JPS5832652B2 - How to calibrate an electronic thermometer - Google Patents

How to calibrate an electronic thermometer

Info

Publication number
JPS5832652B2
JPS5832652B2 JP52018579A JP1857977A JPS5832652B2 JP S5832652 B2 JPS5832652 B2 JP S5832652B2 JP 52018579 A JP52018579 A JP 52018579A JP 1857977 A JP1857977 A JP 1857977A JP S5832652 B2 JPS5832652 B2 JP S5832652B2
Authority
JP
Japan
Prior art keywords
temperature
resistance
circuit
resistor
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52018579A
Other languages
Japanese (ja)
Other versions
JPS53103788A (en
Inventor
幸人 安部
一浩 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP52018579A priority Critical patent/JPS5832652B2/en
Priority to US05/856,995 priority patent/US4150573A/en
Priority to DE2753871A priority patent/DE2753871C2/en
Publication of JPS53103788A publication Critical patent/JPS53103788A/en
Publication of JPS5832652B2 publication Critical patent/JPS5832652B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 この発明は、電子温度計、中でも特に体温計のように温
度範囲は狭いが絶対値およびその変化量を精度よく測定
することが必要な温度計に係り、特にその較正方法に関
する。
[Detailed Description of the Invention] The present invention relates to electronic thermometers, and in particular to thermometers that have a narrow temperature range but need to accurately measure absolute values and changes thereof, and in particular, a method for calibrating the same. Regarding.

従来、電子体温計はサーミスタなどの温度により抵抗値
の変化する測温抵抗体を用いその抵抗値の変化を計測し
て温度を求めていた。
Conventionally, electronic thermometers have used a thermometer, such as a thermistor, whose resistance value changes depending on the temperature to measure the change in resistance value to determine temperature.

温度の測定範囲は非常に狭く(例えば35°C〜42°
Cであり)、精度はo、 i ℃以上である。
The temperature measurement range is very narrow (e.g. 35°C to 42°
C), and the accuracy is better than o,i °C.

したがって、測温抵抗体の抵抗変化が微小であるため測
温抵抗体の精密な較正は容易ではなかった。
Therefore, since the resistance change of the resistance temperature detector is minute, precise calibration of the resistance temperature detector has not been easy.

第1図はサーミスタの抵抗値RTの温度変化を示すもの
で、温度Tが上昇すると抵抗値RTは低下し、一般に直
線ではないがごく狭い温度範囲JTでは直線に近い特性
をもつと考えてよい。
Figure 1 shows the temperature change in the resistance value RT of the thermistor. As the temperature T rises, the resistance value RT decreases, and although it is generally not a straight line, it can be considered to have a characteristic close to a straight line in a very narrow temperature range JT. .

他側のサーミスタによってこの特性はまちまちでばらつ
きが太きいため、サーミスタ単独で全く同一の温度特性
をもったものを作ることは不可能に近い。
These characteristics vary widely depending on the thermistor on the other side, so it is almost impossible to make a thermistor alone with exactly the same temperature characteristics.

そこで、サーミスタに直列抵抗又は並列抵抗あるいはそ
の両方を接続することによって直線性を改善し、同一の
温度特性をもった合成抵抗を作る。
Therefore, by connecting a series resistor, a parallel resistor, or both to the thermistor, linearity is improved and a composite resistor with the same temperature characteristics is created.

例えば、第2図すでサーミスタRTに並列に温度で抵抗
値の変化しない普通の抵抗Rを接続すると合成抵抗RX
は、 となり、第2図aのグラフのようになる。
For example, if you connect an ordinary resistor R whose resistance value does not change with temperature in parallel to the thermistor RT as shown in Figure 2, the combined resistance RX
is as shown in the graph in Figure 2a.

すなわち、抵抗値は小さくなり温度変化(温度係数α)
は小さくなるが直線性が改善される。
In other words, the resistance value decreases and the temperature changes (temperature coefficient α)
is smaller, but linearity is improved.

第3図すはサーミスタRTに直列に抵抗Rを接続した場
合で抵抗値は加算され合成抵抗RXは、 となって、第3図aのグラフのように平行移動する。
Fig. 3 shows a case where a resistor R is connected in series to the thermistor RT, and the resistance values are added and the combined resistance RX becomes as follows, and moves in parallel as shown in the graph of Fig. 3a.

したがって、サーミスタに並列に抵抗を接続して温度係
数を求める値とし、さらに直列に接続して全体を平行移
動させることによって所望の温度特性をもった測温抵抗
体を合成することができる。
Therefore, by connecting a resistor in parallel to the thermistor to obtain a value for determining the temperature coefficient, and then connecting the resistor in series and moving the whole resistor in parallel, it is possible to synthesize a resistance temperature detector having desired temperature characteristics.

ところで、このような従来の方法で所望の温度特性をも
った合成抵抗を得るのは容易ではない。
However, it is not easy to obtain a composite resistance with desired temperature characteristics using such conventional methods.

それは、温度係数を合わせることが困難だからである。This is because it is difficult to match the temperature coefficients.

いま、第2図について考えると、並列抵抗Rの抵抗値が
小さくなる程温度係数が小さくなるので、所望の温度係
数より大きな温度係数をもったサーミスタRTに対して
適当な抵抗値をもつ抵抗Rを並列接続すれば必ず所望の
温度係数が得られる。
Now, considering Fig. 2, the temperature coefficient decreases as the resistance value of the parallel resistor R decreases, so the resistor R with an appropriate resistance value is By connecting them in parallel, the desired temperature coefficient can be obtained without fail.

この温度係数を求めるには少なくとも2点の温度につい
ての抵抗値を測定する必要がある。
To determine this temperature coefficient, it is necessary to measure resistance values at at least two temperatures.

そこで、実際に合成抵抗の値を決めるにはある温度T。Therefore, to actually determine the value of the combined resistance, a certain temperature T is required.

における抵抗値をまず測定し、つぎに温度T 1(T
1> To )における抵抗値を測定してこの測定によ
って求められた温度係数が例えば目標値より太きいとす
れば並列抵抗Rの抵抗値をさらに小さくする。
First measure the resistance value at T 1 (T
1>To), and if the temperature coefficient determined by this measurement is larger than the target value, the resistance value of the parallel resistor R is further reduced.

並列抵抗Rの抵抗値を変えると温度係数だけでなく合成
抵抗の絶対値も変わるため、再びT。
If you change the resistance value of the parallel resistor R, not only the temperature coefficient but also the absolute value of the combined resistance will change, so T again.

、T1の2点で抵抗値を測定し温度係数を求めるといっ
た操作を繰り返していって並列抵抗Rの値を設定しなけ
ればならない。
The value of the parallel resistance R must be set by repeating operations such as measuring the resistance values at two points, T1, and determining the temperature coefficient.

これではとても煩雑で実用的ではない。This is very complicated and impractical.

そこで、計算によって求める方法もある。Therefore, there is also a method of calculating it.

第2図aのように狭い温度範囲では温度変化を直線で近
似できて、温度係数をαとすれば、 となる。
In a narrow temperature range as shown in Figure 2a, the temperature change can be approximated by a straight line, and if the temperature coefficient is α, then the following equation is obtained.

したがって、所望の温度係数をα。とじ、合成抵抗の温
度係数をα。
Therefore, the desired temperature coefficient is α. The temperature coefficient of the combined resistance is α.

に調整するには、まず温度T。To adjust the temperature, first set the temperature T.

、T1の2点でサーミスタあるいはサーミスタに並列抵
抗を接続したものの抵抗を測定してT−Toにおける抵
抗値RToと温度係数αとを求め、前記(3) 、 (
5)式より得られる式より抵抗値Rを計算し、その値の
抵抗を並列接続すれば所望の温度係数を持った合成抵抗
が得られる。
, T1, measure the resistance of the thermistor or a thermistor connected to a parallel resistor, and determine the resistance value RTo and temperature coefficient α at T-To, and perform the above (3), (
By calculating the resistance value R from the equation obtained from equation 5) and connecting resistors of that value in parallel, a composite resistance having a desired temperature coefficient can be obtained.

そして、さらにこれに直列抵抗を接続して全体として所
望の特性の合成抵抗が得られる。
Further, by connecting a series resistor to this, a composite resistor having desired characteristics as a whole can be obtained.

しかし、この方法もいちいち計算してそれに合った抵抗
値を定める操作は煩雑であり、温度計として装置に組み
上げた状態でさらに正確に調整したい場合やサーミスタ
に経時変化があって調整を要する場合には、この方式は
実用上きわめて不便である。
However, with this method, the operation of calculating and determining the appropriate resistance value is complicated, and it is difficult to make adjustments when it is assembled into a device as a thermometer, or when the thermistor changes over time and requires adjustment. However, this method is extremely inconvenient in practice.

この発明は、このような点に鑑みて考えられたもので、
その目的とするところは測温抵抗体の特性にばらつきあ
るいは経時変化などがあっても調整が極めて容易で、簡
単かつ正確に較正を行うことができて正確な温度測定の
行なえる電子温度計の較正方法を提供するにある。
This invention was conceived with these points in mind.
The purpose of this is to create an electronic thermometer that can be easily and accurately calibrated and that can measure temperature accurately even if there are variations in the characteristics of the resistance temperature detector or changes over time. A calibration method is provided.

すなわち、この発明では、測温抵抗体と基準抵抗とそれ
らに共通な共通抵抗とを用いることによって、基準温度
T。
That is, in the present invention, the reference temperature T is determined by using a resistance temperature detector, a reference resistance, and a common resistance common to them.

における測温抵抗体の抵抗値と見かけの温度係数とを独
立に変えられるようにし、温度較正のための調整をきわ
めて容易にしている。
The resistance value and apparent temperature coefficient of the resistance temperature detector can be changed independently, making adjustment for temperature calibration extremely easy.

以下、この発明の一実施例を図面を参照して説明する。An embodiment of the present invention will be described below with reference to the drawings.

まず、高精度な温度測定を行う温度計について説明する
First, a thermometer that measures temperature with high precision will be described.

いま、抵抗値Rtが前記(3)式と同様な式Rt=Rs
(1−αo(T−’ro)) −・−・・(7)で
変化する測温抵抗体Rtと、温度によって抵抗値の変化
しない抵抗値Rsの基準抵抗Rsとを第4図のように切
換スイッチSで切り換えて同一測定回路Mでその抵抗値
を測定する。
Now, the resistance value Rt is expressed by the formula Rt=Rs, which is similar to the formula (3) above.
(1-αo(T-'ro)) -・-・The resistance temperature detector Rt that changes as shown in (7) and the reference resistance Rs whose resistance value does not change depending on temperature are shown in Figure 4. The resistance value is measured using the same measuring circuit M.

すると上記(7)式より となる。Then, from equation (7) above, becomes.

従って、測定回路のあとに(Rt/Rs )の測定値か
ら(8)式を計算する演算回路りを設けその計算値を表
示装置りで表示すれば正確な温度計ができる。
Therefore, an accurate thermometer can be obtained by providing an arithmetic circuit that calculates equation (8) from the measured value of (Rt/Rs) after the measuring circuit and displaying the calculated value on a display device.

この場合は、当然使用する測温抵抗体Rtが前記(7)
式の特性をもっていなければならない。
In this case, naturally the resistance temperature detector Rt to be used is as described in (7) above.
must have the properties of expression.

しかし前述のように個々の測温抵抗体の温度特性にはば
らつきがあるため、個々の測温抵抗体により前記(7)
式のRs、α0の値が異なり、そのまま使用すると、表
示温度には誤差を生じる。
However, as mentioned above, since there are variations in the temperature characteristics of individual RTDs, the above (7)
The values of Rs and α0 in the equation are different, and if used as is, an error will occur in the displayed temperature.

そこで、この実施例では次のようにしている。Therefore, in this embodiment, the following steps are taken.

いま、測温抵抗体Rtの温度特性が前記(3)式と同様 であったとする。Now, the temperature characteristics of the resistance temperature detector Rt are the same as the above equation (3). Suppose it was.

この測温抵抗体(すでに合成されているものでもよい)
Rtに直列に温度によって抵抗値の変化しない抵抗r1
を接続し、さらに第5図に示すように基準抵抗Rsにも
共通に温度によって抵抗値の変化しない共通抵抗r2を
直列接続して、第4図と全く同一の切換スィッチS1測
定回路M1演算回路L1表示回路りを用いて温度測定を
行うようにする。
This resistance temperature detector (it may be one that has already been synthesized)
A resistor r1 whose resistance value does not change depending on temperature is connected in series with Rt.
Furthermore, as shown in FIG. 5, a common resistor r2 whose resistance value does not change depending on temperature is connected in series with the reference resistor Rs to form a changeover switch S1 measurement circuit M1 arithmetic circuit exactly the same as that shown in FIG. The temperature is measured using the L1 display circuit.

すると、測定回路Mは第4図におけるRt、Rsの代り
に基準抵抗回路と共通抵抗回路の直列合成抵抗R1−(
R8十r2)、および測温抵抗回路と共通抵抗回路の直
列合成抵抗R2(Rt+r1+r2)を測定し、従って
演算回路は(8)式の代りに の演算を行なって上記(10)式の結果得られた温度T
を表示する。
Then, the measurement circuit M uses the series composite resistance R1-(of the reference resistance circuit and the common resistance circuit) instead of Rt and Rs in FIG.
R80r2) and the series combined resistance R2 (Rt+r1+r2) of the temperature-measuring resistance circuit and the common resistance circuit, and therefore the arithmetic circuit performs the calculation in place of equation (8) to obtain the result of equation (10) above. temperature T
Display.

しかし、一般にこれは正しい温度を表示しない。However, this generally does not display the correct temperature.

この時の測温抵抗Rtの特性は前記(9)式であるから
正しい温度は前記(9)式よりであり、前記(10)式
の計算結果がすべての測定温度で上記(ll)式に等し
いときにはじめて第5図の温度計は正しい表示をするこ
とになる。
Since the characteristic of the temperature sensing resistor Rt at this time is the above equation (9), the correct temperature is from the above equation (9), and the calculation result of the above equation (10) is the above equation (ll) at all measured temperatures. Only when they are equal will the thermometer in Figure 5 give a correct reading.

そこで、まず測温抵抗体RtをT−Toの基準温度にし
てそのときの温度計の表示が正しく基準温度T。
Therefore, first, the resistance temperature detector Rt is set to the reference temperature of T-To, and the thermometer displays the correct reference temperature T at that time.

を示すように抵抗r1の抵抗値r1を調整する。The resistance value r1 of the resistor r1 is adjusted so as to show the following.

このときには、前記(9) l (to)式かられかる
ように、となっているはずである。
In this case, as can be seen from equation (9) l (to) above, it should be as follows.

次に前記(10)式を変形して 前記(9) 、(12)式を用いてさらに計算すると、
となる。
Next, when formula (10) is modified and further calculations are made using formulas (9) and (12), we get:
becomes.

したがって、共通抵抗r2の抵抗値を調整して(l十θ
)α0−αとすれば、上記(15)EEは全く前記(1
1)式と等しくなり、このように各抵抗rl r r2
の抵抗値を設定すれば、第5図の装置で常に正しい温度
を表示できることになる。
Therefore, by adjusting the resistance value of the common resistor r2 (l + θ
)α0−α, the above (15) EE is completely the above (1)
1) is equal to the formula, and thus each resistance rl r r2
By setting the resistance value of , the device shown in FIG. 5 can always display the correct temperature.

このとき、共通抵抗r1の抵抗値r2は、(l+θ)α
0−αおよび前記(12)式より となっているはずである。
At this time, the resistance value r2 of the common resistor r1 is (l+θ)α
0−α and the above formula (12).

しかし、実際には測温抵抗体Rtの温度を所定温度T、
(例えばT、〉To)としてそのときの温度計の表示が
所定温度T1となるように共通抵抗r2の抵抗値を調整
すればよい。
However, in reality, the temperature of the resistance temperature detector Rt is set to a predetermined temperature T,
(for example, T, >To), the resistance value of the common resistor r2 may be adjusted so that the thermometer display at that time becomes the predetermined temperature T1.

前記(15)式から明らかなように共通抵抗r2の抵抗
値を変化させても基準温度T=Toでは常に温度計の表
示は正しく基準温度T。
As is clear from the above equation (15), even if the resistance value of the common resistor r2 is changed, when the reference temperature T=To, the thermometer always displays the correct reference temperature T.

を表示している。したがって、所望の特性とは多少異な
った特性を持った測温抵抗体であっても、第5図のよう
な構成にして、まず測温抵抗体Rtの温度を基準温度T
is displayed. Therefore, even if the resistance temperature detector has characteristics that are slightly different from the desired characteristics, the temperature of the resistance temperature detector Rt can be adjusted to the reference temperature T by using the configuration shown in FIG.
.

とじて、そのときの表示が基準温度T。となるように抵
抗r1の抵抗値を調整し、つぎに測温抵抗体Rtの温度
を例えば基準温度T。
The display at that time is the reference temperature T. The resistance value of the resistor r1 is adjusted so that the temperature of the resistance temperature detector Rt is set to a reference temperature T, for example.

よりも高い所定温度T1として表示が所定温度T1とな
るように共通抵抗r2の抵抗値を調整すれば、完全に較
正され装置は測定範囲内にある任意の温度に対して常に
正しい表示をすることになる。
By adjusting the resistance value of the common resistor r2 so that the display becomes the predetermined temperature T1, which is higher than the predetermined temperature T1, the device is completely calibrated and the device always displays correctly for any temperature within the measurement range. become.

例えば、第5図で前記(8)式の演算を行なう演算回路
りにα。
For example, in FIG. 5, the arithmetic circuit that performs the calculation of equation (8) is α.

=5.00X l o−3/’C、R5=IO,00に
Ωを用いているとする。
=5.00X l o-3/'C, R5=IO, and Ω is used for 00.

測温抵抗体Rtの温度特性がもし であれば、各抵抗r1.r2の抵抗値は0でよいが、一
般にはそれと異なった特性をもっており、例えば、R1
=9.90 (1−5,15X 10−3(T−To)
) ・(18)であったとする。
If the temperature characteristic of the resistance temperature detector Rt is, each resistance r1. The resistance value of r2 may be 0, but it generally has different characteristics, for example, R1
=9.90 (1-5,15X 10-3(T-To)
) ・(18).

このとき、上述のように各抵抗r、 、 r2の抵抗値
の調整を行なったとすれば、そのときの各抵抗r1 >
r2の抵抗値rl > r2は、前記(12) 、
(16)式より すなわち、r =lOOΩ、r2=197Ωとなつて
いるはずである。
At this time, if the resistance values of each resistor r, , r2 are adjusted as described above, then each resistor r1 >
The resistance value rl > r2 of r2 is defined by the above (12),
From equation (16), it should be that r = lOOΩ and r2 = 197Ω.

勿論、調整する場合にはRT。やαの値を求める必要は
なく前記(19) 、 (20)式の計算の必要もない
Of course, RT if you want to make adjustments. There is no need to calculate the values of and α, and there is no need to calculate the above equations (19) and (20).

ただ使用する個々の測温抵抗体Rtの特性がある程度そ
ろっていれば各抵抗r1+r2の抵抗値の範囲が限定さ
れ調整がさらに容易になる。
However, if the characteristics of the individual temperature measuring resistors Rt used are uniform to some extent, the range of the resistance value of each resistor r1+r2 will be limited and adjustment will be easier.

このように、測温抵抗体Rtに直列抵抗r1、測温抵抗
体Rtと基準抵抗Rsに共通に共通抵抗r2を接続し、
基準温度T−Toにおける調整を抵抗r1で、所定温度
T=T、における調整を共通抵抗r2で行なうだけで完
全に温度の絶対値の較正が完了するため温度較正がきわ
めて簡単である。
In this way, a series resistor r1 is connected to the resistance temperature detector Rt, a common resistor r2 is connected to the resistance temperature detector Rt and the reference resistor Rs,
Temperature calibration is extremely simple because the calibration of the absolute value of temperature is completed by simply adjusting at the reference temperature T-To using the resistor r1 and adjusting at the predetermined temperature T=T using the common resistor r2.

これは、この方式が基準温度T−Toにおける抵抗値の
絶対値と見かけの温度係数とを全く独立に調整し得ると
いう優れた利点を持って(7)るためである。
This is because this method has the excellent advantage that the absolute value of the resistance value and the apparent temperature coefficient at the reference temperature T-To can be adjusted completely independently (7).

しかも、部分的にではなく装置全体として較正したこと
になるので、例えばリーク抵抗などの影響なども全て補
正されてしまいきわめて精度のよい較正ができる。
Furthermore, since the entire device is calibrated rather than a partial portion, the influence of leakage resistance, etc., for example, is all compensated for, making it possible to perform highly accurate calibration.

さらに、表示は通常ディジクルで行なわれるので、精密
な調整が容易でこの点から考えても較正法としては簡単
で精度のよ0)ものであることがわかる。
Furthermore, since the display is usually done by digital display, precise adjustment is easy, and from this point of view it can be seen that the calibration method is simple and highly accurate.

また、較正のための測定器などもいっさい必要としない
Furthermore, no measuring equipment is required for calibration.

また、サーミスタなどを測温抵抗体として用いると、経
時変化があり、長年の間には温度特性が変化する可能性
が強いが、このような装置ではその場合でも再較正する
ことが極めて簡単である。
In addition, when a thermistor or the like is used as a resistance temperature detector, there is a strong possibility that the temperature characteristics will change over many years due to aging, but it is extremely easy to recalibrate such a device even in that case. be.

そして、これらのことから、精度のよい温度計が低価格
で得られることになる。
And from these things, a highly accurate thermometer can be obtained at a low price.

なお、この発明の構成は上記実施例のものに限定される
ものではない。
Note that the configuration of the present invention is not limited to that of the above embodiment.

たとえば、上記実施例では測温抵抗体Rtに直列に抵抗
r1を接続し、その抵抗r1によって基準温度T=To
における調整を行うようにしたが、これは第6図に示す
るように基準抵抗Rsに直列に抵抗r1を接続し、その
抵抗r1によって基準温度T=Toにおける調整を行う
ようにしても上記実施例と同様な作用効果を得ることが
できる。
For example, in the above embodiment, a resistor r1 is connected in series with the resistance temperature detector Rt, and the reference temperature T=To is set by the resistor r1.
However, as shown in FIG. 6, it is also possible to connect a resistor r1 in series with the reference resistor Rs, and use the resistor r1 to perform the adjustment at the reference temperature T=To. The same effects as in the example can be obtained.

また、この場合基準抵抗Rsの抵抗値を直接変化させる
ようにしてもよい。
Further, in this case, the resistance value of the reference resistor Rs may be directly changed.

また、前記実施例では測温抵抗体Rtに直列に抵抗r1
を接続したが、抵抗r1は測温抵抗体Rtまたは基準抵
抗Rsに対し直列でなく並列に接続してもよく、また直
列、並列の組合わせでもよい。
Further, in the above embodiment, a resistor r1 is connected in series with the temperature sensing resistor Rt.
However, the resistor r1 may be connected not in series but in parallel to the temperature measuring resistor Rt or the reference resistor Rs, or may be connected in series and in parallel.

また、各抵抗r1+r2は調整後固定抵抗としてもよく
、またボリュームあるいは固定抵抗とボリュームとの組
合わせでもよい。
Furthermore, each resistor r1+r2 may be a fixed resistor after adjustment, or may be a volume or a combination of a fixed resistor and a volume.

また、例えば第4図〜第6図の測定回路と演算回路は必
ずしも分離したものでなくともよい。
Further, for example, the measurement circuit and the calculation circuit shown in FIGS. 4 to 6 do not necessarily have to be separated.

以上のように、この発明によれば、測温抵抗体の特性に
ばらつきあるいは経時変化などがあっても精密な調整が
極めて容易で、簡単かつ正確に較正を行うことができて
正確な温度測定を行うことが可能となる。
As described above, according to the present invention, even if there are variations in the characteristics of the resistance temperature detector or changes over time, precise adjustment is extremely easy, and calibration can be performed easily and accurately, resulting in accurate temperature measurement. It becomes possible to do this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はサーミスタの抵抗値の温度特性を示す図、第2
図a、bはサーミスタに並列に抵抗を接続したときの効
果を示す図、第3図a、bはサーミスタに直列に抵抗を
接続したときの効果を示す図、第4図は高精度な温度測
定を行う温度計の構成を示す図、第5図はこの発明の一
実施例の構成を示す図、第6図はこの発明の他の実施例
の構成を示す図である。 Rt・・・・・・測温抵抗体、Rs・・・・・・基準抵
抗、S・・・・・・切換スイッチ、M・・・・・・測定
回路、L・・・・・・演算回路、D・・・・・・表示回
路、rl・・・・・・温度によって抵抗値の変化しない
抵抗、r2・・・・・・共通抵抗。
Figure 1 shows the temperature characteristics of the resistance value of a thermistor, Figure 2 shows the temperature characteristics of the thermistor resistance value.
Figures a and b show the effect when a resistor is connected in parallel to the thermistor, Figure 3 a and b show the effect when a resistor is connected in series to the thermistor, and Figure 4 shows the effect of connecting a resistor in series with the thermistor. FIG. 5 is a diagram showing the construction of an embodiment of the present invention, and FIG. 6 is a diagram showing the construction of another embodiment of the invention. Rt...Resistance temperature sensor, Rs...Reference resistance, S...Selector switch, M...Measurement circuit, L...Calculation Circuit, D...Display circuit, rl...Resistor whose resistance value does not change depending on temperature, r2...Common resistance.

Claims (1)

【特許請求の範囲】 1 温度により抵抗値がほとんど変化しない基準抵抗回
路と、温度により抵抗値が変化する測温抵抗体を含む測
温抵抗回路と、これら基準抵抗回路および測温抵抗回路
に共通接続された共通抵抗回路と、前記基準抵抗回路と
測温抵抗回路とを切換え、前記基準抵抗回路と共通抵抗
回路の直列合成抵抗R1および前記測温抵抗回路と共通
抵抗回路の直列合成抵抗R2から、 (但し、Toは基準温度、α0は測温抵抗回路の温度係
数) の演算により温度Tを算出し表示する手段とを備えた電
子温度計の較正を行なうに際し、前記測温抵抗体の温度
を前記基準温度T。 にしたとき算出表示される温度がT。 となるように前記測温抵抗回路または基準抵抗回路の抵
抗値を調整し、かつ前記測温抵抗体の温度をT。 と異なる所定温度T1にしたとき算出表示される温度が
T1となるように前記共通抵抗回路の抵抗値を調整する
ことを特徴とする電子温度計の較正方法。
[Scope of Claims] 1. A reference resistance circuit whose resistance value hardly changes with temperature, a resistance temperature measurement circuit including a resistance temperature sensor whose resistance value changes with temperature, and common to these reference resistance circuits and resistance temperature measurement circuits. The connected common resistance circuit, the reference resistance circuit and the temperature-measuring resistance circuit are switched, and from the series combination resistance R1 of the reference resistance circuit and the common resistance circuit and the series combination resistance R2 of the temperature-measuring resistance circuit and the common resistance circuit. , (where To is the reference temperature and α0 is the temperature coefficient of the resistance bulb circuit) When calibrating an electronic thermometer, the temperature of the resistance bulb is is the reference temperature T. The calculated and displayed temperature is T. The resistance value of the resistance temperature detector circuit or the reference resistance circuit is adjusted so that the temperature of the resistance temperature detector is T. A method for calibrating an electronic thermometer, characterized in that the resistance value of the common resistance circuit is adjusted so that the calculated and displayed temperature becomes T1 when a predetermined temperature T1 that is different from the temperature T1 is set.
JP52018579A 1976-12-03 1977-02-22 How to calibrate an electronic thermometer Expired JPS5832652B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP52018579A JPS5832652B2 (en) 1977-02-22 1977-02-22 How to calibrate an electronic thermometer
US05/856,995 US4150573A (en) 1976-12-03 1977-12-02 Electronic digital thermometer
DE2753871A DE2753871C2 (en) 1976-12-03 1977-12-02 Electronic temperature measuring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52018579A JPS5832652B2 (en) 1977-02-22 1977-02-22 How to calibrate an electronic thermometer

Publications (2)

Publication Number Publication Date
JPS53103788A JPS53103788A (en) 1978-09-09
JPS5832652B2 true JPS5832652B2 (en) 1983-07-14

Family

ID=11975528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52018579A Expired JPS5832652B2 (en) 1976-12-03 1977-02-22 How to calibrate an electronic thermometer

Country Status (1)

Country Link
JP (1) JPS5832652B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5790107A (en) * 1980-11-26 1982-06-04 Toyoda Mach Works Ltd Method for compensating temperature in semiconductor converter
JPS58135430A (en) * 1982-02-05 1983-08-12 Toshin Prod Kk Sensor of temperature
JP2022503677A (en) * 2018-09-05 2022-01-12 メディシム・ユーエスエイ Temperature sensor calibration

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988776U (en) * 1972-11-20 1974-08-01
JPS542148Y2 (en) * 1973-12-07 1979-01-29

Also Published As

Publication number Publication date
JPS53103788A (en) 1978-09-09

Similar Documents

Publication Publication Date Title
US4403296A (en) Measuring and determination device for calculating an output determination based on a mathematical relationship between multiple different input responsive transducers
CA2496204A1 (en) Thermal mass flowmeter apparatus and method with temperature correction
CN105527038B (en) Platinum thermal resistance sensor error correcting method and the calorimeter with this method thermometric
JPH11507136A (en) Calibration method of radiation thermometer
CN107907250A (en) A kind of temperature-compensation method and device of silicon on sapphire pressure sensor
CN103604525A (en) Thermal resistor temperature measuring instrument based on verification data
US4196382A (en) Physical quantities electric transducers temperature compensation circuit
CN103411699B (en) A kind of high precision measuring temperature instrument
US3052124A (en) Linearizing circuit for resistance thermometer
US20040057494A1 (en) Ear thermometer with improved temperature coefficient and method of calibration thereof
JPS5832652B2 (en) How to calibrate an electronic thermometer
GB2195448A (en) Flowmeter calibration
JPS5833490B2 (en) temperature measuring device
US3924470A (en) Temperature measurement circuit
US4417477A (en) Train gage measurement circuit for high temperature applications using high value completion resistors
JP2002131159A (en) Sensor circuit
JPS6260656B2 (en)
JPS5895230A (en) Method and apparatus for electronic type temperature measurement
JP3410562B2 (en) Temperature / wind speed measurement device
JPS6147371B2 (en)
JPH0565805B2 (en)
CN115077745A (en) Thermal resistance thermometer calibration method based on thermometer
JPS609711Y2 (en) heat flow measuring device
JPH08178763A (en) Calibration of thermometer
JPH0814521B2 (en) Temperature compensation method for semiconductor pressure sensor