JPS5831850B2 - Electrical inertia compensation method for electric dynamometer - Google Patents

Electrical inertia compensation method for electric dynamometer

Info

Publication number
JPS5831850B2
JPS5831850B2 JP52074106A JP7410677A JPS5831850B2 JP S5831850 B2 JPS5831850 B2 JP S5831850B2 JP 52074106 A JP52074106 A JP 52074106A JP 7410677 A JP7410677 A JP 7410677A JP S5831850 B2 JPS5831850 B2 JP S5831850B2
Authority
JP
Japan
Prior art keywords
torque
amount
detection signal
control
dynamometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52074106A
Other languages
Japanese (ja)
Other versions
JPS548573A (en
Inventor
富治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP52074106A priority Critical patent/JPS5831850B2/en
Publication of JPS548573A publication Critical patent/JPS548573A/en
Publication of JPS5831850B2 publication Critical patent/JPS5831850B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Direct Current Motors (AREA)
  • Control Of Electric Motors In General (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】 本発明は等価格上シュミレーション系の電気的慣性補償
方法に係り、特にトルク検出器が制御系に介在する事に
よって生ずる回転軸系の固有振動に対しても、はとんど
影響を受けずに常時安定した制御を行なえる新規な電気
的慣性補償方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for compensating electrical inertia of a simulation system at an equal cost, and is particularly applicable to natural vibrations of a rotating shaft system caused by the presence of a torque detector in a control system. The aim is to provide a new electrical inertia compensation method that allows stable control at all times without being affected.

公害源となる自動車の排出ガスが規制されてからかなり
久しいものとなるが、この種ガソリンエンジン車、ディ
ーゼルエンジン車等の如き被試験機を人間が実走行運転
をするのと等価な試験を行なうものとして等価格上シュ
ミレーション装置が存する事は周知であり、又このシュ
ミレーション装置で加減速時の過渡的な特性試験及び排
出ガス測定試険等を行なう場合、負荷装置として直流式
電気動力計を適用し、車速に応じたトルク特性を附加し
て所謂“走行抵抗制御゛を行なう事も周知である。
Although it has been quite some time since the exhaust gases of automobiles, which are a source of pollution, have been regulated, it is necessary to conduct tests equivalent to actual human driving of test vehicles such as gasoline engine cars, diesel engine cars, etc. It is well known that simulation equipment exists at the same price, and when performing transient characteristic tests during acceleration/deceleration and exhaust gas measurement tests using this simulation equipment, a DC electric dynamometer is used as a load device. However, it is also well known to perform so-called "running resistance control" by adding torque characteristics according to vehicle speed.

この種走行抵抗指令量に車速に応じたトルク特性を忠実
に附加するものとしてフライホラールを適用する、所謂
“機械的慣性補償法゛と、ころがり抵抗A、風損抵抗B
v2登降登降抗抵抗inθとを入力する“電気的慣性補
償法゛とを併用する形態が一般には採られるものである
が、前者の機械的慣性補償法は適用する被試1験機の車
種、車重が判明すれば一義的に決定される固定相当重量
と、重量に応じて人間が一々計算して附加する重量を調
整する調整相当重量とがあって、調整相当重量は例えば
25kyのフライホイールをベースにすれば25kgピ
ッチで、25kyのもの何枚、50kgのもの何枚、1
00kgのもの何枚という様に人間が一々計算して投入
するフライホラールを選択しな;ければならず、この様
に操作上の煩雑さから機械的慣性補償法は単に固定相当
重量のみはフライホイールを適用し、調整相当重量は全
て電気的に補償しようと云う電気的慣性補償方法が近時
採用されつつある。
The so-called "mechanical inertia compensation method" applies fly roll to faithfully add torque characteristics according to vehicle speed to this kind of running resistance command amount, rolling resistance A, windage resistance B.
Generally speaking, it is used in combination with the "electrical inertia compensation method" which inputs the climbing/descending resistance inθ, but the former mechanical inertia compensation method depends on the vehicle type of the test vehicle to be applied, There is a fixed equivalent weight, which is uniquely determined once the vehicle weight is known, and an adjusted equivalent weight, which is calculated and added by a person according to the weight.The adjusted equivalent weight is, for example, a 25ky flywheel. Based on 25kg pitch, how many 25ky pieces, how many 50kg pieces, 1
Humans have to calculate and select the fly roll to be thrown, such as the number of fly rolls of 0.00 kg; due to the complexity of operation, the mechanical inertia compensation method is only effective at determining the fixed equivalent weight. Recently, an electrical inertia compensation method has been adopted in which a flywheel is used to electrically compensate for all the weight equivalent to adjustment.

この種等価路上シュミレーション系で走行抵抗制御を行
なう場合の従来採用されているブロック構成図を示した
ものが第1図で、同図で1は被試験機でこの被試験機は
図示する様に回転ドラム2上に塔載され、この回転ドラ
ム2と固定相当重量のみを与えるフライホイール3とは
カップリングを介して結合され、4は負荷装置(動力吸
収体)としての直流式電気動力計で、この電気動力計4
は可変電圧装置5により制御され所定の駆動−吸収動作
を行なう。
Figure 1 shows a block diagram that is conventionally used when running resistance control is performed in this type of equivalent road simulation system. The rotary drum 2 is mounted on a rotary drum 2, and the rotary drum 2 and a flywheel 3 that provides only a fixed equivalent weight are connected via a coupling, and 4 is a DC electric dynamometer as a load device (power absorber). , this electric dynamometer 4
is controlled by a variable voltage device 5 to perform a predetermined drive-absorption operation.

なお可変電圧装置5はワードレオナード方式或いはサイ
リスクレオナード方式のものが適用される。
Note that the variable voltage device 5 is of the Ward Leonard type or the Siris Leonard type.

6は実際に伝達されたトルクを検出するトルク検出装置
で周知のストレンゲージ等の如きロードセルが適用され
る。
Reference numeral 6 denotes a torque detection device for detecting the actually transmitted torque, and a load cell such as a well-known strain gauge is applied thereto.

7は電圧変換回路で入力されるトルク検出信号を電圧量
に変換するもので、8は車速に相当する回転数を検出す
るパルスピックアップでこの車速検出信号は周波数−電
圧変換回路9で電圧量に変換される。
7 is a voltage conversion circuit that converts the input torque detection signal into a voltage amount, 8 is a pulse pickup that detects the number of revolutions corresponding to the vehicle speed, and this vehicle speed detection signal is converted into a voltage amount by a frequency-voltage conversion circuit 9. converted.

10は入力される車速に応じた電圧信号■をv2に変換
する演算回路で、11は入力される車速に応じた電圧信
号Uを微分して加速度av/a tを検出する加速度検
出回路である。
10 is an arithmetic circuit that converts the input voltage signal ■ corresponding to the vehicle speed into v2, and 11 is an acceleration detection circuit that differentiates the input voltage signal U corresponding to the vehicle speed and detects the acceleration av/at. .

12は匂配変化等をプログラムする為の信号を送出する
外部設定回路で、13は登降坂抵抗に応じた信号を送出
する登降坂設定回路で、14はころがり抵抗に応じた信
号を送出するころがり設定回路である。
12 is an external setting circuit that sends out signals for programming changes in the slope, etc.; 13 is an uphill/downhill setting circuit that sends out signals depending on the uphill/downhill resistance; and 14 is a rolling circuit that sends out signals depending on the rolling resistance. This is a setting circuit.

15は風損係数Bを附与して所定の風損抵抗B■2を送
出する風損抵抗設定回路で、16は所要の慣性量を送出
する慣性量設定回路で、この慣性指令量はシャーシダイ
ナモ系全体の機械的な等価慣性重量Wrとシャーシダイ
ナモ系に要求される機械的な等価慣性重量Wmとを減算
して求めることができる。
15 is a windage resistance setting circuit that gives a windage coefficient B and sends out a predetermined windage resistance B2; 16 is an inertia setting circuit that sends out the required amount of inertia; this inertia command amount is It can be determined by subtracting the mechanical equivalent inertia weight Wr of the entire dynamo system and the mechanical equivalent inertia weight Wm required for the chassis dynamo system.

17は加算回路で各設定回路13〜16より送出される
設定指令量を加算して所要の走行抵抗指令量を得る為の
ものである。
Reference numeral 17 denotes an adder circuit for adding the setting command amounts sent out from each of the setting circuits 13 to 16 to obtain a required running resistance command amount.

18は第1の比較回路で走行抵抗指令量とトルク検出量
とを比較する為のもので、この偏差量は第1の増幅回路
19で適当に増幅されこの増幅した信号が第2の比較回
路20に電流指令量として入力される。
Reference numeral 18 denotes a first comparison circuit for comparing the running resistance command amount and the detected torque amount. This deviation amount is appropriately amplified by the first amplifier circuit 19, and this amplified signal is sent to the second comparison circuit. 20 as a current command amount.

21は第2の増幅回路で22は可変電圧装置5のパルス
信号を任意に移相する位相制御回路である。
21 is a second amplifier circuit, and 22 is a phase control circuit for arbitrarily shifting the phase of the pulse signal of the variable voltage device 5.

この様に構成してなる従来装置の動作は、例えば入力さ
れる加速度検出信号に基づき慣性量設定回路16では所
要の慣性量を得、又、風損抵抗設定回路15では入力さ
れる車速検出量■2に基づき所要の風損抵抗指令量を得
、これら設定回路15゜16の各指令量を加算回路17
に送出すると共に、この加算回路17には登降坂抵抗設
定回路13より所要の登降坂指令量が、一方ころがり抵
抗設定回路14より所要のころがり抵抗指令量が入力さ
れるので、これら人力される各指令量を加算回路17で
加算して車速に応じた所要の走行抵抗設定指令量を得る
The operation of the conventional device configured in this way is such that, for example, the inertia amount setting circuit 16 obtains the required inertia amount based on the input acceleration detection signal, and the windage resistance setting circuit 15 obtains the input vehicle speed detection amount. ■ Obtain the required windage resistance command amount based on 2, and add each command amount of these setting circuits 15 and 16 to the circuit 17.
At the same time, the required uphill and downhill command amount is inputted to this addition circuit 17 from the uphill and downhill resistance setting circuit 13, and the required amount of rolling resistance command is input from the rolling resistance setting circuit 14. The command amount is added by an adding circuit 17 to obtain a required running resistance setting command amount according to the vehicle speed.

この走行抵抗設定指令量をメジャーループのトルク制御
系に入力して、第1の比較回路18で走行抵抗指令量と
トルク検出量とを比較して、この偏差量を適当に増幅し
た信号をマイナーループの電流制御系に電流指令量とし
て与え、この電流制御系で電流指令量と動力計の主回路
電流検出量とを比較して得た偏差量を適当に増幅した信
号で、可変電圧装置5のサイリスクの点弧位相を位相制
御回路22を介して適宜移相する事により負荷装置の動
力計4を制御し、所定の駆動−吸収動作を行なわしめて
人間が実走行運転して得られた特性を忠実に再現して所
定の走行抵抗制御を行なうものである。
This running resistance setting command amount is input to the torque control system of the major loop, and the first comparison circuit 18 compares the running resistance command amount with the detected torque amount, and outputs a signal obtained by appropriately amplifying this deviation amount. A signal is given to the current control system of the loop as a current command amount, and the current control system compares the current command amount with the main circuit current detection amount of the dynamometer and appropriately amplifies the deviation amount obtained. The dynamometer 4 of the load device is controlled by appropriately shifting the firing phase of the cyrisk through the phase control circuit 22, and a predetermined drive-absorption operation is performed to determine the characteristics obtained by actual human driving. The system faithfully reproduces the flow rate and performs predetermined running resistance control.

以上の様に走行抵抗制御は車速に応じたトルク特性(走
行抵抗設定指令量=電気的慣性補償量)を附加して所定
の制御を行なうものであるが、第1図の制御系ではトル
ク検出器6より直接トルク険出信号を制御系に導入して
いる為に、この検出信号には動力計機械系の個有の振動
成分が含まれており、しかもこのねじれ振動成分は制御
上不要とする低周波である為振動が制御上の外乱となっ
て表われてくる。
As described above, running resistance control performs predetermined control by adding torque characteristics according to vehicle speed (running resistance setting command amount = electrical inertia compensation amount), but in the control system shown in Figure 1, torque detection Since the torque rise signal is directly introduced into the control system from the device 6, this detection signal includes a unique vibration component of the dynamometer mechanical system, and this torsional vibration component is unnecessary for control. Since the frequency is low, vibration appears as a disturbance in control.

さらにメジャーループの増幅回路19は積分動作を行な
うアンプであるが為に、この積分動作と相倹って安定し
た動作を行なえないばかりか特に重要な事は連応性を持
った制御を行なえない事である。
Furthermore, since the major loop amplifier circuit 19 is an amplifier that performs an integral operation, not only is it not able to perform stable operation in conjunction with this integral operation, but what is especially important is that it cannot perform coordinated control. It is.

従ってトルク検出信号に含まれる機械系個有の脈動成分
をフィルターを通して除去して外乱の要因を取り除く事
が一応考えられる。
Therefore, it is conceivable that the pulsation component unique to the mechanical system contained in the torque detection signal is removed through a filter to remove the disturbance factor.

しかし乍らこの方法ではフィルター目体が非常に高価で
あって不経済であるばかりでなく、フィルター自体が一
種の積分回路と考えられるので一層速応性を持った制御
が不可能になる事である。
However, with this method, not only is the filter body very expensive and uneconomical, but also the filter itself can be considered a type of integrating circuit, making it impossible to control with even more rapid response. .

本発明はこの点に鑑みて発明されたものであって、特に
マイナループに入力される主回路電流検出信号をメジャ
ーループの比較回路にも入力して所定の制御を行なう事
を一犬特徴とし、以下第2図に示す実施例に基づき詳述
する。
The present invention was invented in view of this point, and is particularly characterized in that the main circuit current detection signal input to the minor loop is also input to the comparison circuit of the major loop to perform predetermined control. A detailed description will be given below based on the embodiment shown in FIG.

同実施例で第1図と同一符号のものは略々同一の機能を
有するもので、この説明は省略するものとし、本願では
主回路電流検出信号をマイナーループに入力する事は従
来装置と同様であるが、特に主回路電流検出信号を一旦
新たに設けたトルク指令換算装置23に導入して、この
トルク指令換算装置23で入力される主回路電流検出信
号量に応じて負荷装置である動力計の電動機が発生する
トルク量に換算して、この換算したトルク量をメジャー
ループの比較回路18に導ひき、且つトルク検出器6よ
りのトルク検出信号と同極性←)で入力するようにした
ものである。
In the same embodiment, the parts with the same symbols as in FIG. However, in particular, the main circuit current detection signal is once introduced into the newly installed torque command conversion device 23, and the power which is the load device is calculated according to the amount of the main circuit current detection signal inputted by the torque command conversion device 23. The converted torque amount is converted into the amount of torque generated by the electric motor of the meter, and the converted torque amount is led to the comparison circuit 18 of the measure loop and inputted with the same polarity as the torque detection signal from the torque detector 6. It is something.

このように換算した動力計の電動機トルクをメジャール
ープのトルク制御系に入力すると、制御上は、トルク検
出器6より与えられるトルク検出信号と換算したトルク
量とを同極性←)で加え合せたトルク信号と、加算回路
17より導びかれる走行抵抗指令量(トルク指令量)と
の偏差量を以って所定の走行抵抗制御を行なうことにな
るが、トルク検出器6より与えられるトルク検出信号に
含まれる脈動成分の振動周波数は、例えば5H7〜20
H2という低い周波数であって、しかも加−減速制御時
の過渡時に表われるものであるから、本願によれば次の
ような制御が行なわれることになる。
When the electric motor torque of the dynamometer converted in this way is input to the torque control system of the measure loop, for control purposes, the torque detection signal given from the torque detector 6 and the converted torque amount are added together with the same polarity ←). Predetermined running resistance control is performed using the amount of deviation between the torque signal and the running resistance command amount (torque command amount) derived from the adder circuit 17. The vibration frequency of the pulsating component contained in is, for example, 5H7 to 20
Since the frequency is as low as H2 and appears during transitions during acceleration-deceleration control, the following control is performed according to the present application.

即ち、最も連応性のよい制御が要求される加−減速制御
時の過渡期に於ては、先ずいち早く換算したトルク量に
関連した信号がメジャーループの比較回路18にフィー
ドバックされ、次いでトルク検出器6よりのトルク検出
信号がフィードバックされるので、最初は換算したトル
ク量と走行抵抗指令量との偏差量を以って所定の走行抵
抗制御が行なわれ、次いでトルク検出信号と走行抵抗指
令量との偏差量を以って所定の走行抵抗制御が行なわれ
ることになる。
That is, during the transition period during acceleration-deceleration control where the most responsive control is required, the signal related to the converted torque amount is first fed back to the comparison circuit 18 of the major loop, and then the torque detector Since the torque detection signal from 6 is fed back, a predetermined running resistance control is first performed using the deviation amount between the converted torque amount and the running resistance command amount, and then the torque detection signal and the running resistance command amount are used. A predetermined running resistance control is performed using the amount of deviation.

このように加−減速制御時の過渡期間では、先ず始めに
外乱となる脈動成分が全く含まれない換算したトルク量
を以って所定の制御を行なうので非常に応答性のよい制
御が行なわれ且つ動作面では安定性を有し、たとえ実ト
ルク検出信号に基ずく制御がその後に行なわれようとも
、制御上さしつかえのない動作が保証されることになる
In this way, during the transition period during acceleration/deceleration control, the predetermined control is first performed using the converted torque amount that does not include any pulsation component that would cause disturbance, so control with very good responsiveness is performed. In addition, it is stable in terms of operation, and even if control based on the actual torque detection signal is performed afterwards, the operation is guaranteed to be satisfactory in terms of control.

従って、本願ではトルク検出信号に含まれる低周波の眠
動成分の外乱による影響は、第1図に示す従来装置な比
し緩和されこれにより定常運転時及び過渡期の運転全域
に渡って安定した動作を行ない算装置23で入力される
主回路電流検出信号量に応じて負荷装置である動力計の
電動機が発生するトルク量に換算して、この換算したト
ルク量をメジャーループの比較回路18に導ひき、且つ
トルク検出器6よりのトルク検出信号と同極性←)で入
力するようにしたものである。
Therefore, in the present application, the influence of the disturbance of the low-frequency drowsy component included in the torque detection signal is alleviated compared to the conventional device shown in Fig. 1, and as a result, stable operation is maintained over the entire operating range during steady operation and transient periods. The calculation device 23 converts the amount of torque generated by the electric motor of the dynamometer, which is the load device, into the amount of torque generated by the motor of the dynamometer which is the load device according to the amount of the main circuit current detection signal inputted by the calculation device 23 during operation, and the converted amount of torque is sent to the comparison circuit 18 of the measure loop. It is designed to be input with the same polarity as the torque detection signal from the torque detector 6.

このように換算した動力計の電動機トルクをメジャール
ープのトルク制御系に入力すると、制御上は、トルク検
出器6より与えられるトルク検出信号と換算したトルク
量とを同極性←)で加え合せたトルク信号と、加算回路
17より導びかれる走行抵抗指令量(トルク指令量)と
の偏差量を以って所定の走行抵抗制御を行なうことにな
るが、トルク検出器6より与えられるトルク検出信号に
含まれる脈動成分の振動周波数は、例えば5H7〜20
H2という低い周波数であって、しかも加−減速制御時
の過渡時に表われるものであるから、本願によれば次の
ような制御が行なわれることになる。
When the electric motor torque of the dynamometer converted in this way is input to the torque control system of the measure loop, for control purposes, the torque detection signal given from the torque detector 6 and the converted torque amount are added together with the same polarity ←). Predetermined running resistance control is performed using the amount of deviation between the torque signal and the running resistance command amount (torque command amount) derived from the adder circuit 17. The vibration frequency of the pulsating component contained in is, for example, 5H7 to 20
Since the frequency is as low as H2 and appears during transitions during acceleration-deceleration control, the following control is performed according to the present application.

即ち、最も連応性のよい制御が要求される加−減速制御
時の過渡期に於ては、先ずいち早く換算したトルク量に
関連した信号がメジャーループの比較回路18にフィー
ドバックされ、次いでトルク検出器6よりのトルク検出
信号がフィードバックされるので、最初は換算したトル
ク量と走行抵抗指令量との偏差量を以って所定の走行抵
抗制御が行なわれ、次いでトルク検出信号と走行抵抗指
令量との偏差量を以って所定の走行抵抗制御が行なわれ
ることになる。
That is, during the transition period during acceleration-deceleration control where the most responsive control is required, the signal related to the converted torque amount is first fed back to the comparison circuit 18 of the major loop, and then the torque detector Since the torque detection signal from 6 is fed back, a predetermined running resistance control is first performed using the deviation amount between the converted torque amount and the running resistance command amount, and then the torque detection signal and the running resistance command amount are used. A predetermined running resistance control is performed using the amount of deviation.

このように加−減速制御時の過渡期間では、先ず始めに
外乱となる脈動成分が全く含まれない換算したトルク量
を以って所定の制御を行なうので非常に応答性のよい制
御が行なわれ且つ動作面では安定性を有し、たとえ実ト
ルク検出信号に基ずく制御がその後に行なわれようとも
、制御上さしつかえのない動作が保証されることになる
In this way, during the transition period during acceleration/deceleration control, the predetermined control is first performed using the converted torque amount that does not include any pulsation component that would cause disturbance, so control with very good responsiveness is performed. In addition, it is stable in terms of operation, and even if control based on the actual torque detection signal is performed afterwards, the operation is guaranteed to be satisfactory in terms of control.

従って、本願ではトルク検出信号に含まれる低周波の眠
動成分の外乱による影響は、第1図に示す従来装置な比
し緩和されこれにより定常運転時及び過渡期の運転全域
に渡って安定した動作を行ない得るばかりでなく、連応
性のある制御が可能である事は明らかである。
Therefore, in the present application, the influence of the disturbance of the low-frequency drowsy component included in the torque detection signal is alleviated compared to the conventional device shown in Fig. 1, and as a result, stable operation is maintained over the entire operating range during steady operation and transient periods. It is clear that not only can movements be performed, but also coordinated control is possible.

以上の様に本発明に於ては制御量の一要素であるトルク
検出信号を、例えば実際に回転軸に伝達されるトルクを
検出した信号以外に、動力計の電流検出信号をトルクに
換算した信号とを同極性で加え合せたものとし、このト
ルク検出量と走行抵抗量=電気的慣性補償量との偏差量
を以って所定の走行抵抗制御を行なう様にしたものであ
るので、以下に示す様に種々の効果を奏すものである。
As described above, in the present invention, in addition to the torque detection signal, which is one element of the control amount, for example, the signal that detects the torque actually transmitted to the rotating shaft, the current detection signal of the dynamometer is converted into torque. The signals are added with the same polarity, and the specified running resistance control is performed using the deviation between the detected torque amount and the amount of running resistance = electrical inertia compensation amount. As shown in the figure, it has various effects.

■ 実際に伝達トルクを検出した信号以外に、動力計が
発生したトルクを検出する電流検出信号がいち早くメジ
ャーループに入力した構成としている為に、例えトルク
検出信号に外乱となる機械系の個有振動が含まれている
としても、はとんど影響を受けずに高精度でしかも運転
全域に渡って安定した制御が可能になる。
■ In addition to the signal that actually detects the transmitted torque, the current detection signal that detects the torque generated by the dynamometer is input to the major loop as soon as possible, so even if there is a disturbance to the torque detection signal that is unique to the mechanical system, Even if vibration is included, it is possible to perform highly accurate and stable control over the entire operating range without being affected by vibration.

2 上記の理由より連応性を持った制御が可能となる。2 For the above reasons, coordinated control becomes possible.

3 単に動力計の電流検出信号を実際に動力計が発生し
たトルク換算指令量としてメジャーループにフィールド
バックした構成としている為に、回路構成は非常に簡素
化され経済的な装置を実現できる。
3. Since the current detection signal of the dynamometer is simply fed back to the measure loop as the torque conversion command amount actually generated by the dynamometer, the circuit configuration is extremely simplified and an economical device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法の等価路上シュミレーション系の具体
的な電気的慣性補償法を示すブロック構成図、第2図は
本発明による一実施例を示す電気的慣性補償法の具体的
なブロック構成図。 1は被試験機、4は直流式電気動力計、5は可変電圧装
置、6はトルク検出機、8はパルスピックアップ、11
は加速度検出回路、13は登降坂抵抗設定回路、14は
ころがり抵抗設定回路、15は風損抵抗設定回路、16
は慣性量設定回路、17は加算回路、18,20は比較
回路、19,21は増幅回路、22は位相制御回路、2
3はトルク指令換算装置。
FIG. 1 is a block diagram showing a specific electrical inertia compensation method for an equivalent road simulation system according to the conventional method, and FIG. 2 is a specific block diagram showing an electrical inertia compensation method according to an embodiment of the present invention. . 1 is the machine under test, 4 is a DC electric dynamometer, 5 is a variable voltage device, 6 is a torque detector, 8 is a pulse pickup, 11
13 is an acceleration detection circuit, 13 is an uphill/downhill resistance setting circuit, 14 is a rolling resistance setting circuit, 15 is a windage resistance setting circuit, 16
17 is an inertia amount setting circuit, 17 is an addition circuit, 18 and 20 are comparison circuits, 19 and 21 are amplifier circuits, 22 is a phase control circuit, 2
3 is a torque command conversion device.

Claims (1)

【特許請求の範囲】[Claims] 1 車速に相当する回転速度検出信号を微分して加速度
を求め、この加速度を基にころがり抵抗A、風損抵抗B
■2、登降坂抵抗Wsinθ及び慣性量Wr−Wm(W
r :ダイナモ系全体の機械的な等価慣性重量、Wm:
要求された等価慣性重量)を適宜設定して、これら各設
定指令量より所要の走行抵抗指令量を得、この走行抵抗
指令量とトルク検出信号とをメジャーループのトルク制
御系に人別して、このトルク制御系より出力される電流
指令量と動力計の主回路電流検出信号とをマイナールー
プの電流制御系に入力して、直流式電気動力計の主回路
電流を制御し所定の走行抵抗制御を行なう様にしたもの
に於て、主回路電流検出信号より動力計のトルク発生量
を求め、このトルク発生量に相当する信号を上記トルク
検出信号と同極性でメジャーループの比較回路に入力し
た事を特徴とする電気動力計の電気的慣性補償方法。
1 Differentiate the rotational speed detection signal corresponding to the vehicle speed to find the acceleration, and based on this acceleration, rolling resistance A and windage resistance B are calculated.
■2. Uphill/downhill resistance Wsinθ and amount of inertia Wr-Wm (W
r: Mechanical equivalent inertia weight of the entire dynamo system, Wm:
The required running resistance command amount is obtained from each set command amount by appropriately setting the required equivalent inertia weight, and the running resistance command amount and torque detection signal are divided into the torque control system of the major loop. The current command output from the torque control system and the dynamometer's main circuit current detection signal are input to the minor loop current control system to control the main circuit current of the DC electric dynamometer and perform predetermined running resistance control. In this case, the amount of torque generated by the dynamometer was determined from the main circuit current detection signal, and a signal corresponding to this amount of torque was input to the comparison circuit of the measure loop with the same polarity as the torque detection signal. An electrical inertia compensation method for an electric dynamometer, characterized by:
JP52074106A 1977-06-22 1977-06-22 Electrical inertia compensation method for electric dynamometer Expired JPS5831850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52074106A JPS5831850B2 (en) 1977-06-22 1977-06-22 Electrical inertia compensation method for electric dynamometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52074106A JPS5831850B2 (en) 1977-06-22 1977-06-22 Electrical inertia compensation method for electric dynamometer

Publications (2)

Publication Number Publication Date
JPS548573A JPS548573A (en) 1979-01-22
JPS5831850B2 true JPS5831850B2 (en) 1983-07-08

Family

ID=13537596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52074106A Expired JPS5831850B2 (en) 1977-06-22 1977-06-22 Electrical inertia compensation method for electric dynamometer

Country Status (1)

Country Link
JP (1) JPS5831850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008513A1 (en) 2017-09-07 2019-03-07 Technische Universität Ilmenau Apparatus and method for comminuting, deagglomerating, dispersing and mixing disperse substances and pumpable multiphase mixtures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017008513A1 (en) 2017-09-07 2019-03-07 Technische Universität Ilmenau Apparatus and method for comminuting, deagglomerating, dispersing and mixing disperse substances and pumpable multiphase mixtures

Also Published As

Publication number Publication date
JPS548573A (en) 1979-01-22

Similar Documents

Publication Publication Date Title
US4327578A (en) Dynamometer
US4169371A (en) Method and apparatus for measuring drive system characteristic data in dynamic operation
JPS5837491B2 (en) Inertia and road load simulator
JPH0648230B2 (en) Dynamometer
WO2009142130A1 (en) Vehicle behavior testing apparatus
US4621524A (en) Circuit layout for the simulation of moments of inertia on test stands
KR100311237B1 (en) Chassis dynamometer running resistance control device
JPS5831850B2 (en) Electrical inertia compensation method for electric dynamometer
JP4026482B2 (en) Control device for engine test equipment
JP4045860B2 (en) Power transmission system test apparatus and control method thereof
JP2647576B2 (en) Electric inertia compensation controller for driving test machine
JP5494047B2 (en) Chassis dynamometer system for evaluating body vibration and method for evaluating body vibration
JP5294314B2 (en) Chassis dynamometer restraint device and vehicle stiffness characteristic identification method
JP3116833B2 (en) Car speed calculator
US4169370A (en) Method for evaluating surges of motor vehicles
JPS588457B2 (en) Electrical inertia compensation method for electric dynamometer
JP2004309290A (en) System for verifying inertial load of chassis dynamometer
JPH08105822A (en) Automobile engine tester and apparatus for identifying two inertia parameters
JP2010043940A (en) Apparatus for testing power transmission system and its control method
JP3745853B2 (en) Wire tension measurement method
JPS6128832A (en) Apparatus for compensating electrical inertia of electric dynamometer
JP4844472B2 (en) Evaluation method of electric inertia control response
JPH0477244B2 (en)
JPS61241667A (en) Engine speed detecting device for diesel car
JPS6225233A (en) Simulation device on equivalent path