JPH0962378A - Constant current circuit - Google Patents

Constant current circuit

Info

Publication number
JPH0962378A
JPH0962378A JP21897395A JP21897395A JPH0962378A JP H0962378 A JPH0962378 A JP H0962378A JP 21897395 A JP21897395 A JP 21897395A JP 21897395 A JP21897395 A JP 21897395A JP H0962378 A JPH0962378 A JP H0962378A
Authority
JP
Japan
Prior art keywords
operational amplifier
base
current
common potential
potential point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21897395A
Other languages
Japanese (ja)
Inventor
Tatsuo Kinugasa
立夫 衣笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP21897395A priority Critical patent/JPH0962378A/en
Publication of JPH0962378A publication Critical patent/JPH0962378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a power supply current from increasing abnormally before initialization, etc. SOLUTION: A reference voltage Vr is supplied to the non-inversion input terminal of an operational amplifier 2, and the output terminal of the operational amplifier is connected to the base of an output transistor 3, and whose emitter is connected to the inversion input terminal. and also, connected to a common potential point via a resistor 4. Also, the base of the operational amplifier is connected to the common potential point via a Zener diode 5, and its collector to a power source via a load impedance 6. In this invention, especially, a diode 11 is inserted between the output terminal of the operational amplifier 2 and the base in a direction opposite to the running direction of a base current. In this way, the polarity of the reference voltage Vr is inverted from the one in a normal operation when abnormality occurs, and when the transistor is cut off, a large current flowing from the common potential point to a negative power source(-Vp) or from a positive power source(+Vp) to the common potential point via the Zener diode 5 is blocked by the diode 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明はICテスタ等に用
いられる定電流回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant current circuit used in IC testers and the like.

【0002】[0002]

【従来の技術】従来の定電流回路1を図2により説明す
る。定電流回路1には一定の出力電流Io に対応する基
準電圧Vr が基準電圧発生回路2より演算増幅器2の非
反転入力端子に供給される。演算増幅器2の出力はトラ
ンジスタ3のベースに接続され、そのエミッタは演算増
幅器2の反転入力端子に接続されると共に抵抗器4を介
して共通電位点に接続される。またベースはツェナーダ
イオード(一般的には定電圧しきい値素子)5を介して
共通電位点に、コレクタは負荷インピーダンス6を介し
て電源(電源電圧+V)にそれぞれ接続される。
2. Description of the Related Art A conventional constant current circuit 1 will be described with reference to FIG. A reference voltage Vr corresponding to a constant output current Io is supplied to the constant current circuit 1 from the reference voltage generation circuit 2 to the non-inverting input terminal of the operational amplifier 2. The output of the operational amplifier 2 is connected to the base of the transistor 3, and its emitter is connected to the inverting input terminal of the operational amplifier 2 and the common potential point via the resistor 4. The base is connected to a common potential point via a Zener diode (generally a constant voltage threshold element) 5 and the collector is connected to a power supply (power supply voltage + V) via a load impedance 6.

【0003】トランジスタ3のベース電流Ib はコレク
タ電流Ic ,エミッタ電流Ie に比べて小さいので、簡
単化のため無視すると、エミッタ電圧Ve は抵抗器4の
抵抗値をRと置けば、Ie≒Ic=Ioであるから Ve ≒RIo …………… (1) 演算増幅器2の利得をAとすれば、その出力電圧は(V
r −Ve )Aとなる。一方、ベースの電圧はVbe+Ve
で表されるから、次式が得られる。
Since the base current Ib of the transistor 3 is smaller than the collector current Ic and the emitter current Ie, the emitter voltage Ve is neglected for simplification. If the resistance value of the resistor 4 is set as R, Ie≈Ic = Since Io, Ve ≈ RIo (1) If the gain of the operational amplifier 2 is A, its output voltage is (V
r-Ve) A. On the other hand, the base voltage is Vbe + Ve
From the above, the following equation is obtained.

【0004】 (Vr −Ve )A=Vbe+Ve …………… (2) (1)式を代入すれば (Vr −RIo ) A≒Vbe+RIo VrA−Vbe≒RIo (A+1) ∴ Io ≒(VrA−Vbe)/R(A+1) =(Vr −Vbe/A)R(1+1/A) 利得Aは極めて大きいので、 Io ≒Vr /R …………… (3) となり、出力電流Io は基準電圧Vr に比例した定電流
となる。また(3)式より演算増幅器2の2つの入力電
圧Vr とVe (≒RIo )は相等しい。
(Vr-Ve) A = Vbe + Ve (2) If the equation (1) is substituted, (Vr-RIo) A≈Vbe + RIo VrA-Vbe≈RIo (A + 1) ∴Io ≈ (VrA−Vbe) / R (A + 1) = (Vr−Vbe / A) R (1 + 1 / A) Since the gain A is extremely large, Io≈Vr / R ……………… (3) and the output current Io Is a constant current proportional to the reference voltage Vr. Further, according to the equation (3), the two input voltages Vr and Ve (≈RIo) of the operational amplifier 2 are equal to each other.

【0005】ツェナーダイオード5のツェナー電圧をV
zとすれば、 Vz ≧Vbe+Ve =Vbe+RIo ∴ Io ≦(Vz −Vbe)/R …………… (4) 従って、出力電流Ioはツェナー電圧Vzにより制限さ
れる。またベースに印加される電圧はツェナー電圧Vz
を越えることはない。このように、ツェナーダイオード
5はトランジスタ3を保護するのに用いられる。
The Zener voltage of the Zener diode 5 is set to V
If z, Vz ≧ Vbe + Ve = Vbe + RIo∴Io ≦ (Vz−Vbe) / R (4) Therefore, the output current Io is limited by the Zener voltage Vz. The voltage applied to the base is the Zener voltage Vz.
Never exceeds. Thus, the Zener diode 5 is used to protect the transistor 3.

【0006】次に基準電圧発生回路2につき説明する。
デジタル加算回路7に定電流回路1の出力電流Io に相
当する基準電流のデジタル値Ir(D)と第1オフセット
電流のデジタル値I1(D)とが入力される。基準電流I
r(D)は0〜Irmax(D)の値をとる。また第1オフセ
ット電流I1(D)は0からIrmax(D)/2より多少大
きな値までをとる。テジタル加算回路7の出力I7 =I
r(D) +I1(D)はD/Aコンバータ8に入力され、ア
ナログ値I8 =Ir +I1 に変換されて、アナログ減算
回路9に入力され、第2オフセット電流値(アナログ
値)I2 だけ減算されて電流値I9 が出力される。
Next, the reference voltage generating circuit 2 will be described.
The digital value Ir (D) of the reference current corresponding to the output current Io of the constant current circuit 1 and the digital value I 1 (D) of the first offset current are input to the digital adder circuit 7. Reference current I
r (D) takes a value of 0 to Irmax (D). The first offset current I 1 (D) ranges from 0 to a value slightly larger than Irmax (D) / 2. Output of digital adder circuit 7 I 7 = I
r (D) + I 1 (D) is input to the D / A converter 8, converted into an analog value I 8 = Ir + I 1 and input to the analog subtraction circuit 9, and the second offset current value (analog value) I Only 2 is subtracted and the current value I 9 is output.

【0007】 I9 =Ir+I1 −I2 …………… (5) 第2オフセット電流値I2 は I2 ≒Ir max /2 …………… (6) に設定される。後述するが、定常状態ではI1 は I1 ≒I2 …………… (7) に初期設定されているので、 I9 ≒Ir …………… (8) となる。I 9 = Ir + I 1 −I 2 (5) The second offset current value I 2 is set to I 2 ≈Ir max / 2 (6). As will be described later, since I 1 is initially set to I 1 ≈I 2 (7) in the steady state, I 9 ≈Ir (8).

【0008】アナログ減算回路9の出力I9 ≒Irは利
得調整器10に入力されて、k≒R倍されて、 Vr =kI9 ≒kIr ≒RIr …………… (9) で表される基準電圧Vr が得られる。(9)式と(3)
式を比較すれば明らかなように、 Ir ≒Io …………… (10) となる。
The output I 9 ≉Ir of the analog subtraction circuit 9 is input to the gain adjuster 10 and multiplied by k≅R to obtain Vr = KI 9 ≉kIr ≉RIr ............ The reference voltage Vr represented by (9) is obtained. Equation (9) and (3)
As is clear by comparing the equations, Ir ≈ Io (10).

【0009】ICテスタ等の定電流回路では、基準電流
Ir を0mAに設定した場合に、出力電流Ioも0mAにな
るように零点調整(オフセット調整またはイニシャライ
ズとも言う)を行っている。次にその方法を説明する。
基準電流Ir =0に設定する。第2オフセット電流I2
は(6)式のとおり、I2 ≒Ir max /2の固定値に設
定されている。第1オフセット電流I1 を図3に示すよ
うに0から次第に増加させて行き、P点までIo=0
で、P点からI1に応じてIoが増加したとすれば、第
1オフセット電流I1 をP点における値I 1Pに初期設定
する。P点において限りなくゼロに近い出力電流Io が
流れ出たとすれば、演算増幅器2とトランジスタ3によ
る負帰還制御によってVr =Ve ≒0となり、従ってV
r =kI9 ≒0である。従って、 I9 =I1P−I2 ≒0 ∴ I1P≒I2 …………… (11)
In a constant current circuit such as an IC tester, the reference current is
If Ir is set to 0mA, the output current Io will also be 0mA.
Zero point adjustment (offset adjustment or initialization
It is also called). Next, the method will be described.
The reference current Ir is set to 0. Second offset current I2
Is expressed by the equation (6), I2Set to a fixed value of ≈ Ir max / 2
Is defined. First offset current I1Is shown in Figure 3.
Io gradually increases from 0 to point P, Io = 0
Then I from point P1If Io increases according to
1 offset current I1Is the value I at point P 1PDefault to
I do. At the point P, the output current Io is as close to zero as possible
If it flows out, the operational amplifier 2 and the transistor 3 are used.
Due to the negative feedback control, Vr = Ve≈0, and thus V
r = kI9≈0. Therefore, I9= I1P-I2≒ 0 ∴I1P≒ I2 …………… (11)

【0010】[0010]

【発明が解決しようとする課題】正常動作時には、Io
≒Ir ≧0に設定され、演算増幅器2の出力端子の電圧
は必ずゼロまたは正値であるので、演算増幅器2のマイ
ナス側の電源としては演算増幅器2にバイアスを与える
だけの小さな容量のもので十分である。次にICテスタ
等が電源投入直後で、未だイニシャライズにおける零点
調整が行われていない場合を考える。Ir =0に設定さ
れているとする。第2オフセット電流I2 はI2 ≒Ir
max /2に固定されている。第1オフセット電流I1
未だ零点調整が行われていないので、どのような値かは
分からないが、約1/2の確率でI2 よりも小さな値で
ある。従って基準電圧Vr =kI9 =k(I1 −I2
は約1/2の確率で負となる。従って演算増幅器2の出
力電圧(Vr −Ve )Aも同様に負になり、トランジス
タはカットオフする。これにより負帰還制御が行われな
くなるので、演算増幅器2は飽和し、電源電圧−Vpに
ほゞ等しい負の最大電圧を出力しようとする。すると、
ツェナーダイオード5には順方向の電圧がかかり、共通
電位点→ツェナーダイオード5→演算増幅器2→負電源
(−Vp) の経路で大きな電流が流れる。そのため負電
源として大容量のものが必要になる。
In normal operation, Io
Since ≈Ir ≧ 0 is set and the voltage at the output terminal of the operational amplifier 2 is always zero or a positive value, the power source on the negative side of the operational amplifier 2 should have a small capacity enough to bias the operational amplifier 2. It is enough. Next, consider a case where the IC tester or the like has just been powered on and the zero point adjustment has not yet been performed in the initialization. It is assumed that Ir = 0 is set. The second offset current I 2 is I 2 ≈Ir
It is fixed at max / 2. Since the zero point adjustment has not been performed yet on the first offset current I 1, it is not known what the value is, but it is a value smaller than I 2 with a probability of about ½. Thus the reference voltage Vr = kI 9 = k (I 1 -I 2)
Is negative with a probability of about 1/2. Therefore, the output voltage (Vr-Ve) A of the operational amplifier 2 also becomes negative and the transistor is cut off. As a result, since the negative feedback control is not performed, the operational amplifier 2 saturates and tries to output the maximum negative voltage approximately equal to the power supply voltage -Vp. Then
A forward voltage is applied to the Zener diode 5, and a large current flows through the path of the common potential point → Zener diode 5 → Operational amplifier 2 → Negative power supply (−Vp). Therefore, a large capacity negative power supply is required.

【0011】この発明の目的は、オフセット調整(イニ
シャライズ)前等において、基準電圧Vr の極性が正常
時と逆になっても、演算増幅器の正、負の電源に異常な
大電流が流れないようにして、電源容量の小容量化を図
ろうとするものである。
An object of the present invention is to prevent an abnormally large current from flowing in the positive and negative power supplies of the operational amplifier even when the polarity of the reference voltage Vr is reversed from that in the normal state before offset adjustment (initialization). In this way, the power supply capacity is reduced.

【0012】[0012]

【課題を解決するための手段】演算増幅器の非反転入力
端子に基準電圧が与えられ、その演算増幅器の出力端子
が出力トランジスタのベースに接続され、該トランジス
タのエミッタが演算増幅器の反転入力端子に接続される
と共に抵抗器を介して共通電位点に接続され、ベースが
定電圧しきい値素子を介して共通電位点に接続され、コ
レクタが負荷インピーダンスを介して電源に接続されて
いる定電流回路において、この発明では、演算増幅器の
出力端子とトランジスタのベースとの間にダイオードが
ベース電流の流れる向きに挿入される。
A reference voltage is applied to a non-inverting input terminal of an operational amplifier, an output terminal of the operational amplifier is connected to a base of an output transistor, and an emitter of the transistor is connected to an inverting input terminal of the operational amplifier. A constant current circuit that is connected and connected to a common potential point via a resistor, the base is connected to the common potential point via a constant voltage threshold element, and the collector is connected to the power supply via a load impedance. In the present invention, the diode is inserted between the output terminal of the operational amplifier and the base of the transistor in the direction in which the base current flows.

【0013】[0013]

【発明の実施の形態】この発明の実施例を図1Aに、図
2と対応する部分に同じ符号を付して示し、重複説明を
省略する。この発明では、イニシャライズ前において、
基準電圧Vrが正常時と逆で負となり、これにより演算
増幅器2の出力端子の電圧が負となるために、共通電位
点よりツェナーダイオード5及び演算増幅器2を通じて
負電源(−Vp)に大電流が流れるのを防止するため
に、ダイオード11を演算増幅器2の出力端子とトラン
ジスタ3のベースとの間に、ベース電流の流れる向きに
挿入する。基準電圧Vr が正である通常の動作時にはダ
イオード11は何ら悪影響を与えない。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention is shown in FIG. 1A with the same reference numerals attached to the portions corresponding to those in FIG. In this invention, before initialization,
The reference voltage V r becomes negative in the opposite state to the normal state, and the voltage at the output terminal of the operational amplifier 2 becomes negative due to this. In order to prevent the current from flowing, the diode 11 is inserted between the output terminal of the operational amplifier 2 and the base of the transistor 3 in the direction in which the base current flows. The diode 11 has no adverse effect during normal operation in which the reference voltage Vr is positive.

【0014】これまでの説明ではトランジスタ3はnp
n形で、出力電流Io をコレクタより吸い込むものとし
たが、この発明はこの場合に限らず、図1Bに示すよう
に、トランジスタ3が出力電流Io を吐き出す場合にも
適用できることは明らかである。しかし、その場合に
は、トランジスタ3はpnp形とされ、負荷インピーダ
ンス6を介して負電源(−V)に接続される。また基準
電圧Vr 及びエミッタ電圧Ve は負である。ダイオード
11はベース電流の流れる方向に挿入されるので、図1
Aとは向きが逆になる。またツェナーダイオード5の向
きも逆となる。
In the above description, the transistor 3 is np.
Although the n type is used to absorb the output current Io from the collector, the present invention is not limited to this case, and it is obvious that the present invention can be applied to the case where the transistor 3 discharges the output current Io as shown in FIG. 1B. However, in that case, the transistor 3 is of a pnp type and is connected to the negative power source (-V) via the load impedance 6. The reference voltage Vr and the emitter voltage Ve are negative. Since the diode 11 is inserted in the direction in which the base current flows,
The direction is opposite to A. The direction of the Zener diode 5 is also reversed.

【0015】図1Bの場合には、イニシャライズ前にお
いて基準電圧Vr ,従って演算増幅器2の出力端子の電
圧が正となった場合に、トランジスタ3がカットオフ
し、正電源(+VP )→演算増幅器2→ツェナーダイオ
ード5→共通電位点に流れる大電源をダイオード11で
阻止している。
In the case of FIG. 1B, when the reference voltage Vr, that is, the voltage of the output terminal of the operational amplifier 2 becomes positive before the initialization, the transistor 3 is cut off, and the positive power supply (+ V P ) → the operational amplifier. 2 → Zener diode 5 → The large power source flowing to the common potential point is blocked by the diode 11.

【0016】[0016]

【発明の効果】イニシャライズ前などにおいて、基準電
圧Vr の極性が正常動作時の極性と逆となり、トランジ
スタ3をカットオフさせる極性の電圧が演算増幅器2の
出力に発生した場合において、共通電位点→ツェナーダ
イオード5→演算増幅器2→負電源(−VP )の経路ま
たは正電源(+VP )→演算増幅器2→ツェナーダイオ
ード5→共通電位点の経路に流れる大電流をこの発明で
追加したダイオード11によって阻止することができ
る。よって、演算増幅器の負または正の電源は演算増幅
器にバイヤス電流を与える程度の小容量のものに小形
化、経済化できる。
EFFECTS OF THE INVENTION When the polarity of the reference voltage Vr is opposite to the polarity during normal operation before initialization and a voltage of a polarity that cuts off the transistor 3 is generated at the output of the operational amplifier 2, a common potential point → Zener diode 5 → operational amplifier 2 → path or positive supply of the negative power source (-V P) (+ V P ) → operational amplifier 2 → the zener diode 5 → common potential point diodes a large current flows through a path added in the present invention 11 Can be stopped by. Therefore, the negative or positive power source of the operational amplifier can be miniaturized and made economical so as to have a small capacity to give a bias current to the operational amplifier.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す回路図。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】従来の定電流回路を基準電圧発生回路と共に示
す回路図。
FIG. 2 is a circuit diagram showing a conventional constant current circuit together with a reference voltage generation circuit.

【図3】図2のゼロ点調整の際の出力電流Io と第1オ
フセット電流I1 との関係を示すグラフ。
FIG. 3 is a graph showing a relationship between an output current Io and a first offset current I 1 at the time of zero point adjustment shown in FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 演算増幅器の非反転入力端子に基準電圧
が与えられ、その演算増幅器の出力端子が出力トランジ
スタのベースに接続され、 該トランジスタのエミッタが前記演算増幅器の反転入力
端子に接続されると共に抵抗器を介して共通電位点に接
続され、ベースが定電圧しきい値素子を介して共通電位
点に接続され、コレクタが負荷インピーダンスを介して
電源に接続されている定電流回路において、 前記演算増幅器の出力端子と前記トランジスタのベース
との間にダイオードがベース電流の流れる向きに挿入さ
れていることを特徴とする定電流回路。
1. A reference voltage is applied to a non-inverting input terminal of an operational amplifier, an output terminal of the operational amplifier is connected to a base of an output transistor, and an emitter of the transistor is connected to an inverting input terminal of the operational amplifier. A constant current circuit connected to a common potential point via a resistor, a base connected to a common potential point via a constant voltage threshold element, and a collector connected to a power source via a load impedance, A constant current circuit in which a diode is inserted between an output terminal of the operational amplifier and the base of the transistor in a direction in which a base current flows.
JP21897395A 1995-08-28 1995-08-28 Constant current circuit Pending JPH0962378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21897395A JPH0962378A (en) 1995-08-28 1995-08-28 Constant current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21897395A JPH0962378A (en) 1995-08-28 1995-08-28 Constant current circuit

Publications (1)

Publication Number Publication Date
JPH0962378A true JPH0962378A (en) 1997-03-07

Family

ID=16728270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21897395A Pending JPH0962378A (en) 1995-08-28 1995-08-28 Constant current circuit

Country Status (1)

Country Link
JP (1) JPH0962378A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105404348A (en) * 2015-12-30 2016-03-16 苏州博众精工科技有限公司 Current linear control circuit for constant current source
CN108870797A (en) * 2018-04-28 2018-11-23 西南科技大学 A kind of more gear switch semiconductor cooler current-limiting protection circuits
CN110034669A (en) * 2019-04-23 2019-07-19 北京控制工程研究所 A kind of low-voltage direct bus bridge arm short-circuit fault protection circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105404348A (en) * 2015-12-30 2016-03-16 苏州博众精工科技有限公司 Current linear control circuit for constant current source
CN108870797A (en) * 2018-04-28 2018-11-23 西南科技大学 A kind of more gear switch semiconductor cooler current-limiting protection circuits
CN110034669A (en) * 2019-04-23 2019-07-19 北京控制工程研究所 A kind of low-voltage direct bus bridge arm short-circuit fault protection circuit

Similar Documents

Publication Publication Date Title
JPH11121852A (en) Light emitting device drive circuit
JPH03201818A (en) Comparing circuit
JPS6144360B2 (en)
JP3320900B2 (en) Automatic temperature control circuit for laser diode and electric / optical signal conversion unit using the same
US4227127A (en) Motor speed control circuit having improved starting characteristics
US5521544A (en) Multiplier circuit having circuit wide dynamic range with reduced supply voltage requirements
US6957278B1 (en) Reference -switch hysteresis for comparator applications
JPH0962378A (en) Constant current circuit
US6175265B1 (en) Current supply circuit and bias voltage circuit
JP2533201B2 (en) AM detection circuit
KR920008785B1 (en) Circuit for transforming direct-current signals
US4851759A (en) Unity-gain current-limiting circuit
JP2000194429A (en) Method and circuit for preventing oscillation of battery charger
US4843302A (en) Non-linear temperature generator circuit
JP3178716B2 (en) Maximum value output circuit, minimum value output circuit, maximum value minimum value output circuit
KR0150196B1 (en) Bicmos voltage reference generator
JP3065791B2 (en) Semiconductor laser drive control circuit
JP3123881B2 (en) Current comparison device
JPH02113314A (en) Constant voltage device
JPS58194417A (en) Diode
JPH0934565A (en) Stabilized power circuit
JPH1146495A (en) Motor driving circuit
JP2922024B2 (en) Peak value detection circuit
JPH021636Y2 (en)
JPH0348528B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031209