JPS5832243B2 - Continuous type bridge using prestressed steel girders - Google Patents

Continuous type bridge using prestressed steel girders

Info

Publication number
JPS5832243B2
JPS5832243B2 JP9830581A JP9830581A JPS5832243B2 JP S5832243 B2 JPS5832243 B2 JP S5832243B2 JP 9830581 A JP9830581 A JP 9830581A JP 9830581 A JP9830581 A JP 9830581A JP S5832243 B2 JPS5832243 B2 JP S5832243B2
Authority
JP
Japan
Prior art keywords
concrete
girder
steel
span
steel girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9830581A
Other languages
Japanese (ja)
Other versions
JPS584006A (en
Inventor
道生 斎藤
滉 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWATA KOGYO KK
Original Assignee
KAWATA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWATA KOGYO KK filed Critical KAWATA KOGYO KK
Priority to JP9830581A priority Critical patent/JPS5832243B2/en
Publication of JPS584006A publication Critical patent/JPS584006A/en
Publication of JPS5832243B2 publication Critical patent/JPS5832243B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

【発明の詳細な説明】 本発明は通称プレビームと称されるプレストレス鋼桁を
用いた連続型式橋梁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous type bridge using prestressed steel girders commonly referred to as pre-beams.

橋梁用架設桁として、鋼桁に予め前たわみ荷重を与えて
おいて引張側となる下フランジに該下フランジを包むよ
うなコンクリートを打設し、このコンクリートの硬化後
前たわみ荷重を解除して鋼桁の復元力により下フランジ
コンクリートにプレストレス応力を導入するようにした
通称プレビームと称されるプレストレス鋼桁は既に公知
である(特公昭33−10424号)。
As a bridge construction girder, a forward deflection load is applied to the steel girder in advance, concrete is poured around the lower flange that will be the tension side, and the forward deflection load is released after the concrete hardens. A prestressed steel girder, commonly called a pre-beam, which introduces prestress stress into the lower flange concrete by the restoring force of the steel girder is already known (Japanese Patent Publication No. 33-10424).

このようなプレストレス鋼桁を現場において架設したの
ちウェブコンクリート及び床版コンクリートの打設を行
って鋼桁を完全にコンクリートにより被覆した桁はプレ
ビーム合成桁と称されている。
A girder in which such a prestressed steel girder is erected on site and then web concrete and slab concrete are placed to completely cover the steel girder with concrete is called a pre-beam composite girder.

このプレビーム合成桁は下フランジコンクリートと床版
コンクリートとが鋼桁と台底されているために曲げ剛度
が大きくなり、通常の合成桁よりも桁高を低くすること
ができるという点で、桁高制限を受けるような橋梁の施
工に対しては極めて有利である。
This pre-beam composite girder has a high bending stiffness because the lower flange concrete and deck concrete are attached to the steel girder, and the girder height can be lower than that of a normal composite girder. This is extremely advantageous for construction of bridges that are subject to restrictions.

また鋼桁自体が露呈していないために塗装等の維持管理
が不要であること、騒音が生じないこと、耐火性を有す
ることなどの利点を有する。
Furthermore, since the steel girder itself is not exposed, it has the advantage of not requiring maintenance such as painting, not generating noise, and having fire resistance.

このような長所をもつプレビーム合成桁により橋梁を架
設する場合、単純支持型式とするか或は連続支持型式と
するかという点が考えられるが、連続支持型式の合成桁
の場合は、中間支点部付近に作用する炙の曲げモーメン
トによる床版コンクリートのひ丈割れという問題に対処
しなげればならない。
When constructing a bridge using pre-beam composite girders that have these advantages, it is possible to consider whether to use a simple support type or a continuous support type, but in the case of a continuous support type composite girder, intermediate support It is necessary to deal with the problem of cracking of the slab concrete due to the bending moment of the roasting that acts in the vicinity.

この問題に対処3゛るための処置としては、例えば正の
曲げモーメント域に一時的な前荷重を載架したり、或は
中間支点をジヤツキアップさせたりして一時的に中間支
点部の鋼桁上フランジに引張応力を与えておき、中間支
点部床版コンクリートの打設硬化後前記の前荷重を除去
したり或はジヤツキタウンを行って中間支点部床版コン
クリートにプレストレス応力を支えるという方法がある
Measures to deal with this problem include, for example, placing a temporary preload in the positive bending moment region, or jacking up the intermediate fulcrum to temporarily reduce the strength of the steel girder at the intermediate fulcrum. There is a method in which tensile stress is applied to the upper flange, and after the intermediate fulcrum concrete slab is placed and hardened, the preload is removed or jack town is carried out to support the prestress stress in the intermediate fulcrum concrete slab. be.

しかし乍らこのような中、旬支点部付近の負のモーメン
トに伴う対策方法は、全て架設現場において行わなけれ
ばならずその方法も繁雑であるため施工上かならずしも
適切とは云えない点があり、このような理由から本発明
において使用するプレストレス鋼桁は前記のような長所
を有しているにも拘らず連続支持型式として架設されず
、従来より単純支持型式の橋梁に多く採用されていた。
However, under these circumstances, countermeasures against negative moments near the fulcrum must be carried out at the construction site, and the methods are complicated, so they cannot necessarily be said to be appropriate for construction. For these reasons, although the prestressed steel girder used in the present invention has the above-mentioned advantages, it has not been constructed as a continuous support type, and has been used more often in simple support type bridges than in the past. .

本発明は前記のような長所をもつプレストレス鋼桁によ
るプレビーム合成桁の利点をそのま〜活かし、更に耐震
性とか車輌走向性などの点で有利な連続合成桁型式への
応用を図ることを目的として、中間支点部の床版コンク
リートのプレストレス応力導入手順が簡素化できるよう
にした連続型式の橋梁を提供しようとするものであり、
正の曲げモーメントを受ける径間部には下フランジにプ
レストレスコンクリートが設けられた通常のプレストレ
ス鋼桁による径間部材を架設し、負の曲げモーメントを
受ける中間支点部材近には予曲げによる引張側に床版コ
ンクリートを打設して該コンクリートの硬化後予曲げ荷
重を解除することにより床版コンクリートにプレストレ
ス応力が導入された変形プレストレス鋼桁による中間支
点部材を架設して、両鋼桁を連続型式に連結架設するこ
とを特徴としたものである。
The present invention aims to take advantage of the advantages of pre-beam composite girders made of prestressed steel girders, which have the above-mentioned advantages, and to apply them to a continuous composite girder type that is advantageous in terms of earthquake resistance and vehicle running stability. The purpose is to provide a continuous type bridge that can simplify the procedure for introducing prestress stress into the concrete deck slab at the intermediate support.
Span members made of ordinary prestressed steel girders with prestressed concrete on the lower flanges are constructed in the spans that receive positive bending moments, and span members made of pre-bending are constructed near intermediate supporting members that receive negative bending moments. By pouring slab concrete on the tension side and releasing the pre-bending load after the concrete hardens, an intermediate support member is erected using a deformed prestressed steel girder in which prestress stress is introduced into the slab concrete. It is characterized by the continuous construction of steel girders.

次に本発明に係る連続型式橋梁の架設工程を図示の実施
例により詳記すれば、第1図a乃至Cは正の曲げモーメ
ントを受ける径間部に用いられるプレストレス鋼桁によ
る径間部材1の製作工程を示す側面図、第2図a乃至e
は負の曲げモーメントを受ける中間支点部に用いられる
変形プレストレス鋼桁による中間支点部材2の製作工程
を示す側面図である。
Next, the construction process of a continuous type bridge according to the present invention will be described in detail with reference to the illustrated embodiment. FIGS. Side view showing the manufacturing process of No. 1, Figures 2 a to e
1 is a side view showing the manufacturing process of an intermediate fulcrum member 2 using a deformed prestressed steel girder used for an intermediate fulcrum part that receives a negative bending moment.

第1図に示す如く径間部材1は、公知のプレストレス鋼
桁の製作と同、様に製作される。
As shown in FIG. 1, the span member 1 is manufactured in a manner similar to the manufacture of known prestressed steel girders.

即ち同図aの如く鋼桁1.に予めキャンバ−を与えてお
き、次に同図すの如く該鋼桁1□に両端を支持した状態
でキャンバ−を打消すような前たわみ荷重(プレフレク
ション)Pfを与える。
That is, as shown in figure a, the steel girder 1. A camber is applied in advance to the steel girder 1, and then a forward deflection load (preflexion) Pf is applied to the steel girder 1□ to cancel the camber while supporting both ends of the steel girder 1□ as shown in the figure.

この状態で第1図Cの如く鋼桁11 の引張側となる下
フランジ3に桁連結端部4を残してコンクリート5を打
設し、該コンクリート5が所定強度に達した時点で前た
わみ荷重Pfを解除し、鋼桁の復元力によって下フラン
ジコンクリート5にプレストレス応力を導入する。
In this state, concrete 5 is placed on the lower flange 3 on the tension side of the steel girder 11, leaving the girder connecting end 4 as shown in Fig. Pf is released and prestress stress is introduced into the lower flange concrete 5 by the restoring force of the steel girder.

第2図に示す中間支点部材2は、基本的には前記の径間
部材1の製作と変りはないが、この場合は前たわみ荷重
Pfを与える鋼桁2.の上下フランジ6.7の位置が、
前記径間部材用プレストレス鋼桁1□ とは逆になるよ
うに配置されている。
The intermediate support member 2 shown in FIG. 2 is basically manufactured in the same manner as the span member 1 described above, but in this case, the intermediate support member 2 is made of a steel girder 2 which applies the forward deflection load Pf. The position of the upper and lower flanges 6.7 is
It is arranged so as to be opposite to the prestressed steel girder 1□ for the span member.

即ち第2図aに示す如(鋼桁21 は当初下フランジ7
を上向きに置き、この状態で第2図すの如く上フランジ
6が引張側となるような前たわみ荷重Pfを与える。
That is, as shown in Fig. 2a (the steel girder 21 was initially attached to the lower flange 7).
is placed facing upward, and in this state, a forward deflection load Pf is applied so that the upper flange 6 becomes the tensile side as shown in Figure 2.

次にこの段階で引張側の上フランジ6に桁連結端部9を
残して床版コンクリート8を打設し、このコンクリート
8が所定強度に達した時点で前記前たわみ荷重Pfを解
除し、鋼桁2、の復元力により床版コンクリート8にプ
レストレス応力を導入する。
Next, at this stage, slab concrete 8 is poured leaving the girder connecting end 9 on the upper flange 6 on the tension side, and when this concrete 8 reaches a predetermined strength, the front deflection load Pf is released and the Prestress stress is introduced into the slab concrete 8 by the restoring force of the girder 2.

次に第2図dの如く床版コンクリート8と同様桁連結端
部9を残してウェブコンクリート10及び下7ランジ7
にコンクリート11を打設し、コンクリート8,10,
11により主要部鋼桁が被覆された合成部材とする。
Next, as shown in FIG.
Concrete 11 was poured into concrete 8, 10,
This is a composite member in which the main steel girder is coated with No. 11.

勿論これらのウェブコンクリート10及び下フランジコ
ンクリート11にはプレストレスは導入されていない。
Of course, no prestress is introduced into these web concrete 10 and lower flange concrete 11.

このようにして製作された変形プレストレス鋼桁による
中間支点部材2は、第2図eの如く桁の上下を回転して
正しい位置に戻され、架設迄ストックされる。
The intermediate fulcrum member 2 made of the deformed prestressed steel girder thus manufactured is rotated above and below the girder as shown in FIG. 2e, returned to the correct position, and stored until erection.

上記の製作工程により得られた径間部材1及び中間支点
部材2の架設は、第3図a乃至dに示す順序により行わ
れる。
The span member 1 and intermediate fulcrum member 2 obtained by the above manufacturing process are constructed in the order shown in FIGS. 3a to 3d.

即ちまず第3図aのように仮ベント12等により径間部
材1及び中間支点部材2の桁連結端部付近を夫々支持し
、径間部材の桁連結端部4と予め露出しておいた中間支
点部材2の桁連結端部9とを夫々スプライスプレート1
3及び高力ボルトを用いてしっかりと連結する。
That is, as shown in Fig. 3a, first, the vicinity of the girder connecting ends of the span member 1 and the intermediate fulcrum member 2 were supported by temporary vents 12, etc., respectively, and the girder connecting ends 4 of the span members were exposed in advance. The girder connecting end 9 of the intermediate fulcrum member 2 is connected to the splice plate 1, respectively.
3. Connect firmly using high-strength bolts.

次に第3図すに示すように中間支点部材2の中央部下面
を中間支承沓14により支持し、同時に仮ベント12を
撤去して連続桁とする。
Next, as shown in Figure 3, the central lower surface of the intermediate support member 2 is supported by the intermediate support shoe 14, and at the same time the temporary vent 12 is removed to form a continuous girder.

しかるのち第3図Cに示すように径間部材1及び中間支
点部材2におげろ鋼桁の露出している桁連結端部4゜9
の下フランジ3,7に、下フランジ間詰めコンクリート
15を打設する。
Then, as shown in FIG.
Lower flange filler concrete 15 is placed on the lower flanges 3 and 7.

上記の間詰めコンクリート15の硬化後最後に第3図d
に示すように、径間部材1の上7ランジ16の床版コン
クリート17を、桁連結端部4上はもとより中間支点部
材2の桁連結端部9の上フランジ6をも被覆して中間支
点部材20床版コンクリート8と接する位置まで打設し
、また径間部材1におけるウェブにウェブコンクリート
18を床版コンクリートと同様中間支点部材2のウェブ
コンク!J−NOと接する位置まで打設する。
Finally, after the above-mentioned filler concrete 15 has hardened, Fig. 3 d
As shown in FIG. 2, the floor slab concrete 17 of the upper 7 langes 16 of the span member 1 is applied to cover not only the top of the girder connection end 4 but also the upper flange 6 of the girder connection end 9 of the intermediate fulcrum member 2. The member 20 is poured to the position where it contacts the floor slab concrete 8, and the web concrete 18 is placed on the web of the span member 1 in the same way as the floor slab concrete. Pour it until it touches J-NO.

従ってこの段階で鋼材11゜21 が全てコンクリート
により被覆された形の連続桁が完成し、これ以後の地覆
、高欄、舗装等の後死荷重或は車輌等の活荷重は下フラ
ンジプレストレスコンクリート及び床版コンクリートと
が鋼桁と合成された連続合成桁に作用することSなる。
Therefore, at this stage, a continuous girder in which all steel members 11゜21 are covered with concrete is completed, and the subsequent dead loads such as ground covering, handrails, pavement, etc., and live loads such as vehicles, etc., are handled by the lower flange prestressed concrete. This means that the concrete slab acts on the continuous composite girder combined with the steel girder.

本発明に係る連続型式橋梁は上記の如き構造よりなり、
次の如き利点を有する。
The continuous type bridge according to the present invention has the above structure,
It has the following advantages.

前記の如〈従来の連続合成桁型式の橋梁架設に際しては
、中間支点部材近に生ずる負の曲げモーメントによる床
版コンクリートのひg割れ等の問題点があり、これを解
決するための方法としては、前記の如く正の曲げモーメ
ント域に一時的な前荷重を載荷したり、申開支点をジヤ
ツキアップさせたりして中間支点部鋼桁上フランジに引
張応力を与え、中間支点部材版コンクリート打設して、
その硬化後前荷重除去、支点のジヤツキダウンにより中
間支点部材版コンクリートにプレストレス応力を与える
という手順によるため、現場施工の面で著しい繁雑さを
有していた。
As mentioned above, when constructing conventional continuous composite girder type bridges, there are problems such as cracking of concrete slabs due to negative bending moments generated near intermediate support members. As mentioned above, by applying a temporary preload to the positive bending moment region or by jerking up the opening support, tensile stress is applied to the upper flange of the steel girder at the intermediate support, and concrete is poured for the intermediate support member. hand,
The procedure involved removing the preload after curing and applying prestress stress to the concrete slab of the intermediate supporting member by jacking down the supporting point, which was extremely complicated in terms of on-site construction.

しかるに本発明に係る連続型式橋梁では、プレストレス
鋼桁の基本原理を中間支点部材2に応用して、前荷重を
与えられた鋼桁の引張側に床版コンクリート8を打設し
て前荷重を解除することによって該床版コンクリート8
にプレストレス応力を導入するものであり、この床版コ
ンクリート8のプレストレス導入作業は予め桁架設の前
段階即ち作業性の良好な工場内や現場ヤード内において
部材単位に行われるので、施工性が極めて良好であり、
しかも桁部材の架設段階では径間部材1と中間支点部材
2を単に連結するだけで足りるため、総体的に中間支点
部分の負の曲げモーメント対策が著しく簡素化されると
いう利点を有する。
However, in the continuous type bridge according to the present invention, the basic principle of prestressed steel girders is applied to the intermediate support member 2, and the concrete slab 8 is poured on the tension side of the steel girder to which the preload is applied. By releasing the concrete floor slab 8
This method introduces prestress stress into the slab concrete 8, and the work to introduce prestress into the concrete slab 8 is carried out in advance for each member at the stage before the girder erection, that is, in the factory or on-site yard where workability is good, so it improves workability. is extremely good,
Moreover, since it is sufficient to simply connect the span member 1 and the intermediate fulcrum member 2 at the stage of constructing the girder member, there is an advantage that countermeasures against negative bending moments at the intermediate fulcrum portion are significantly simplified overall.

また本発明の橋梁においては、径間部材1及び中間支点
部材2ともその構成部材として鋼桁11+21 を有し
、しかも夫々の部材1,2は予めプレストレス応力の導
入が所定部分に導入されているものであり、これらのプ
レストレス応力の導入された部材間の連続が構成部材と
しての鋼桁の連結により確実且容易に行えるという利点
を有する。
In addition, in the bridge of the present invention, both the span member 1 and the intermediate support member 2 have steel girders 11+21 as their constituent members, and each member 1 and 2 has prestress stress introduced into a predetermined portion in advance. It has the advantage that the continuity between the members to which these prestress stresses have been introduced can be reliably and easily achieved by connecting the steel girders as structural members.

また中間支点部材2は所定の長さをもつ鋼桁21 をも
とに構成され、この中間支点部材20両端が径間部材1
と連結されるため、この連結部分を曲げモーメントの符
号が変る曲げの大きくない区間に設定できることSなり
、耐荷力士の問題はなく、連続桁の曲げモーメント分布
に応じた極めて合理的な構造型式とすることができる。
Further, the intermediate fulcrum member 2 is constructed based on a steel girder 21 having a predetermined length, and both ends of the intermediate fulcrum member 20 are connected to the span member 1.
Therefore, this connection part can be set in a section where the bending is not large and the sign of the bending moment changes, so there is no problem with the load-bearing force, and it is possible to create an extremely rational structural type according to the bending moment distribution of the continuous girder. can do.

また架設時の桁取扱いも従来のプレストレス鋼桁による
単純型式の橋梁の場合と比較してそれ程繁雑でなく架設
作業を安全に行いうる外、同規模のプレストレス鋼桁に
よる単純型式の橋梁と比較して経済性、耐震性、車輌走
行性、美観等の点で優れており、モーメントバランスが
良くなることから桁高/支間比を単純型式橋梁の1/3
7から1/45程度にすることができ、極めてスレンダ
ーな美しい橋梁とすることができるという効果を有する
ものである。
In addition, the handling of girders during erection is not so complicated compared to the case of a simple type bridge with conventional prestressed steel girders, and the erection work can be carried out safely. It is superior in terms of economy, earthquake resistance, vehicle drivability, aesthetics, etc., and has a better moment balance, so the girder height/span ratio can be reduced to 1/3 of that of a simple type bridge.
This has the effect that it can be reduced from 7 to 1/45, resulting in an extremely slender and beautiful bridge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a乃至Cは本発明に係る橋梁の径間部材の製作工
程を示す側面図、第2図a乃至eは同じく中間支点部材
の製作工程を示す側面図、第3図a乃至dは桁の架設工
程を示す側面図、第4図は第1図CのIV−IV線にお
ける断面図、第5図は第2図eのv−V線における断面
図である。 図において、1・・・・・・径間部材、2・・・・・・
中間支点部材、3,7・・・・・・下フランジ、4,9
・・・・・・桁連結端部、5,11・・・・・・下フラ
ンジコンクリート、6゜16・・・・・・上フランジ、
8,17・・・・・・床版コンクリート、10,18・
・・・・・ウェブコンクリート、12・・・・・・仮ベ
ント、13・・・・・・スプライスフレート、14・・
・・・・中間支承、15・・・・・・間詰めコンクリー
ト。
Figures 1 a to c are side views showing the manufacturing process of the bridge span member according to the present invention, Figures 2 a to e are side views showing the manufacturing process of the intermediate fulcrum member, and Figures 3 a to d are side views showing the manufacturing process of the intermediate support member. 4 is a sectional view taken along line IV--IV in FIG. 1C, and FIG. 5 is a sectional view taken along line v-V in FIG. 2e. In the figure, 1... span member, 2...
Intermediate fulcrum member, 3, 7... Lower flange, 4, 9
......Girder connection end, 5,11...Bottom flange concrete, 6゜16...Top flange,
8, 17... Floor slab concrete, 10, 18...
... Web concrete, 12 ... Temporary vent, 13 ... Splice plate, 14 ...
...Intermediate bearing, 15... Filling concrete.

Claims (1)

【特許請求の範囲】[Claims] 1 正の曲げモーメントを受ける径間部には鋼桁下フラ
ンジに打設されたコンクリートにプレストレス応力が与
えられた通常のプレストレス鋼桁による径間部材を架設
し、負の曲げモーメントを受ける中間支点部付近には鋼
桁の予曲げによる引張側フランジに床版コンクリートを
打設して該コンクリート硬化後予曲げ荷重を解除するこ
とにより床版コンクリートにプレストレス応力が与えら
れ、且つ下フランジには非プレストレスコンクリートが
設けられた変形プレストレス鋼桁による中間支点部材を
架設し、両桁部材を連結して連続桁とし千の架設に代え
、径間部材に床版コンクリート及びウェブコンクリート
を打設して最終的に鋼桁の全てをコンクリートにより被
覆したことを特徴とするプレストレス鋼桁を用いた連続
型式橋梁。
1 In the span area that receives a positive bending moment, a span member made of a normal prestressed steel girder is erected in which prestress stress is applied to the concrete poured on the lower flange of the steel girder, and the span receives a negative bending moment. Near the intermediate supporting point, slab concrete is placed on the tension side flange due to pre-bending of the steel girder, and after the concrete hardens, pre-stress stress is applied to the slab concrete by releasing the pre-bending load. An intermediate support member made of a deformed prestressed steel girder with non-prestressed concrete is erected, and both girder members are connected to form a continuous girder. A continuous type bridge using prestressed steel girders, characterized in that all of the steel girders are covered with concrete after pouring.
JP9830581A 1981-06-26 1981-06-26 Continuous type bridge using prestressed steel girders Expired JPS5832243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9830581A JPS5832243B2 (en) 1981-06-26 1981-06-26 Continuous type bridge using prestressed steel girders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9830581A JPS5832243B2 (en) 1981-06-26 1981-06-26 Continuous type bridge using prestressed steel girders

Publications (2)

Publication Number Publication Date
JPS584006A JPS584006A (en) 1983-01-11
JPS5832243B2 true JPS5832243B2 (en) 1983-07-12

Family

ID=14216208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9830581A Expired JPS5832243B2 (en) 1981-06-26 1981-06-26 Continuous type bridge using prestressed steel girders

Country Status (1)

Country Link
JP (1) JPS5832243B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218991A (en) * 1983-01-14 1984-12-10 ウエスチングハウス・エレクトリック・コーポレーション Reactor structure
KR100793157B1 (en) 2006-12-21 2008-01-10 주식회사 포스코 Method for manufacturing continuous bridge with prestressed negative moment girder
KR100840190B1 (en) 2007-12-10 2008-06-23 노윤근 I-beam segment connection method equipped with prestress steel synthetic concrete upper flange for continuous bridge

Also Published As

Publication number Publication date
JPS584006A (en) 1983-01-11

Similar Documents

Publication Publication Date Title
US2786349A (en) Prestressed concrete building
JP3588325B2 (en) Construction method of single span and multi span composite girder bridges
CN105821750B (en) A kind of precast prestressed T plate and its application method
CN113638304B (en) Concrete beam type bridge hidden cover beam structure system and construction method thereof
US4505087A (en) Method of construction of concrete decks with haunched supporting beams
US2373072A (en) Rigid frame bridge and method of making the same
JPH04228710A (en) Road slab for bridge
JPS5832243B2 (en) Continuous type bridge using prestressed steel girders
JP2000104221A (en) Combined truss bridge and erection method of the same
JP2963879B2 (en) Bridge girder
JPS61176706A (en) Structure of concrete floor panel and its construction
JP2000104219A (en) Erection of combined truss bridge
JPS5834607B2 (en) Erection method of prefabricated prestressed steel girder
JPS5851083B2 (en) Construction method for connecting girders using prestressed steel girders
JP2974025B1 (en) Construction method of large span large beam upper frame
JP2584418B2 (en) Overhang construction method and stress improvement device for synthetic cable-stayed bridge
CN110886392A (en) Laminated arch shell structure and construction method thereof
CN211949286U (en) Connecting node structure of prefabricated staircase
JP3171676B2 (en) Construction method of cast-in-place concrete horizontal member
CN217652103U (en) Novel precast concrete frame beam
JPH0334963Y2 (en)
JPS63176506A (en) Execution of synthetic floor panel bridge composed of steel and concrete
JP3189081B2 (en) Manufacturing method of void type full precast two-way slab and void type full precast slab
AU2015268715A1 (en) Bridging method and composite girder and deck therefor
JPH10227011A (en) Steel form with main reinforcement for bridge floor, and construction of bridge floor using the form