JPS5832446A - Formation of silicide - Google Patents

Formation of silicide

Info

Publication number
JPS5832446A
JPS5832446A JP13096481A JP13096481A JPS5832446A JP S5832446 A JPS5832446 A JP S5832446A JP 13096481 A JP13096481 A JP 13096481A JP 13096481 A JP13096481 A JP 13096481A JP S5832446 A JPS5832446 A JP S5832446A
Authority
JP
Japan
Prior art keywords
silicide
melting point
layer
point metal
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13096481A
Other languages
Japanese (ja)
Other versions
JPH025298B2 (en
Inventor
Nobuyasu Taino
田井野 伸泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13096481A priority Critical patent/JPS5832446A/en
Publication of JPS5832446A publication Critical patent/JPS5832446A/en
Publication of JPH025298B2 publication Critical patent/JPH025298B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body

Abstract

PURPOSE:To contrive reduction of the time required for formation of silicide by a method wherein impurities are implanted into the double-layer structure of polycrystalline Si and a high melting point metal, and a silicide layer consisting of the polycrystalline Si and the high melting point metal is formed by performing a heat treatment. CONSTITUTION:The polycrystalline Si 2 layer is formed on an Si substrate 1, and the layer of a high melting point metal such as Mo and the like is formed on the surface of said Si 2 layer. Subsequently, the impurities such as P-ion, for example, is implanted into Mo3 and Si2 layers from the surface of Mo3, and then a heat treatment is performed thereon. As a result, a silicide 4 layer consisting of Mo3 and Si2 is formed on the area spreading from the interface of Mo3 and Si2 to Mo3. The thickness of said silicide 4 layer can be controlled by increasing or decreasing the quantity of implantation of the P-ion which is used as impurities. Accordingly, the time required for silicide formation can be reduced and the resistor of optional value can also be obtained.

Description

【発明の詳細な説明】 本発明は高融点金属と多結晶シリコンとを反応させてシ
リサイドを形成するシリサイドの形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming silicide by reacting a high melting point metal with polycrystalline silicon to form silicide.

近年集積回路の集積度同上のため、抵抗素子として比較
的高抵抗であるシリサイドが用いらnるようになって米
ている。そこでシリサイド層の基板上への形成方法が問
題になるが、現状とじてに。
In recent years, as the degree of integration of integrated circuits has increased, silicide, which has a relatively high resistance, has come to be used as a resistive element. Therefore, the method of forming the silicide layer on the substrate becomes an issue, but as it stands now.

スバタリング法でシリサイドを基板上へ蒸着する方法が
とられており、との方法では装置の保守やスバタリング
時間が力為雇りかかると云う問題点があっπ・ 本発明に斯る点rc鑑みて為さ庇たものであって短時間
でシリサイド層を形成する方法を提供するものである。
A method has been adopted in which silicide is deposited on a substrate by a sputtering method, but this method has the problem that maintenance of the equipment and time required for sputtering are labor intensive. The present invention provides a method for forming a silicide layer in a short time.

以下図!iiK基づhて本発明を詳述するのまずシリコ
ン基板(1)上に不純物1例えば燐を約10’ifi/
ax!ドープした多結晶シリコン12)の層1soo。
Figure below! The present invention will be described in detail based on K. First, impurity 1, for example phosphorus, is added to a silicon substrate (1) at a rate of about 10'ifi/.
ax! A layer 1soo of doped polycrystalline silicon 12).

kの厚みで減圧OVD法を用いてつくる・この多結晶シ
リコン(2;表面rc宅リすデン13)等の高融点金属
1i0VD法で260OA厚に形成する・この図を第1
図に示す・絖いてモリブデン表面から不純15 物である燐イオンt I X 10  eLoee/l
sの割合でイオン注入法を用いて100 x*v のエ
ネルギーでモリブデン(3)及び多結晶シリコン(21
へ注入する。次[900’Cのi1票雰囲気中で30分
間熱処Il1行うと、シリサイド(41がi[2図のよ
うにモリブデン(3)と多結晶シリコン12)との界面
からモリブデン(3)側へ500ム乃至1000 A形
成される・さらに上記方法で注入する燐イオンの量t5
×S 1Q  Loss/l* に増加ぜしめると形成される
シリサイド(4)の厚さは第3図に示すように:160
0ンを注入しない状態で前記方法と同一条件の熱処理t
−施した時に形成さtt7yシリサイドの厚さば10O
A乃至200ムの厚さしかなかった。このように燐イオ
ンの注入量を増やすと、シリすイドの形成量が増大する
・換言するとシリサイドの形成遮電が速くなる。従って
上記方法を利用する事に依って形成されるシリサイド讐
の厚みげ不純物である燐の注入量を制御する手に依って
賜コントロールする事が出来る。
This figure is made using the low pressure OVD method to a thickness of
As shown in the figure, phosphorus ions which are impurities from the surface of molybdenum t I X 10 eLoee/l
Molybdenum (3) and polycrystalline silicon (21
Inject into. Next, when heat treatment Il1 is performed for 30 minutes in an atmosphere of 900'C, silicide (41) moves from the interface between molybdenum (3) and polycrystalline silicon 12 to the molybdenum (3) side as shown in Figure 2. The amount t5 of phosphorus ions to be formed and further implanted by the above method is 500 μm to 1000 A.
×S 1Q Loss/l* The thickness of the silicide (4) formed is 160 as shown in Figure 3.
Heat treatment under the same conditions as the above method without injecting 0.
- Thickness of tt7y silicide formed when applied: 100
It was only A to 200mm thick. Increasing the amount of phosphorus ions implanted in this manner increases the amount of silicide formed, or in other words, speeds up the formation of silicide. Therefore, by using the above method, it is possible to control the injection amount of phosphorus, which is a thickening impurity of the silicide formed.

次に本発明シリサイド形成方法を用いて多結晶シリコン
とモリブデンの2層構造の配線にシリサイドの抵抗を選
択的に形成する方法を配す。壕ずシリコン基板f51 
[il化膜(6)を形成し、酸化膜(6)上に減圧OV
D法で多結晶シリコンt71t−成長させ。
Next, a method of selectively forming a silicide resistor in a wiring having a two-layer structure of polycrystalline silicon and molybdenum using the silicide forming method of the present invention will be described. trenchless silicon substrate f51
[An oxide film (6) is formed and a reduced pressure OV is applied on the oxide film (6).]
Polycrystalline silicon t71t- was grown using method D.

さらにモリブデンT81iCVD法で形成し、燐イオン
注入のマスク(9)t−酸化膜でつ(D、モリブデン(
8)の表面から燐イオンを注入する・この状mt−第4
図に示す、この状態でマスク(9)ヲエッチングし熱処
理會行うと第5図のよりに燐を注入した一所゛にシリサ
イドhaか形成されるので、モリブデン(8)工りなる
導電W&にシリサイド(1(IKよって分断さft。
Furthermore, a molybdenum T81i CVD method is used to form a mask (9) for phosphorus ion implantation.
8) Inject phosphorus ions from the surface of the mt-4th
When the mask (9) is etched and heat treated in this state as shown in the figure, a silicide ha is formed in the place where phosphorus is injected as shown in Figure 5, so it becomes a conductive W& made of molybdenum (8). Silicide (1 (divided by IK ft.

シリサイドQ(lが抵抗体として働く工うrcなる。最
後に絶縁膜1111及び了ルミ**aaa;at設ける
と、この両アルミIE極u312関rc形成されたシリ
サイド四の童に係る大きさの抵抗値の抵抗が得られる。
The silicide Q (l) acts as a resistor.Finally, when an insulating film 1111 and an aluminum **aaa;at are provided, the size of the formed silicide 4 The resistance value of resistance is obtained.

このように任意の一所に適当な童の燐イオンを注入する
事に依って該箇所に任意の抵抗値の抵抗体を得る手が出
来る・ 以上のWJ<本発明シリサイド形成方法は多結晶シリコ
ンと高融点金属と、A2層構造にした後高融点金属表面
から高融点金属及び多結晶シリコンへ不純物を注入し、
熱処理をする事に依って多結晶シリコンと8;融点金属
とから成るシリ、サイド層を形成しているのでシリサイ
ド形成時間の短縮が計れ。
In this way, by implanting appropriate phosphorus ions into an arbitrary location, it is possible to obtain a resistor with an arbitrary resistance value at that location. and high melting point metal, and after forming A2 layer structure, impurities are injected into the high melting point metal and polycrystalline silicon from the high melting point metal surface,
By performing heat treatment, a silicide side layer consisting of polycrystalline silicon and a metal with a melting point of 8°C is formed, so that the silicide formation time can be shortened.

抵抗体上使用する集積回路の量産に効果が上げられる。This is effective for mass production of integrated circuits used on resistors.

さらに、注入する不純物を選択的に注入する亭に依って
任意の箇所に抵抗を形成する事が可能となり、配線上の
任意の箇所に任意の抵抗値の抵抗体を得る平が出来る。
Furthermore, by selectively implanting impurities, it is possible to form a resistor at any location, making it possible to obtain a resistor with any resistance value at any location on the wiring.

【図面の簡単な説明】[Brief explanation of drawings]

蕗1図乃至第3図に本発明方法を工程順に示した要部断
面図、11I!4図乃至jiI6図は、本発明方法を用
いて配線に選択的にシリサイドの抵抗を形成する工程を
示す要部断lfi図である・11)151・・・シリコ
ン基板、 121171・・・多結晶シリコン。 43)t81・・・モリブデン、(41賎・・・シリサ
イド。 第1図 第2図 第3図 第4図 11 第5図 209−
Fushimi Figures 1 to 3 are cross-sectional views of main parts showing the method of the present invention in the order of steps, 11I! Figures 4 to 6 are cross-sectional views of main parts showing the process of selectively forming silicide resistors on wiring using the method of the present invention. 11) 151...Silicon substrate, 121171...Polycrystal silicon. 43) t81... Molybdenum, (41 賎... Silicide. Figure 1 Figure 2 Figure 3 Figure 4 Figure 11 Figure 5 209-

Claims (1)

【特許請求の範囲】 1)多結晶シリコンと高融点金属とを2層に形成した後
、高融点金属表面から高融点金属及び多結晶シリコンへ
不純物を注入し1次(熱処理する亭に依って、多結晶シ
リコンと高融点金属とから成るシリすイド層を多結晶シ
リコンと高融点金属との界面から成長言ゼる亭を特徴と
したシリサイドの形成方法。 2、特許請求の範l!I第1頂に於いて注入する不純物
の量t−変化させる亭に依って形にされるシリサイド層
の厚みを制御する亭t41黴としたシリサイドの形成方
法。 3)特許請求の範i!I第1項、又は第2項に於いて、
不純物を選択的に注入する事に依ってシリサイド層を選
択的に形成する事tq!#黴としたシリサイドの形成方
法。
[Claims] 1) After forming two layers of polycrystalline silicon and high-melting point metal, impurities are injected into the high-melting point metal and polycrystalline silicon from the surface of the high-melting point metal, and primary (depending on the heat treatment) A method for forming a silicide characterized by growing a silicide layer consisting of polycrystalline silicon and a high melting point metal from an interface between the polycrystalline silicon and the high melting point metal. 2. Claims l!I A method for forming silicide using a method of controlling the thickness of a silicide layer formed by varying the amount of impurity implanted in the first layer. 3) Claims i! In paragraph 1 or paragraph 2,
Selectively forming a silicide layer by selectively implanting impurities tq! #How to form moldy silicide.
JP13096481A 1981-08-20 1981-08-20 Formation of silicide Granted JPS5832446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13096481A JPS5832446A (en) 1981-08-20 1981-08-20 Formation of silicide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13096481A JPS5832446A (en) 1981-08-20 1981-08-20 Formation of silicide

Publications (2)

Publication Number Publication Date
JPS5832446A true JPS5832446A (en) 1983-02-25
JPH025298B2 JPH025298B2 (en) 1990-02-01

Family

ID=15046735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13096481A Granted JPS5832446A (en) 1981-08-20 1981-08-20 Formation of silicide

Country Status (1)

Country Link
JP (1) JPS5832446A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013686A (en) * 1987-09-30 1991-05-07 Samsung Electronics Co., Ltd. Method of making semiconductor devices having ohmic contact
US6323528B1 (en) 1991-03-06 2001-11-27 Semiconductor Energy Laboratory Co,. Ltd. Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013686A (en) * 1987-09-30 1991-05-07 Samsung Electronics Co., Ltd. Method of making semiconductor devices having ohmic contact
US6323528B1 (en) 1991-03-06 2001-11-27 Semiconductor Energy Laboratory Co,. Ltd. Semiconductor device

Also Published As

Publication number Publication date
JPH025298B2 (en) 1990-02-01

Similar Documents

Publication Publication Date Title
JPH04299566A (en) Method for maintaining resistance value of polycrystalline silicon for high resistance
DE1223951B (en) Process for the production of semiconductor components with one or more PN junctions
DE3613215C2 (en)
JP2000196082A (en) Method of forming gate electrode of semiconductor element
JPS5832446A (en) Formation of silicide
DE60218924T2 (en) Vapor deposition of silicon oxide films
JPH0547987B2 (en)
JP3153921B2 (en) Method for manufacturing semiconductor device
JPS63152164A (en) Semiconductor device
JPH0414863A (en) Forming method for resistance element of semiconductor device
JPS63316477A (en) Semiconductor device and manufacture thereof
JPH02296362A (en) Manufacture of semiconductor device
JPH0536911A (en) Three-dimensional circuit element and manufacture thereof
JPH01286364A (en) Manufacture of semiconductor device
Shimamoto et al. Proposal and experimental study of a high‐precision polycrystalline‐silicon film resistor with a quasi‐double‐layer structure
JPS62296473A (en) Manufacture of semiconductor device
JPS62295444A (en) Manufacture of semiconductor element
JPS6148938A (en) Manufacture of semiconductor device
JPS63292663A (en) Manufacture of semiconductor device
JPS62263655A (en) Manufacture of semiconductor device
JPS6177343A (en) Manufacture of semiconductor device
JPS63174349A (en) Mamufacture of semiconductor device
JPH02139923A (en) Manufacture of semiconductor device
JPH0666312B2 (en) Method for manufacturing semiconductor device
JPH01191446A (en) Manufacture of semiconductor device