレ
クタ間飽和電圧VOICと駆動電流ILとの乗算値「V
OIC・ILJI相轟する発熱が生じ、放熱フィンが大
型化すると共に、信頼性が低下するという欠点が生じて
いる。
Therefore, if the power supply voltage of the electromagnetic pump is increased to solve this problem, since the transistor Ql is used in the proportional operation region, the multiplication value of the emitter-collector saturation voltage VOIC of the transistor Ql and the drive current IL “V.
OIC and ILJI generate a large amount of heat, the heat dissipation fins become larger, and the reliability decreases.

本発明は上述した欠点を解決するためになされたもので
、その目的は電磁ポンプの電源電圧を高くしても、駆動
電流を送出するトランジスタの発熱を抑えることがで舎
る電磁ポンプの駆動回路を提供することにある。
The present invention has been made in order to solve the above-mentioned drawbacks, and its purpose is to build an electromagnetic pump drive circuit that can suppress heat generation of the transistor that sends the drive current even if the power supply voltage of the electromagnetic pump is increased. Our goal is to provide the following.

このために本発明による電磁ポンプの駆動回路は、電磁
ポンプの駆動時における駆動電流値が所定値に達した時
に駆動電流の送出を停止させるようにしたものである。
For this reason, the electromagnetic pump drive circuit according to the present invention is configured to stop sending out the drive current when the drive current value when driving the electromagnetic pump reaches a predetermined value.

すなわち、ある一定値以上の駆動電流値が確保される範
囲内で駆動電流を送出する半導体素子を自励的に高速で
オン・オフさせるようにしたものである。
In other words, a semiconductor element that sends out a drive current is turned on and off at high speed in a self-exciting manner within a range in which a drive current value equal to or higher than a certain value is ensured.

以下、図示する実施例に基づき本発明の詳細な説明する
Hereinafter, the present invention will be described in detail based on illustrated embodiments.

第2図は本発明の一実施例を示す回路図であって、電磁
ポンプSOPには駆動電流を送出するトランジスタQl
が直列接続されると共に、駆動電流ILに比例した電圧
信号VBを出力する電流検出用抵抗R1が直列接続され
ている。そして、抵抗Riの出力電圧Vmは抵抗Rsを
介して電圧比較@U2の反転入力端子へ入力されている
。この電圧比較器U2は、抵抗R1の出力電圧Vmが所
定値以上になったことを検出し、トランジスタQ1を非
導通とするものであシ、その非反転入力には可変抵抗V
Bによって設定された基準電圧Vrefが入力され、そ
の出力はトランジスタQs+のベースに入力されている
。一方、電圧比較器U2の反転入力端子には、抵抗R8
およびトランジスタQsを介してパルス状の入力信号T
inが供給されている。トランジスタQ!lは、電圧比
軟器U2の出力信号が正電圧の時には導通してトランジ
スタQrを導通させ、逆に比較器U2の出力信号が負電
圧め時には非導通となシトランジスタQlを導通させる
ものである。なお、電磁ポンプ80Fと抵抗R1との直
列回路にはフリーホイーリングダイオードDIが並列に
接続されている。
FIG. 2 is a circuit diagram showing an embodiment of the present invention, and the electromagnetic pump SOP has a transistor Ql that sends out a drive current.
are connected in series, and a current detection resistor R1 that outputs a voltage signal VB proportional to the drive current IL is also connected in series. The output voltage Vm of the resistor Ri is input to the inverting input terminal of the voltage comparison @U2 via the resistor Rs. This voltage comparator U2 detects that the output voltage Vm of the resistor R1 has exceeded a predetermined value and makes the transistor Q1 non-conductive, and has a variable resistor V at its non-inverting input.
A reference voltage Vref set by B is inputted, and its output is inputted to the base of the transistor Qs+. On the other hand, a resistor R8 is connected to the inverting input terminal of the voltage comparator U2.
and a pulsed input signal T through the transistor Qs.
in is supplied. Transistor Q! l is conductive when the output signal of the voltage ratio softener U2 is a positive voltage, making the transistor Qr conductive; conversely, when the output signal of the comparator U2 is a negative voltage, it is non-conductive and makes the transistor Ql conductive. be. Note that a freewheeling diode DI is connected in parallel to the series circuit of the electromagnetic pump 80F and the resistor R1.

このような構成において、入力信号Vinが供給される
と、この入力信号VinはトランジスタQsを介して電
圧比較@U2の反転入力端子に加えられる。これによっ
て、電圧比較器U2は正電圧の出力信号を送出してトラ
ンジスタQsを導通させる。これによって、トランジス
タQlも導通し、電磁ポンプ80Fに駆動電流ILが供
給畜れる。そして、その駆動電流Itが所定値以上とな
シ、抵抗R11の出力電圧Vnが基準電圧Vrefを越
えると、電圧比較器U2の出力信号は正電圧から負電圧
に反転し、トランジスIQsを非導通とさせる。これに
伴って、トランジスタQlも非導通となる。す2なわち
、入力信号Vinが電磁ポンプ80Fを駆動状態とする
電圧値を保持している状態の時、電圧比較器U2は抵抗
R1の出力電圧VBが所定値Vrefに達するたびに出
力信号を反転する。そして、トランジスタQlが非導通
となった後、フリーホイーリングダイオードDIKより
駆動電流ILが所定値以下に7夛、抵、抗R1の出力電
圧VBが基準値Vref以下になゐと、電圧比較器U2
の出力信号は再び正電圧となシ、トランジスタQlを導
通させ、駆動電流ILを送出させるようになる。つまシ
、第3図(a)、Φ)の波形図に示すように、入力信号
Vinが電磁ポンプ80Pを駆動状態とする電圧値を保
持している状態の時、トランジスタQlは駆動電流It
が基準電圧vrefで規定される電流値It、oを越え
るたびに自励的にオン・オフされる。なお、トランジス
タQlのオンのオフの周期は、電圧比較器U2のスルー
レートおよび電磁ポンプ80Pのインダクタンス成分等
によシ定まる。従って、入力信号Minが所定の電圧値
を保持している間連続的に駆動電流Itを流し続ける場
合に比べ、トランジスタQlは高速でスイッチングされ
るためにその発熱を抑えることができる。この場合、電
磁ポンプSOPのインダクタンス成分のため、駆動電流
It、の急峻な変化を抑制できる利点がある。
In such a configuration, when the input signal Vin is supplied, this input signal Vin is applied to the inverting input terminal of the voltage comparison @U2 via the transistor Qs. This causes voltage comparator U2 to send out a positive voltage output signal, causing transistor Qs to conduct. As a result, the transistor Ql also becomes conductive, and the drive current IL is supplied to the electromagnetic pump 80F. When the drive current It exceeds a predetermined value and the output voltage Vn of the resistor R11 exceeds the reference voltage Vref, the output signal of the voltage comparator U2 is inverted from a positive voltage to a negative voltage, and the transistor IQs is turned off. Let it be. Along with this, the transistor Ql also becomes non-conductive. 2. In other words, when the input signal Vin holds a voltage value that drives the electromagnetic pump 80F, the voltage comparator U2 outputs an output signal every time the output voltage VB of the resistor R1 reaches the predetermined value Vref. Invert. Then, after the transistor Ql becomes non-conductive, when the drive current IL from the freewheeling diode DIK falls below a predetermined value and the output voltage VB of the resistor R1 falls below the reference value Vref, the voltage comparator U2
The output signal becomes a positive voltage again, making the transistor Ql conductive and sending out the drive current IL. As shown in the waveform diagram of FIG. 3(a), Φ), when the input signal Vin maintains a voltage value that drives the electromagnetic pump 80P, the transistor Ql increases the drive current It.
It is turned on and off in a self-exciting manner every time the current exceeds the current value It,o defined by the reference voltage vref. Note that the on/off period of the transistor Ql is determined by the slew rate of the voltage comparator U2, the inductance component of the electromagnetic pump 80P, and the like. Therefore, compared to the case where the drive current It continues to flow while the input signal Min maintains a predetermined voltage value, the transistor Ql is switched at a high speed, so that heat generation can be suppressed. In this case, there is an advantage that sudden changes in the drive current It can be suppressed due to the inductance component of the electromagnetic pump SOP.

なお、実施例においては駆動電流ILを卑−のトランジ
スタによシ送出するように構成したが、第4図に示すよ
うにダーリントン接続のトランジスタQ4としてもよい
。さらに、この場合のトランジスタとしてはバイパーラ
トランジスタあるいは電界効果トランジスタ等各−のト
ランジスタを用いるようにしても良い。
In the embodiment, the drive current IL is transmitted through a low-level transistor, but it may be a Darlington-connected transistor Q4 as shown in FIG. Further, as the transistor in this case, a bipolar transistor or a field effect transistor may be used.

以上の説明から明らかなように本発明によれば、駆動電
流を送出する半導体素子の発熱を抑えることができるた
め、電磁ポンプの電源電圧を高くして立上シ特性を良好
にすることができ、制御精度を向上させることができる
。さらに、放熱フィンを小型化でき、回路構成の小型化
を図ることができるなど優れた効果がある。
As is clear from the above description, according to the present invention, it is possible to suppress the heat generation of the semiconductor element that sends out the drive current, so it is possible to increase the power supply voltage of the electromagnetic pump and improve the start-up characteristics. , control accuracy can be improved. Furthermore, there are excellent effects such as the ability to miniaturize the heat dissipation fins and miniaturize the circuit configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来における電磁ポンプの駆動回路の一例を示
す図、第2図は本発明の一実施例を示す回路図、第3図
はその動作を説明するための波形図、第4図は本発明の
他の実施例を示す回路図である。 sop・・・嗜電磁ポンプ、Ql、Ql、Q8゜Q4・
・・・トランジスタ、Rx、Rv、R@・・0.抵抗、
VB、、、・可変抵抗器、U2−−−・電圧比較器。 特許出願人  山武ハネウェル株式会社代理人 山川政
樹(ほか1名) 第2図 第3図 第4図
FIG. 1 is a diagram showing an example of a conventional electromagnetic pump drive circuit, FIG. 2 is a circuit diagram showing an embodiment of the present invention, FIG. 3 is a waveform diagram for explaining its operation, and FIG. FIG. 3 is a circuit diagram showing another embodiment of the present invention. sop...electromagnetic pump, Ql, Ql, Q8゜Q4・
...Transistor, Rx, Rv, R@...0. resistance,
VB, ・Variable resistor, U2---・Voltage comparator. Patent applicant Yamatake Honeywell Co., Ltd. Agent Masaki Yamakawa (and one other person) Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 電磁ポンプに直列接続され、該電磁ポンプに対して入力
信号に応じた駆動電流を供給する半導体素子と、前記電
磁ポンプの駆動電流径路に直列接続され、電磁ポンプの
駆□動電流に比例した電圧信号を出力する電流検出用抵
抗と、所定の基準電圧を発生する基準電圧発生源と、前
記電流検出用抵抗の出力電圧と前記基準電圧とを比較し
、前者が後者より大きい時に前記半導体素子に対する入
力信号を遮断する比較回路とを具備してなる電磁ポンプ
の駆動回路。
a semiconductor element connected in series to the electromagnetic pump and supplying a drive current to the electromagnetic pump according to an input signal; and a semiconductor element connected in series to the drive current path of the electromagnetic pump and a voltage proportional to the drive current of the electromagnetic pump. A current detection resistor that outputs a signal, a reference voltage generation source that generates a predetermined reference voltage, and the output voltage of the current detection resistor and the reference voltage are compared, and when the former is greater than the latter, the output voltage for the semiconductor element is determined. An electromagnetic pump drive circuit comprising a comparison circuit that cuts off an input signal.
JP13169081A 1981-08-22 1981-08-22 Driving circuit for electromagnetic pump Pending JPS5832979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13169081A JPS5832979A (en) 1981-08-22 1981-08-22 Driving circuit for electromagnetic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13169081A JPS5832979A (en) 1981-08-22 1981-08-22 Driving circuit for electromagnetic pump

Publications (1)

Publication Number Publication Date
JPS5832979A true JPS5832979A (en) 1983-02-26

Family

ID=15063927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13169081A Pending JPS5832979A (en) 1981-08-22 1981-08-22 Driving circuit for electromagnetic pump

Country Status (1)

Country Link
JP (1) JPS5832979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067742A1 (en) * 2014-10-30 2016-05-06 日機装エイコー株式会社 Control device and control method for electromagnetic reciprocating pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575581A (en) * 1978-12-01 1980-06-06 Mitsuwa Seiki Co Ltd Driving method for solenoid pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575581A (en) * 1978-12-01 1980-06-06 Mitsuwa Seiki Co Ltd Driving method for solenoid pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067742A1 (en) * 2014-10-30 2016-05-06 日機装エイコー株式会社 Control device and control method for electromagnetic reciprocating pump
JP2016089647A (en) * 2014-10-30 2016-05-23 日機装エイコー株式会社 Control device for electromagnetic type reciprocating pump and its controlling method

Similar Documents

Publication Publication Date Title
KR100303450B1 (en) Pfc controller
JPS6144360B2 (en)
EP0049649B1 (en) A.c. motor powering arrangement with means for limiting the power delivered to an a.c. motor
US3619652A (en) Motor control device
JPS5832979A (en) Driving circuit for electromagnetic pump
JPH09257840A (en) Overcurrent detecting circuit
US4031447A (en) Improved control system for energizing a stepping motor
US4238965A (en) Two wire flow rate transmitter
JP2546051Y2 (en) Stabilized power supply circuit
JPS63305795A (en) Driver circuit for stepping motor
SU1265746A1 (en) D.c.voltage stabilizer
KR930004368Y1 (en) Power circit
SU1241448A1 (en) Rectangular pulse shaper
SU1096624A1 (en) D.c. voltage stabilizer
JPH0962378A (en) Constant current circuit
RU1833821C (en) Precision full-wave rectifier
SU1228285A1 (en) Device for converting voltage to time interval
JPH04317217A (en) Current detecting circuit
SU1145327A1 (en) Dc voltage stabilizer
SU386389A1 (en) CONSTANT VOLTAGE REGULATOR
SU970691A1 (en) Transistorized pulse switch
JPH027615A (en) Power supply voltage detection circuit
SU744515A1 (en) Transistorized stabilizer regulating element
JPH03211472A (en) Source voltage detecting circuit
JP3137402B2 (en) Load current detection circuit