JPS5832286A - Address decoding system for storage device - Google Patents

Address decoding system for storage device

Info

Publication number
JPS5832286A
JPS5832286A JP56130962A JP13096281A JPS5832286A JP S5832286 A JPS5832286 A JP S5832286A JP 56130962 A JP56130962 A JP 56130962A JP 13096281 A JP13096281 A JP 13096281A JP S5832286 A JPS5832286 A JP S5832286A
Authority
JP
Japan
Prior art keywords
address
address information
valued
storage device
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56130962A
Other languages
Japanese (ja)
Inventor
Tamotsu Maeda
保 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP56130962A priority Critical patent/JPS5832286A/en
Publication of JPS5832286A publication Critical patent/JPS5832286A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)

Abstract

PURPOSE:To decrease the number of address information lines by forming address information through the discrimination of a many-valued logical signal. CONSTITUTION:Transistors (TRs) T1-T3 having 1.5V, 3.0V and 5.0V of threshold values in an address information discriminating circuit are controlled with address information A01, and an information of three-valued, etc. from the TRs T1-T3 is discriminated via inverters and TRs to form two-valued address informations A0 and A1, and a memory cell of matrix arrangement can be accessed. Through the system discriminating the many-valued logical signals, the number of address information lines can be decreased of 1/2 in comparison with the case with using two-valued logical signals.

Description

【発明の詳細な説明】 本発明[ROMやRAM等の記憶装置のアドレスデコー
ド方式に関し、更に詳しくFi紀憶装置のアトVXをデ
コードする際に、アドレス入力として3値以上の&1f
!Ufjiを用i、その5値以上の論理入力をアドレス
情報判定回路に依って2110アドレス信号に変倹した
後、アドレスをデコードせんとしたもので、アドレス入
力端子数の削減を目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an address decoding method for storage devices such as ROM and RAM, and in more detail, when decoding atto VX of an Fi storage device, the address input is 3 or more values &1f.
! Using Ufji, the logic input of 5 or more values is transformed into a 2110 address signal by an address information determination circuit, and then the address is decoded, and the purpose is to reduce the number of address input terminals.

第1図に記憶装置として代表的なダイナミックWIRO
Mの内部構成の一例が示されている。ここに示した例F
i説明の簡単の&K、2人力、4出力の 22X4=16(ビット) のROMである。この第1図に於て、(M)はメモリ七
ルを行列に配置しtメ七すセルアVイ、■)はアドレス
デコーダ、6)はtンスア・ンデであV、ここで例えば
、アドレスデコーダ(3)にアドレス入力信号、AO=
A唱=10”、が入力されて来ると、7−ド@(an)
が°o”トナa、残りO”l−Fil(al )(J!
Lり(aりは11となる。従って選択されたワードII
(ao)[11続されたメモリセルトフンジス?がデデ
レツシ茸ン型MOSの場合はO’N、ヱンハンスメント
型MOSの場合はOFFとなる。
Figure 1 shows a typical dynamic WIRO storage device.
An example of the internal configuration of M is shown. Example F shown here
It is a 22x4=16 (bit) ROM with simple explanation, 2 manual power, and 4 outputs. In FIG. 1, (M) is a memory array arranged in rows and columns, (■) is an address decoder, and (6) is an address decoder, where, for example, Address input signal to address decoder (3), AO=
When A chant = 10” is input, 7-do@(an)
is °o”tona, remaining O”l-Fil (al) (J!
L (a is 11. Therefore, the selected word II
(ao) [11 consecutive memory cellst fungis? is O'N in the case of a mushroom-type MOS, and is OFF in the case of an enhancement-type MOS.

一方、非選択+2)7−1’II(at)(a2バa!
1)[接続されたメモリセルトランジスタはデプレyV
1ン型、エンハンスfJK関係な(ONとなろう この
状態でクロ1りφ1を@1°、φ2を@0“にすると、
デー111CVrJ)CVjバv2バV5) ?1.1
vチャージされて“1”となる。次にクロックφ1を0
“、φ2を111mにすると、t〜トヲンVス#がON
の場合はデータ線(VO)は°0”に変化し、OFFの
場合け°1#の状態を保持するう図の場合であればデー
タII(71)に違ったtルトランジスタカエデプレフ
シ蕾ン型であるので、このデータ線(T2)・oみが”
0”となり、他のデー#綴CVO)(vl)(VS)け
@1“となる。この信号がセンスアンプ6)を介して出
力される。
On the other hand, non-selection +2) 7-1'II (at) (a2 bar a!
1) [The connected memory cell transistor is
1 type, enhanced fJK related (will be ON) In this state, if black 1 φ1 is set to @1° and φ2 is set to @0",
Day111CVrJ)CVjbav2baV5)? 1.1
V is charged and becomes "1". Next, clock φ1 is set to 0.
", When φ2 is set to 111m, t~toon Vs# is ON.
In the case of , the data line (VO) changes to 0", and in the case of OFF, the state of 1 is maintained. In the case of the figure, a different transistor is connected to data II (71). Since it is a double-pin type, this data line (T2)
0", and other data # spell CVO) (vl) (VS) ke@1". This signal is output via a sense amplifier 6).

尚、アドレス入力としてAO=A1=g’Q“の場合を
考え友が、AO=1、A1−0、の時はワード11(a
l)が11”、Ao=口、A1=1の場合はワード1l
(a2)が”1”、AO=AI=1の時にハワーードi
lL&3ノが@11′となって大々選択される事は太う
までもない拳である。
In addition, considering the case of AO=A1=g'Q'' as address input, if the friend is AO=1, A1-0, word 11 (a
If l) is 11”, Ao=mouth, A1=1 then word 1l
Howard i when (a2) is “1” and AO=AI=1
It's no wonder that lL&3no becomes @11' and is widely selected.

斯b7 FL/ス方式に依ると、アドレスをデコードす
る為に必要なアドレス入力の本数もメモリセルの数に応
じて増加する。今例えば8ビフ)出力の場合を考えてみ
ると、アドレス入力本数は。
According to the b7 FL/S method, the number of address inputs required to decode an address also increases in accordance with the number of memory cells. For example, if we consider the case of 8 bif) output, the number of address inputs is.

128にビ1 ) (=214xs ヒy ) )(I
A@、14本。
128 to Bi1) (=214xs Hiy) )(I
A@, 14 books.

256にビット(=215X8ビフトフの時、15本、
必要となる。
256 bits (= 215 x 8 Biftoff, 15 bits,
It becomes necessary.

1つのアドレス入力に対して1″と°0”の2つの状態
を持たせた場合は上述したようなアドレス入力本数を必
要とするので、“1″と°0″の2状態のみならず、6
状態以上をアドレス入力に持たせる事に依ってアドレス
入力本数の削#Iiが可能となる。
If one address input has two states, 1" and °0", the number of address inputs as described above is required, so not only the two states "1" and °0", but also the two states "1" and °0" are required. 6
By allowing the address input to have more than the state, it is possible to reduce the number of address inputs.

本発明はこの点に着目して為されたものであって、5つ
以上の状態を持二たアドレス入力を2値の信号に変換し
て新たなアドレス入力としている。
The present invention has been developed with this point in mind, and an address input having five or more states is converted into a binary signal to be used as a new address input.

第2rItJK本発明の原理図が示されており、0.鵠
A principle diagram of the second rItJK invention is shown, and 0. Mouse.

■、は夫々第1図で説明したアドレスデコーダ、メモリ
セルアレイ、センスアンプであり、アドレ:・1゜ スデコーダの)の前段に本発明の特徴とするアドレス情
報判定回路σ)が設けられているうこのアドレス情報判
定回路σ)は、3つ以上の伏動を持ったアドレス情報、
順も3値以上の論理値を持つアドレス情報信号から°0
″と°1′との2IlllII増を有するアドレス入力
信号を得る働きを為す。
■ and are respectively the address decoder, memory cell array, and sense amplifier explained in FIG. This address information judgment circuit σ) is configured to detect address information with three or more liens,
The order is also °0 from the address information signal with a logical value of three or more values.
It serves to obtain an address input signal having 2IllII increments of '' and .degree.1'.

tlli5kJK5*o゛rドVス情報判定回路σ)の
具体的咋部構成が示されており、(Tす(Tl(T3)
は3i1の論理値から成るアドレス情報(AOI)が同
時に印加されるトランジスタで、夫々の閾値(Vtす、
(Vt2)、(vtlが0.5V、2.5V、4゜QV
、に設定されている。一方、アドレス情報(AOs )
 u* 4 図に示TtlD (,0,Ov、1.5V
、3、OV、5.OVの4つowFERflit夫々4
つo論理値(00)、(01)、(1o)、(11)に
対応させる。
The specific configuration of the tlli5kJK5*ordVs information judgment circuit σ) is shown, and (Ts(Tl(T3)
are transistors to which address information (AOI) consisting of logical values of 3i1 is simultaneously applied, and the respective threshold values (Vt,
(Vt2), (vtl is 0.5V, 2.5V, 4°QV
, is set to . On the other hand, address information (AOs)
u* 4 TtlD (,0,Ov, 1.5V
,3,OV,5. 4 of OV owFERflit 4 each
and correspond to logical values (00), (01), (1o), and (11).

ここで例えばアドレス情報(AOl)としてo、。Here, for example, address information (AOl) is o.

Vが印加されたとすると、トランジスタ(TIJ(Tl
(Ts)(D全てFiOFFT8る42)?、該各ト’
9 ンVスI (Tt )(T2 ) (T’j ) 
(D出力(hl)(hl)(hl)ij全て′1#であ
る。従ってアドレスデコーダ0へのアドレス入力(AD
)及び(Al )ij共に0”即ちアドレス情報(AO
I)がO,OVの時の論理11(00)に対応する。ア
ドレス情報(Aトリとして1.5vが得られた詩にはト
ランジスタ(T1)ijON、(T2)(Tl)tfO
FFであるのでトランジスタ出力(hl)のみ”が00
′で、残る出力(hl)(hll)a”1”トナル。従
う”[AO=1、A1=0となり、これもアドレス情報
(AOt)が1.5v。
Assuming that V is applied, the transistor (TIJ (Tl
(Ts) (D all FiOFFT8ru42)? , each
9 Vsu I (Tt) (T2) (T'j)
(D output (hl) (hl) (hl) ij are all '1#. Therefore, address input to address decoder 0 (AD
) and (Al )ij are both 0", that is, the address information (AO
This corresponds to logic 11 (00) when I) is O, OV. Address information (transistors (T1) ijON, (T2) (Tl) tfO for poems where 1.5V was obtained as A-tri)
Since it is an FF, only the transistor output (hl) is 00.
', the remaining output (hl) (hl) a"1" tonal. [AO=1, A1=0, and the address information (AOt) is also 1.5v.

時に定義したアドレス入力(An)(AlJI;O論理
値(01)に対応している。アドレス情報(AOl)が
3、OVの時、5.OV(2J時49e4 A D =
 1 %A 1=0、並びに八〇=A1=1、となり、
全て定義に対応したアドレス入力(AD)(Aj)が得
られるう第5図はアドレス情報(’AO1)Kついて考
えたが、(A2!i) %全く同様に1本のフィンに乗
って来る311!m増から2本のラインに乗ゐ2値−場
を得る事が出来る。
It corresponds to the address input (An) (AlJI; O logical value (01)) defined at
1%A1=0, and 80=A1=1,
Address inputs (AD) (Aj) that all correspond to the definitions can be obtained.In Figure 5, we considered address information ('AO1)K, but (A2!i) %It comes on one fin in exactly the same way. 311! We can obtain a binary field by multiplying the two lines by multiplying by m.

このように1本のアドレス情報線に3値の[理値を乗せ
る事に依って2値の論理tm會2本のアドレス入力線に
得る1#が出来る事となる。
In this way, by placing a three-value logic value on one address information line, a binary logic tm and 1# can be obtained on two address input lines.

本発明は以上の説明から明らかな4口く、多値論理信号
に依ってアドレス情報を得る構成であるので、3憶装置
をアクセスする際に出いるアドレス情報線の本数が従来
の241論理信号を用いていたものに比して1/2で済
む事となり、集積囲路化した時のメ七リアレイのビン数
の削減が図れ、超LSIと云われる64にビット、或い
はそれ以上の配憶1iI!雪のコヌトダウンに寄与する
ところは大きい。
As is clear from the above description, the present invention has a configuration in which address information is obtained using four multi-value logic signals, so the number of address information lines that appear when accessing a 3-memory device is lower than that of the conventional 241 logic signal. The number of bins in the multi-chip array can be reduced by 1/2 compared to the one that used the integrated circuit, and the number of bins in the memory array can be reduced by 64 bits or more when it is integrated. 1iI! Snow contributes greatly to Conutdown.

【図面の簡単な説明】[Brief explanation of the drawing]

第1□□□はダイナミック型ROMの内部構成回路図、
第2□□□は本発明方式を採用した際のブロック図、第
3(2)はその要部の回路図、第4(2)はアドレス情
報の論理値幽であって、輔はメ七すアVイ、0dアドレ
スデコーダ、g)tI′iアドレス情報判定回路、を夫
々示しているう 出−人三洋[[株式会社 第2図 第4図 −LLL−ev
The first □□□ is the internal configuration circuit diagram of the dynamic ROM,
The second □□□ is a block diagram when the method of the present invention is adopted, the third (2) is a circuit diagram of the main part, the fourth (2) is a logical value diagram of address information, and the fourth is a diagram of the main part. A, 0d address decoder, and g) tI'i address information determination circuit, respectively, are shown by Udeto Sanyo [[Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1) f’f列に配置されたメモリ七ルをアクセスする
アドレスデコード方式に於て、行列にメ七す七Nが配置
されたメ七リセルアレイと、該メセリセルアレイのワー
ド線にワード信号を供給するアドレスデコーダと、該ア
ドレスデコーダに2値論理値を有するアドレス入力を印
加するアドレス情報判定回路と、から殴り、該アドレス
情報判定回路には3値以上の論理値から殴る入力アドレ
ス情報が印加される事を特徴とした記憶装置のアドレス
デコード方式。
1) In the address decoding method for accessing the memory cells arranged in column f'f, a word signal is applied to a memory cell array in which memory cells are arranged in columns and columns, and to word lines of the memory cell array. An address decoder to be supplied, and an address information determination circuit that applies an address input having a binary logical value to the address decoder, and input address information determined from a logical value of three or more values is applied to the address information determination circuit. An address decoding method for a storage device that is characterized by:
JP56130962A 1981-08-20 1981-08-20 Address decoding system for storage device Pending JPS5832286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56130962A JPS5832286A (en) 1981-08-20 1981-08-20 Address decoding system for storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56130962A JPS5832286A (en) 1981-08-20 1981-08-20 Address decoding system for storage device

Publications (1)

Publication Number Publication Date
JPS5832286A true JPS5832286A (en) 1983-02-25

Family

ID=15046693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56130962A Pending JPS5832286A (en) 1981-08-20 1981-08-20 Address decoding system for storage device

Country Status (1)

Country Link
JP (1) JPS5832286A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244486A (en) * 1987-03-31 1988-10-11 Toshiba Corp Semiconductor device
JPH02116087A (en) * 1988-10-25 1990-04-27 Nec Corp Semiconductor memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244486A (en) * 1987-03-31 1988-10-11 Toshiba Corp Semiconductor device
JPH02116087A (en) * 1988-10-25 1990-04-27 Nec Corp Semiconductor memory

Similar Documents

Publication Publication Date Title
JPH04184789A (en) Semiconductor memory
JPS605498A (en) Associative memory device
JP2005190543A5 (en)
US4464729A (en) Binary MOS carry-look-ahead parallel adder
JP3821307B2 (en) Semiconductor memory device capable of flash writing
JP2001202785A (en) Associative memory
JPS5832286A (en) Address decoding system for storage device
JP3550163B2 (en) Programmable multilayer neural network
JP3071435B2 (en) Multi-bit match circuit
JP2741810B2 (en) Content addressable memory
JPS5514588A (en) Semiconductor dynamic memory unit
JPH05113929A (en) Microcomputer
JPS63181198A (en) Selective associative memory and its controlling
KR850008238A (en) Semiconductor memory
SU981987A1 (en) Extremal number determination device
JP3815881B2 (en) Memory circuit
JP2878714B2 (en) Serial access memory
SU1163358A1 (en) Buffer storage
US20060097751A1 (en) Programmable logic array latch
JPH11283386A (en) Semiconductor memory
SU1191913A1 (en) Information input-output device
SU802958A1 (en) Device for classifying binary numbers
RU2006939C1 (en) Device for information search with literal matching
RU2045787C1 (en) Associative storage
JPS62236054A (en) Semiconductor memory device