JPS61241667A - Engine speed detecting device for diesel car - Google Patents

Engine speed detecting device for diesel car

Info

Publication number
JPS61241667A
JPS61241667A JP8247485A JP8247485A JPS61241667A JP S61241667 A JPS61241667 A JP S61241667A JP 8247485 A JP8247485 A JP 8247485A JP 8247485 A JP8247485 A JP 8247485A JP S61241667 A JPS61241667 A JP S61241667A
Authority
JP
Japan
Prior art keywords
signal
output signal
circuit
output
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8247485A
Other languages
Japanese (ja)
Inventor
Tatsunori Sakaguchi
坂口 龍範
Hiroyuki Sugao
菅生 博之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automob Antipollut & Saf Res Center
Automobile Appliance Anti Pollution and Safety Research Center
Original Assignee
Automob Antipollut & Saf Res Center
Automobile Appliance Anti Pollution and Safety Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automob Antipollut & Saf Res Center, Automobile Appliance Anti Pollution and Safety Research Center filed Critical Automob Antipollut & Saf Res Center
Priority to JP8247485A priority Critical patent/JPS61241667A/en
Publication of JPS61241667A publication Critical patent/JPS61241667A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To improve accuracy of detection of engine speed by correcting engine speed by the output signal of an alternator when calculating engine speed from the output signal of the alternator. CONSTITUTION:The oscillation signal of an engine block corresponding to engine speed of idling stage is converted to an electric signal by a piezo-electric sensor 1 and outputted. An alternator (ACG) 4, quantity of power generation of which is controlled by a voltage regulator 3, outputs three-phase full wave rectifier output from an A terminal and charges a battery 5. At the same time, A terminal output is made to pulsating current by smoothing effect of the battery 5. A detecting device 7 extracts minute ripple component corresponding to the engine rotation signal from the output signal of the sensor 1 and output signal of the A terminal and inputs a waveform shaped pulse signal. This is processed and calculated by a microcomputer 9 and rotational frequency of the engine is calculated, and finally, corrected engine speed is displayed in a display section 10.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は自動車のエンジン回転数検出装置に係シ、特に
ディーゼル車のエンジン回転数を検出するに好適なディ
ーゼル車のエンジン回転数検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an engine rotation speed detection device for an automobile, and more particularly to a diesel vehicle engine rotation speed detection device suitable for detecting the engine rotation speed of a diesel vehicle.

〔発明の背景〕[Background of the invention]

従来のディーゼル車のエンジン回転数検出装置としては
、ディーゼル車がガソリン車と異なシ点火系がないため
多種多様な方法が提案されているが、たとえば実公昭5
7−22113号公報に記載のようにエンジンブロック
の表面等に装着した検出装置によジエンジン振動信号を
検出して、エンジン回転数を求める方法が大半を占めて
いる。しかしこの種の従来装置では、エンジン回転信号
に比例した振動信号を電気信号に変換できたとしても、
特に高回転域において良好な8/N比を得ることが困難
なため、広回転域にわ7′cυ安定したエンジン回転数
信号を得ること自体が困難となる問題点があった。
Since diesel cars do not have an ignition system unlike gasoline cars, a variety of methods have been proposed for conventional engine speed detection devices for diesel cars.
Most methods, as described in Japanese Patent No. 7-22113, detect the engine vibration signal using a detection device attached to the surface of the engine block to determine the engine rotation speed. However, with this type of conventional device, even if a vibration signal proportional to the engine rotation signal can be converted into an electrical signal,
Since it is difficult to obtain a good 8/N ratio particularly in a high rotation range, there is a problem in that it is difficult to obtain a stable engine rotation speed signal over a wide rotation range.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上記した従来技術の問題点を解決し、広
範囲のエンジン回転域において安定したエンジン回転数
検出の可能なディーゼル車のエンジン回転数検出装置を
提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and to provide an engine speed detection device for a diesel vehicle that can stably detect engine speed over a wide range of engine speeds.

〔、発明の概要〕[Summary of the invention]

本発明は、周波数においてエンジン回転信号に比例した
オルタネータの電力出力端子の微小リップル成分信号を
比較回路で変換したパルス信号によシマイクロコンピュ
ータ(処理演算手段)で処理し算出するさい、車両のア
イドル時にいったんエンジンブロックの外表面上に装着
された圧電式センサの出力信号によシ算出したエンジン
回転数との比率を補正係数として求め、以後に上記オル
タネータの微小リップル成分信号のパルス信号によ)算
出し几工/ジン回転数を上記補正係数で補正することに
よシ、広範囲のエンジン回転域で安定な高精度のエンジ
ン回転数検出を可能にしたディーゼル車のエンジン回転
数検出装置である。
The present invention provides a pulse signal obtained by converting a minute ripple component signal at the power output terminal of an alternator whose frequency is proportional to the engine rotation signal by a comparator circuit. At times, the ratio between the output signal of the piezoelectric sensor mounted on the outer surface of the engine block and the calculated engine speed is determined as a correction coefficient, and then the pulse signal of the minute ripple component signal of the alternator is used. This is an engine rotation speed detection device for a diesel vehicle that enables stable and highly accurate engine rotation speed detection over a wide range of engine rotation ranges by correcting the calculated engine/engine rotation speed using the above correction coefficient.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の一実施例を第1図ないし第6図により説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は本発明によるディーゼル車のエンジン回転数検
出装置の一実施例を示すシステム構成図である。第1図
において、1はエンジンブロックの外表面上に装着され
て車両のエンジン作動時にエンジンブロック表面に発生
する振動を検出する圧電式センサで、アイドル状態のエ
ンジン回転信号に対応したエンジンブロックの振動信号
を電気信号に変換して出力する。2は車両の充電系で、
電系2の電圧レギュレータ3によシ発電量を制御される
オルタネータ4は周知のように3相全波整流出力をA端
子(電力出力端子)から出力し、咳A端子をバッテリ5
のプラス端子と接続することによシバツテリ5を充電す
るが、これと同時にバッテリ5の平滑コンデンサ効果に
よシ上記A端子の出力はエンジン回転信号に対応した微
小リップル成分を含む脈流信号となシ、また上記オルタ
ネータ4のA端子の出力は負荷6にも電力を供給してい
る。7は検出装置(本体)で、8はそのインタフェース
回路、9はマイクロコンピュータ、10は表示部である
。検出装置7は上記圧電式センサ1の出力信号およびオ
ルタネータ4のA端子の出力信号を入力し、そのインタ
フェース回″路8を介して上記圧電式センサ1の出力信
号を波形整形した信号および上記A端子の出力信号から
エンジン回転信号に対応した微小リップル成分を抽出し
て波形整形したパルス信号を得て、マイクロコンピュー
タ9によ多処理・演算することによりエンジン回転数を
算出し、最終的に補正されたエンジン回転数を表示部1
0に表示する。
FIG. 1 is a system configuration diagram showing an embodiment of an engine rotation speed detection device for a diesel vehicle according to the present invention. In Fig. 1, 1 is a piezoelectric sensor mounted on the outer surface of the engine block to detect vibrations generated on the surface of the engine block when the vehicle's engine is operating. Converts the signal into an electrical signal and outputs it. 2 is the vehicle charging system,
As is well known, the alternator 4 whose power generation amount is controlled by the voltage regulator 3 of the electric system 2 outputs a three-phase full-wave rectified output from the A terminal (power output terminal), and connects the cough A terminal to the battery 5.
The battery 5 is charged by connecting it to the positive terminal of the battery 5, but at the same time, due to the smoothing capacitor effect of the battery 5, the output of the terminal A becomes a pulsating signal containing a minute ripple component corresponding to the engine rotation signal. Furthermore, the output of the A terminal of the alternator 4 also supplies power to the load 6. 7 is a detection device (main body), 8 is its interface circuit, 9 is a microcomputer, and 10 is a display section. The detection device 7 inputs the output signal of the piezoelectric sensor 1 and the output signal of the A terminal of the alternator 4, and outputs a waveform-shaped signal of the output signal of the piezoelectric sensor 1 and the A terminal via the interface circuit 8. A minute ripple component corresponding to the engine rotation signal is extracted from the output signal of the terminal, a waveform-shaped pulse signal is obtained, and the engine rotation speed is calculated by performing multiple processing and calculations on the microcomputer 9, and is finally corrected. Display section 1 shows the engine rotation speed.
Display at 0.

第2図は第1図のインタフェース回路8の圧電式センサ
1の出力信号を波形整形するための圧電式センサ用処理
回路部(第1の処理回路部)のブロック図である。第2
図において、11は圧電式センサ1の出力信号から必要
な周波数帯域の信号成分をうる穴めの帯域フィルタ回路
、帯域フィルタ回路11の出力信号11aを検波する1
2は検波回路、13は検波回路12の出力信号12bを
波形整形する比較回路である。なお第3図は第2図の圧
電式センサ信号の各処理信号波形図である。
FIG. 2 is a block diagram of a piezoelectric sensor processing circuit section (first processing circuit section) for waveform shaping the output signal of the piezoelectric sensor 1 of the interface circuit 8 of FIG. 1. Second
In the figure, reference numeral 11 denotes a bandpass filter circuit with a hole for extracting signal components in a necessary frequency band from the output signal of the piezoelectric sensor 1, and a circuit 1 for detecting the output signal 11a of the bandpass filter circuit 11.
2 is a detection circuit, and 13 is a comparison circuit that shapes the waveform of the output signal 12b of the detection circuit 12. Note that FIG. 3 is a waveform diagram of each processed signal of the piezoelectric sensor signal of FIG. 2.

第3図において% llaは第2図の同一符号に対応し
て帯域フィルタ回路11の出力信号、12a。
In FIG. 3, %lla is the output signal of the bandpass filter circuit 11, 12a corresponding to the same reference numerals as in FIG.

12bは検波回路12の各検波信号、出力信号、13a
は比較回路13の出力信号(波形整形信号)の波形を示
す。すなわち圧電式センサ1によシ検出されたアイドル
時のエンジンブロックの外表面の振動信号の出力信号(
電気信号)を帯域フィルタ回路11に通過させて、必要
な周波数帯域(7〜10kHz)の信号成分の第3図の
波形の出力信号11aがえられ、エンジン回転信号の周
波数成分が抽出される。ついで出力信号11aを検波回
路12で検波することにより第3図の波形の検波信号1
2a1出力信号12bがえられ、出力信号11aの最大
振幅値が抽出される。さらに出力信号12bを比較回路
13で波形整形してパルス信号に変換することにより、
第3図の波形のパルス信号(波形整形信号)の出力信号
13aが出力される。
12b is each detection signal and output signal of the detection circuit 12, 13a
indicates the waveform of the output signal (waveform shaping signal) of the comparison circuit 13. In other words, the output signal (
The electrical signal) is passed through the bandpass filter circuit 11 to obtain an output signal 11a having the waveform shown in FIG. 3 having a signal component in a necessary frequency band (7 to 10 kHz), and the frequency component of the engine rotation signal is extracted. Then, by detecting the output signal 11a with the detection circuit 12, a detection signal 1 having the waveform shown in FIG. 3 is obtained.
2a1 output signal 12b is obtained, and the maximum amplitude value of output signal 11a is extracted. Furthermore, by shaping the output signal 12b in the comparator circuit 13 and converting it into a pulse signal,
An output signal 13a of a pulse signal (waveform shaping signal) having the waveform shown in FIG. 3 is output.

また第4図は第1図のインタフェース回路8のオルタネ
ータ3の出力信号から微小リップル成分を抽出して波形
整形するためのオルタネータ出力信号用処理回路部(第
2の処理回路部)のブロック図である。第4図において
、14はオルタネータ3のA端子の出力信号から余分な
高周波成分を除去する第1のローパスフィルタ回路、1
5はローパスフィルタ回路14の出力信号14aの微小
リップル成分を減衰させる積分回路を有する第2゛Qロ
ーパスフイルタ回路、16はフィルタ回路14.15の
2種類の出力信号14a、15aを入力して同相成分を
除去する差動増幅回路、17は差動増幅回路16の出力
信号16aを増幅する増幅回路、18は増幅回路17の
出力信号17aを波形整形する比較回路でおる。なお第
4図のオルタネータ出力信号から微小リップル成分を抽
出する回路部分は、フィルタ回路14,15および差動
増幅回路16から構成され、特開昭56−148147
号公報により公知である。なお第5図は第4図のオルタ
ネータ出力信号の各処理信号波形図である。第5図にお
いて、14aは第4図の同一符号に対応してフィルタ回
路14の出力信号、15aはフィルタ回路15の出力信
号、16aは差動増幅回路16の出力信号、17aは増
幅回路17の出力信号、18aは比較回路18の出力信
号(波形整形信号)の波形を示す。すなわち、まず上記
公知例によシ車両の充電系2のオルタネータ30A端子
(電力出力端子)の出力信号を第1のローパスフィルタ
回路14に通過させて、必要な微小リップル成分以外の
余分な高周波成分を除去することにより第5図の波形の
微小リップル成分のみを含む脈流信号の出力信号14a
かえられ、ついで出力信号14aを第2のローパスフィ
ルタ回路15に通過させて、その微小リップル成分を減
衰させ除去した第5図の波形の脈流信号の出力信号15
aがえられ、さらに2つの出力信号14a。
FIG. 4 is a block diagram of an alternator output signal processing circuit section (second processing circuit section) for extracting minute ripple components from the output signal of the alternator 3 in the interface circuit 8 of FIG. 1 and shaping the waveform. be. In FIG. 4, 14 is a first low-pass filter circuit that removes extra high frequency components from the output signal of the A terminal of the alternator 3;
Reference numeral 5 denotes a second Q low-pass filter circuit having an integrating circuit that attenuates minute ripple components of the output signal 14a of the low-pass filter circuit 14; 16 inputs the two types of output signals 14a and 15a of the filter circuits 14 and 15 and outputs the same phase. 17 is an amplifier circuit that amplifies the output signal 16a of the differential amplifier circuit 16, and 18 is a comparison circuit that shapes the waveform of the output signal 17a of the amplifier circuit 17. Note that the circuit portion for extracting minute ripple components from the alternator output signal in FIG.
It is known from the publication no. Note that FIG. 5 is a waveform diagram of each processed signal of the alternator output signal of FIG. 4. In FIG. 5, 14a corresponds to the same reference numerals as in FIG. The output signal 18a indicates the waveform of the output signal (waveform shaping signal) of the comparator circuit 18. That is, first, according to the above-mentioned known example, the output signal of the alternator 30A terminal (power output terminal) of the charging system 2 of the vehicle is passed through the first low-pass filter circuit 14 to remove excess high frequency components other than the necessary minute ripple components. By removing the pulsating flow signal, the output signal 14a of the pulsating flow signal containing only the minute ripple component of the waveform shown in FIG.
The output signal 14a is then passed through the second low-pass filter circuit 15 to attenuate and remove the minute ripple components, resulting in an output signal 15 of the pulsating current signal having the waveform shown in FIG.
a is obtained, and two further output signals 14a.

15aを差動増幅回路16に入力して、同相入力成分の
脈流信号を除去することにより第5図の波形の微小リッ
プル成分のみ抽出された出力信号16aかえられる。つ
ぎに上記公知例にょ)えられた微小リップル成分の出力
信号16aを増幅回路17で増幅することによシ第5図
の波形の増幅された出力信号17aが見られ、さらに出
力信号17aを比較回路18で波形整形することにょ〕
第5囚の波形の微小リップル成分の信号16aに対応し
たパルス信号(波形整形信号)の出力信号18aに変換
して出力される。
15a is input to the differential amplifier circuit 16, and by removing the pulsating current signal of the in-phase input component, an output signal 16a in which only the minute ripple component of the waveform shown in FIG. 5 is extracted is obtained. Next, by amplifying the output signal 16a of the minute ripple component obtained in the above-mentioned known example in the amplifier circuit 17, an amplified output signal 17a having the waveform shown in FIG. 5 is obtained, and the output signal 17a is further compared. The waveform is shaped by circuit 18.]
The signal 16a of the minute ripple component of the fifth waveform is converted into an output signal 18a of a pulse signal (waveform shaping signal) and output.

つぎに第2図および第4図のインタフェース回路8の圧
電式センナ用処理回路部(第1の処理回路)およびオル
タネータ出力信号処理回路部(第2の処理回路部)でえ
られ九圧電式センサ1の波形整形信号(パルス信号)の
出力信号13aおよびオルタネータ3のA端子出力信号
の微小リップル成分の波形整形信号(パルス信号)の出
力信号18aをマイクロコンピュータ7によって処理・
演算することによシ、エンジン回転数を算出して表示部
10に表示する。第6図は第1図のシステムの主にマイ
クロコンピュータ9による処理手順を示す概略70.−
チャートである。すなわち、まず初期過程SOにおいて
、ステップS1で車両をアイドル状態にする。ステップ
S2でアイドル時のエンジン回転信号に対応したエンジ
ンブロックの振動信号を検出した圧電式センサ1の出力
信号をインタフェース回路8の第1の処理回路部(第2
図)で波形整形したパルス信号の出力信号13aからエ
ンジン回転数N、を算出する。またステップS3でオル
タネータ(ACG)40A端子の出力信号をインタフェ
ース回路8の第2の処理回路部(第4図)で処理した微
小リップル成分の波形整形信号(パルス信号)の出力信
号18aから同様にエンジン回転数Nmを算出する。こ
のさい、一般にエンジン回転数N富はオルタネータ4の
極数Pと、上記A端子出力信号の微小リップル成分信号
すなわちパルス信号18aの周波数fと、エンジンのク
ランク軸とオルタネータ30回転比すなわちプーリ比R
によシ次式を用いて算出できる。
Next, nine piezoelectric sensors are obtained by the piezoelectric sensor processing circuit section (first processing circuit) and the alternator output signal processing circuit section (second processing circuit section) of the interface circuit 8 in FIGS. 2 and 4. The microcomputer 7 processes the output signal 13a of the waveform shaping signal (pulse signal) of the alternator 1 and the output signal 18a of the waveform shaping signal (pulse signal) of the minute ripple component of the A terminal output signal of the alternator 3.
Through the calculation, the engine rotation speed is calculated and displayed on the display unit 10. FIG. 6 schematically shows a processing procedure 70 mainly performed by the microcomputer 9 in the system shown in FIG. −
It is a chart. That is, first, in the initial stage SO, the vehicle is brought into an idle state in step S1. In step S2, the output signal of the piezoelectric sensor 1 that has detected the vibration signal of the engine block corresponding to the engine rotation signal during idling is transmitted to the first processing circuit section (the second processing circuit section) of the interface circuit 8.
The engine rotation speed N is calculated from the output signal 13a of the pulse signal whose waveform has been shaped as shown in FIG. In addition, in step S3, the output signal of the alternator (ACG) 40A terminal is processed in the second processing circuit section (FIG. 4) of the interface circuit 8, and the output signal 18a of the waveform shaping signal (pulse signal) of the minute ripple component is similarly processed. Calculate engine rotation speed Nm. At this time, the engine speed N is generally determined by the number of poles P of the alternator 4, the minute ripple component signal of the A terminal output signal, that is, the frequency f of the pulse signal 18a, and the engine crankshaft and alternator 30 rotation ratio, that is, the pulley ratio R.
It can be calculated using the following formula.

N慕(′fLPM)=(20Xf)/C’f%XP) 
  ・・・(1)ここで周波数fは一義的に決まるので
、極数Pとプーリ比Rについて考察する。まず極数Pは
軽自動車から大型車にいたるまで大手が12極であるた
めP=12とする。またプーリ比Rは多車種を実測した
結果からR=2.1〜2.3であることが判明したため
几=2.2とする。この場合のプーリ比Rの誤差による
(11式のエンジン回転数N11の誤差は±5%程度で
ある。そこで(1)式にP’= 12 、R=2.2を
代入すると次式に展開できる。
N ('fLPM) = (20Xf)/C'f%XP)
(1) Since the frequency f is uniquely determined here, the number of poles P and the pulley ratio R will be considered. First, the number of poles P is set to P=12 since most major vehicles, from light vehicles to large vehicles, have 12 poles. Further, the pulley ratio R is determined to be 2.2 since it was found from actual measurements of many car models that R=2.1 to 2.3. In this case, due to the error in the pulley ratio R (the error in the engine speed N11 in equation 11 is about ±5%. Therefore, by substituting P' = 12 and R = 2.2 in equation (1), it is expanded to the following equation. can.

NB(RPM)中0.758xf   ・・・(2)こ
こでステップS4で(2)式によシオルタネータ出力信
号の微小リップル成分信号の周波数fから算出されるエ
ンジン回転数Nmの誤差を補正するために、さきのステ
ップS2で圧電式センサ1の出力信号から算出されたエ
ンジン回転数NムとステップS3で算出されたエンジン
回転数Nmの比すなわち補正係数に=Nム/ N mを
算出する。以上の初期過程SOの処理・演算の結果によ
り、以後はステップS5で上記補正係数にと以後のオル
タネータ30A端子出力信号の微小リップル成分信号か
ら算出したエンジン回転数N1の積を求めて精度よく補
正されたエンジン回転数N = K X N mを算す
ることができ、ステップS6で補正されたエンジン回転
数Nを表示部10に表示する。
0.758xf in NB (RPM)... (2) Here, in step S4, the error in the engine rotation speed Nm calculated from the frequency f of the minute ripple component signal of the alternator output signal is corrected according to equation (2). Therefore, the ratio of the engine rotation speed Nm calculated from the output signal of the piezoelectric sensor 1 in step S2 and the engine rotation speed Nm calculated in step S3, that is, the correction coefficient is calculated as =Nm/Nm. . Based on the results of the processing and calculations in the initial process SO, in step S5, the product of the engine rotation speed N1 calculated from the minute ripple component signal of the alternator 30A terminal output signal and the correction coefficient is calculated and corrected accurately. The corrected engine rotation speed N = K x N m can be calculated, and the corrected engine rotation speed N is displayed on the display unit 10 in step S6.

〔発明の効果〕〔Effect of the invention〕

以上の説明のように本発明によれば、ディーゼル車のエ
ンジン回転数をオルタネータの出力信号から算出するさ
い、一度アイドル状態において工ンジン回転信号に対応
したエンジンブロックの振動信号を圧電式センサで検出
してオルタネータの出力信号によるエンジン回転数を補
正しているため、広範囲のエンジン回転域にわたって安
定した高精度のエンジン回転数の検出が可能となる。
As described above, according to the present invention, when calculating the engine rotation speed of a diesel vehicle from the output signal of the alternator, a piezoelectric sensor detects the vibration signal of the engine block corresponding to the engine rotation signal once in the idling state. Since the engine speed is corrected based on the output signal of the alternator, it is possible to detect the engine speed stably and accurately over a wide range of engine speeds.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるディーゼル車のエンジン回転数検
出装置の一実施例を示すシステム構成図、第2図は第1
図のインタフェース回路8の圧電式センサ用処理回路部
(第1の処理回路部)のブロック図、第3図は第2図の
各処理信号波形図、第(1図は第1図のインタフェース
回路8のオルタネ・、1 ニニタ出力信号用処理回路部(第2の処理回路部)のブ
ロック図、第5図は第4図の各処理信号波形図、第6図
は第1図の処理手順フローチャートである。 1・・・圧電式センサ、2・・・車両の充電系、3・・
・電圧レギュレータ、4・・・オルタネータ(ACG)
、5・・・バッテリ、6・・・負荷、7・・・検出装置
(本体)、8・・・第1および第2の処理回路部を含む
インタフエース回路、9・・・マイクロコンピュータ、
1o・・・表示部、11・・・帯域フィルタ回路、12
・・・検波回路1.13・・・比較回路、14・・・フ
ィルタ回路、15・・・フィルタ回路、16・・・差動
増幅回路、17・・・増幅回路、18・・・比較回路。
FIG. 1 is a system configuration diagram showing an embodiment of the engine speed detection device for a diesel vehicle according to the present invention, and FIG.
A block diagram of the piezoelectric sensor processing circuit section (first processing circuit section) of the interface circuit 8 shown in the figure, FIG. 3 shows each processed signal waveform diagram of FIG. 2, and FIG. A block diagram of the processing circuit for output signals of 8 (second processing circuit), FIG. 5 is a waveform diagram of each processed signal in FIG. 4, and FIG. 6 is a flowchart of the processing procedure in FIG. 1. 1...Piezoelectric sensor, 2...Vehicle charging system, 3...
・Voltage regulator, 4...Alternator (ACG)
, 5... Battery, 6... Load, 7... Detection device (main body), 8... Interface circuit including first and second processing circuit units, 9... Microcomputer,
1o...Display section, 11...Band filter circuit, 12
...Detection circuit 1.13...Comparison circuit, 14...Filter circuit, 15...Filter circuit, 16...Differential amplifier circuit, 17...Amplification circuit, 18...Comparison circuit .

Claims (1)

【特許請求の範囲】[Claims] 1.車両のエンジン作動時に発生するエンジン回転信号
に対応したエンジンブロツク振動を検出して電気信号に
変換するセンサと、該センサの出力信号からエンジン回
転信号の周波数成分を抽出する帯域フイルタ回路、該帯
域フイルタ回路の出力信号の最大振幅値を抽出する検波
回路、該検波回路の出力信号をパルス信号に変換する第
1の比較回路からなる第1の処理回路部と、上記車両の
オルタネータの電力出力端子から出力する微小リツプル
成分を含む脈流信号から不要な高周波信号成分を除去す
る第1のフイルタ回路、該第1のフイルタ回路の出力信
号および該第1のフイルタ回路の出力信号を第2のフイ
ルタ回路に通した出力信号を2入力として同相成分を除
去することによりエンジン回転信号に応じた周波数の上
記リツプル成分信号を抽出する差動増幅回路、該差動増
幅回路の出力信号をパルス信号に変換する第2の比較回
路からなる第2の処理回路と、車両のアイドル時にいつ
たんエンジン回転信号に対応したエンジンブロツク振動
を上記センサで検出したときに上記第1の比較回路から
出力するパルス信号によりエンジン回転数を算出した値
と上記オルタネータの電力出力端子の出力信号により上
記第2の比較回路から出力するパルス信号によりエンジ
ン回転数を算出した値の比率を補正係数として算出し、
以後に上記オルタネータの出力信号により上記第2の比
較回路から出力するパルス信号のみによりエンジン回転
数を算出した値を上記補正係数で補正する処理演算手段
とから構成されるデイーゼル車のエンジン回転数検出装
置。
1. A sensor that detects engine block vibration corresponding to an engine rotation signal generated during operation of a vehicle engine and converts it into an electrical signal, a band filter circuit that extracts a frequency component of the engine rotation signal from the output signal of the sensor, and a band filter circuit that extracts the frequency component of the engine rotation signal from the output signal of the sensor. A first processing circuit section consisting of a detection circuit that extracts the maximum amplitude value of the output signal of the circuit, a first comparison circuit that converts the output signal of the detection circuit into a pulse signal, and a power output terminal of the alternator of the vehicle. A first filter circuit that removes unnecessary high-frequency signal components from a pulsating current signal containing minute ripple components to be output; an output signal of the first filter circuit; and a second filter circuit that filters the output signal of the first filter circuit A differential amplifier circuit extracts the above-mentioned ripple component signal of a frequency corresponding to the engine rotation signal by using two inputs of the output signal passed through the circuit and removes the in-phase component, and converts the output signal of the differential amplifier circuit into a pulse signal. A second processing circuit comprising a second comparison circuit and a pulse signal output from the first comparison circuit when the sensor detects engine block vibration corresponding to the engine rotation signal when the vehicle is idling. Calculating, as a correction coefficient, the ratio of the value calculated for the rotation speed and the value calculated for the engine rotation speed based on the pulse signal output from the second comparison circuit based on the output signal of the power output terminal of the alternator;
Detection of engine rotation speed of a diesel vehicle, comprising a processing calculation means for correcting a value obtained by calculating the engine rotation speed using only the pulse signal outputted from the second comparison circuit using the output signal of the alternator, using the correction coefficient. Device.
JP8247485A 1985-04-19 1985-04-19 Engine speed detecting device for diesel car Pending JPS61241667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8247485A JPS61241667A (en) 1985-04-19 1985-04-19 Engine speed detecting device for diesel car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8247485A JPS61241667A (en) 1985-04-19 1985-04-19 Engine speed detecting device for diesel car

Publications (1)

Publication Number Publication Date
JPS61241667A true JPS61241667A (en) 1986-10-27

Family

ID=13775506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8247485A Pending JPS61241667A (en) 1985-04-19 1985-04-19 Engine speed detecting device for diesel car

Country Status (1)

Country Link
JP (1) JPS61241667A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0701134A1 (en) * 1994-09-06 1996-03-13 SUN ELECTRIC DEUTSCHLAND GmbH Tachometer based on electrical ripple and calibrated by mechanical engine signals
KR20040026839A (en) * 2002-09-26 2004-04-01 현대자동차주식회사 Apparatus for measure the speed of an automobile using piezo electric effect element
DE102006056234A1 (en) * 2006-11-29 2008-06-05 Bayerische Motoren Werke Ag Engine rotational speed indicating signal generating device for internal combustion engine of motor vehicle, has control device formed such that production of indicating signal takes place depending on actual and target gear ratios
CN110579617A (en) * 2019-09-05 2019-12-17 中国航空工业集团公司沈阳飞机设计研究所 aeroengine rotating speed measuring device and method for ground test
WO2022012514A1 (en) * 2020-07-14 2022-01-20 深圳市道通科技股份有限公司 Method and apparatu for measuring engine revolution speed of automobile, and battery test device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0701134A1 (en) * 1994-09-06 1996-03-13 SUN ELECTRIC DEUTSCHLAND GmbH Tachometer based on electrical ripple and calibrated by mechanical engine signals
KR20040026839A (en) * 2002-09-26 2004-04-01 현대자동차주식회사 Apparatus for measure the speed of an automobile using piezo electric effect element
DE102006056234A1 (en) * 2006-11-29 2008-06-05 Bayerische Motoren Werke Ag Engine rotational speed indicating signal generating device for internal combustion engine of motor vehicle, has control device formed such that production of indicating signal takes place depending on actual and target gear ratios
DE102006056234B4 (en) * 2006-11-29 2014-04-03 Bayerische Motoren Werke Aktiengesellschaft Device for generating a speed to be displayed via a display device
CN110579617A (en) * 2019-09-05 2019-12-17 中国航空工业集团公司沈阳飞机设计研究所 aeroengine rotating speed measuring device and method for ground test
WO2022012514A1 (en) * 2020-07-14 2022-01-20 深圳市道通科技股份有限公司 Method and apparatu for measuring engine revolution speed of automobile, and battery test device

Similar Documents

Publication Publication Date Title
JP3130912B2 (en) Method for detecting rotation speed of internal combustion engine
US20180328815A1 (en) Dynamometer-system dynamo control device and engine starting method therefor
KR20060013649A (en) Method for determining the energy of a knock signal for an internal combustion engine
JPS6243125B2 (en)
JPS6114526A (en) Knock discriminating device for internal combustion engine
US4423621A (en) Knocking detector
JPS61241667A (en) Engine speed detecting device for diesel car
JPH04244933A (en) Device for detecting knocking of engine
US6529817B2 (en) Apparatus for knock detection with digital signal analysis and method of detecting knock using same
JPS5979827A (en) Knocking detection system for engine
US2735292A (en) Tire thump measuring apparatus
JPS5973750A (en) Knocking detecting apparatus
EP0823637B1 (en) Apparatus for calculating the velocity of a vehicle from pulsating components in the output of the electric power generator
JP3412492B2 (en) Wheel speed detection device
US4249416A (en) Apparatus for measuring engine torque
US5333489A (en) Circuit arrangement to detect knocking
JPH08338781A (en) Method and apparatus for processing of vibration signal of internal combustion engine for automobile
JPH0943264A (en) Acceleration detector
JPS61124870A (en) Apparatus for detecting number of rotations of engine of diesel vehicle
CN213275639U (en) Rotating speed measuring system of aircraft engine power sensor
JP2555677B2 (en) Knock detection device for internal combustion engine
JPH11324785A (en) Knock control system for internal combustion engine
US20220299573A1 (en) State calculating apparatus and state calculating method for battery
JPH0850157A (en) Resonance frequency measuring device
JPS60174918A (en) Knocking detection apparatus of internal combustion engine