JPS5831705B2 - Mitsupeishiki alkaline chikudenchi - Google Patents

Mitsupeishiki alkaline chikudenchi

Info

Publication number
JPS5831705B2
JPS5831705B2 JP50093623A JP9362375A JPS5831705B2 JP S5831705 B2 JPS5831705 B2 JP S5831705B2 JP 50093623 A JP50093623 A JP 50093623A JP 9362375 A JP9362375 A JP 9362375A JP S5831705 B2 JPS5831705 B2 JP S5831705B2
Authority
JP
Japan
Prior art keywords
battery
hydrogen gas
electrode
nickel
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50093623A
Other languages
Japanese (ja)
Other versions
JPS5217625A (en
Inventor
行輝 吉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP50093623A priority Critical patent/JPS5831705B2/en
Publication of JPS5217625A publication Critical patent/JPS5217625A/en
Publication of JPS5831705B2 publication Critical patent/JPS5831705B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は密閉式アルカリ蓄電池に関するものである。[Detailed description of the invention] The present invention relates to a sealed alkaline storage battery.

この種電池の代表的なものとしてニッケルーカドミウム
電池が挙げられ、密閉化のために陽極(水酸化ニッケル
)の容量に比して陰極(水酸化カドミウム)の容量を犬
ならしめ充電時には陽極が完全充電状態に至っても陰極
には未還元物質が残存している状態とし、発生ガスを陽
極よりの酸素ガスのみとしてこの酸素ガスを陰極で消失
させる構成としている。
A typical example of this type of battery is the nickel-cadmium battery, in which the capacity of the cathode (cadmium hydroxide) is made smaller than the capacity of the anode (nickel hydroxide) in order to seal it. Even in a fully charged state, unreduced substances remain at the cathode, and the gas generated is only oxygen gas from the anode, and this oxygen gas is dissipated at the cathode.

而して、例えば銀−亜鉛、ニッケルー亜鉛、ニッケルー
鉄の如き系における電池においては陰極活物質としてエ
ネルギー密度が高く、比較的安価で、しかも無公害であ
る物質を使用しているため電池としては非常に有利であ
るが、反面これら陰極活物質は放置中にアルカリ電解液
と反応(自己放電)し水素ガスが発生する。
For example, in batteries based on systems such as silver-zinc, nickel-zinc, and nickel-iron, materials that have high energy density, are relatively inexpensive, and are non-polluting are used as cathode active materials, so they are suitable for use as batteries. Although this is very advantageous, on the other hand, these cathode active materials react with the alkaline electrolyte (self-discharge) during storage and generate hydrogen gas.

そのため、上記せる系の電池を密閉状態とした場合、た
とえ陰極容量を陽極容量より犬ならしめても放置中にお
いて水素ガスが発生し、電池内圧が上昇して電池容器を
破壊するか、或いは破壊するに至らないまでも安全弁が
頻繁に作動することになり、その結果アルカリ電解液が
霧状となって外部に飛散して液量が減少し電池性能が劣
化すると共にアルカリ液は腐蝕性であるため電池を組込
ア んだ機器内部を損傷せしめる懸念があり、更に安全
弁の頻繁な作動により水素ガスが電池外部に放出されて
機器内部に蓄積し機器スイッチの開閉等により引火爆発
する恐れがある。
Therefore, if the battery of the above system is sealed, even if the cathode capacity is made smaller than the anode capacity, hydrogen gas will be generated while the battery is left unused, and the internal pressure of the battery will rise, destroying the battery container or destroying it. Even if it does not reach this level, the safety valve will operate frequently, and as a result, the alkaline electrolyte becomes atomized and scatters outside, reducing the amount of liquid and deteriorating battery performance.Also, since alkaline electrolyte is corrosive, There is a risk of damaging the inside of the device in which the battery is installed.Furthermore, due to the frequent activation of the safety valve, hydrogen gas may be released to the outside of the battery and accumulate inside the device, causing a risk of ignition and explosion when the device switch is opened or closed.

このような問題を解決するための一方法としてテ 電池
内部に発生する水素ガスを触媒電極を用いて電池内で消
失させる方法が提案されているが利用する触媒としては
パラジウム、白金、銀等の貴金属でありコスト面でなお
問題があった。
As a method to solve this problem, a method has been proposed in which the hydrogen gas generated inside the battery is dissipated within the battery using a catalyst electrode, but the catalyst used is palladium, platinum, silver, etc. Since it is a precious metal, there was still a problem in terms of cost.

本発明の目的はこの種電池、即ち電池放置中にl おい
て自己放電し水素ガスを発生する陰極活物質を用いた電
池の密閉化を安価なる水素ガス消失電極を用いて可能な
らしめる点にある。
The object of the present invention is to make it possible to seal this type of battery, that is, a battery using a cathode active material that self-discharges and generates hydrogen gas when the battery is left unused, using an inexpensive hydrogen gas dissipating electrode. be.

さて、従来より化学の分野、特に有機化学の領域におい
てはニッケル或いはその化合物(例えば1 ラネーニッ
ケル)が水素添加用触媒として有効に利用されている。
Now, in the field of chemistry, particularly in the field of organic chemistry, nickel or a compound thereof (for example, 1-Raney nickel) has been effectively used as a hydrogenation catalyst.

そこで本発明者は前述せるニッケル或いはその化合物が
電池内における水素ガスのイオン解離化、即ち水素ガス
の消失に利用できないかと検討したところ、ニッケル或
いはその化合物よりなる多孔性電極は水素標準電極に対
して−0,3V乃至−〇、8■の電位においては水素ガ
スを消失させ得ることが判明した。
Therefore, the present inventor investigated whether the above-mentioned nickel or its compound could be used for ion dissociation of hydrogen gas in a battery, that is, for the disappearance of hydrogen gas, and found that the porous electrode made of nickel or its compound could be used for the hydrogen standard electrode. It has been found that hydrogen gas can be eliminated at a potential of -0.3V to -0.8V.

従って密閉状態で上記多孔性電極の電位を前述; せる
範囲内に持続的に保持することができるならば水素ガス
の蓄積による電池内圧の上昇を防止することができる。
Therefore, if the potential of the porous electrode can be continuously maintained within the above-mentioned range in a sealed state, it is possible to prevent the internal pressure of the battery from increasing due to the accumulation of hydrogen gas.

而るにニッケル或いはその化合物よりなる電極の電位は
一般に N 100H+H20+e 、=Nl (OH)2+
OHの平衡電位を示し、その電位は塩基性電解液のもと
では水素標準電極に対して約+〇、 5 Vである。
However, the potential of an electrode made of nickel or its compound is generally N100H+H20+e, =Nl(OH)2+
It shows the equilibrium potential of OH, which is approximately +0.5 V with respect to a hydrogen standard electrode in a basic electrolyte.

つまり通常の方法でニッケル或いはその化合物よりなる
電極を塩基性電解液を用いる電池内に組込でもその電位
を−0,3V乃至−〇、SVの範囲内に保持させること
は電気化学的理論からして不可能である。
In other words, even if an electrode made of nickel or its compound is incorporated into a battery using a basic electrolyte using the normal method, it is possible to maintain the potential within the range of -0.3V to -0, SV based on electrochemical theory. It is impossible.

斯る点に着目し本発明者はアルカリ電解液中において水
素標準電極に対し一〇、73Vの電位を有する物質(例
えばコバルト)を前記多孔性電極に含有して多孔性電極
の電位を−0,3V乃至−0,8■の範囲に規制せしめ
ることにより水素ガスを消失させこの種電池の密閉化を
計るものである。
Focusing on this point, the present inventors contained a substance (for example, cobalt) in the porous electrode that has a potential of 10.73 V with respect to a hydrogen standard electrode in an alkaline electrolyte to reduce the potential of the porous electrode to -0. , 3V to -0.8V to eliminate hydrogen gas and seal this type of battery.

次に本発明の一実施例につき説明する。Next, one embodiment of the present invention will be described.

CoSO4・7H20を水に溶解してCo濃度50g/
lの溶液を作り、これを電解液とし金属C。
Dissolve CoSO4・7H20 in water to obtain a Co concentration of 50g/
Make a solution of metal C and use this as the electrolyte.

板を対極としてNi粉末を焼結してなるNi焼結板にC
oを電着し水素ガス消失電極とする。
C on a Ni sintered plate made by sintering Ni powder with the plate as a counter electrode.
o is electrodeposited to form a hydrogen gas dissipation electrode.

尚電解液温度は20〜25℃、PH=6〜7とする。The temperature of the electrolyte is 20 to 25°C, and the pH is 6 to 7.

次にCo電着量について検討したところ、Ni焼結板の
見かけ表面積100crit、に対して電流2Aで1時
間通電した場合における電着量で水素ガスが円滑に吸収
されることが確認された。
Next, the amount of Co electrodeposited was examined, and it was confirmed that hydrogen gas was absorbed smoothly with the amount of electrodeposited when a current of 2 A was applied for 1 hour to a Ni sintered plate with an apparent surface area of 100 crit.

しかし電流2人で30分逆通電た場合にはCo電着量が
少ないためNi焼結板の電位が不安定となり水素ガス吸
収に適する電位に保てなくなる。
However, when current is applied in reverse for 30 minutes by two people, the amount of Co electrodeposited is small, so the potential of the Ni sintered plate becomes unstable and cannot be maintained at a potential suitable for hydrogen gas absorption.

又電流2人で2時間通電した場合にはNi焼結板の表面
が多量の金属Coで被われるためNiの触媒作用が弱く
なり水素ガス吸収が悪くなる。
Furthermore, when current is applied by two people for two hours, the surface of the Ni sintered plate is covered with a large amount of metal Co, which weakens the catalytic action of Ni and impairs hydrogen gas absorption.

以上の結果からCoの電着量は多孔性電極表面積100
dに対して2人の電流で約1時間通電した場合の電着量
が最適である。
From the above results, the amount of Co electrodeposited is 100% of the porous electrode surface area.
The optimum amount of electrodeposition is obtained when current is applied by two people for about 1 hour with respect to d.

第1図は上記せる水素ガス消失電極を用いた密閉式ニッ
ケルー亜鉛電池の概略断面図であり、1は水酸化ニッケ
ルを活物質とせる陽極と亜鉛を活物質とする陰極より構
成される電極群、2は水素ガス消失電極、3,4は正・
負極端子である。
Figure 1 is a schematic cross-sectional view of a sealed nickel-zinc battery using the hydrogen gas dissipation electrode described above, and 1 is an electrode group consisting of an anode using nickel hydroxide as an active material and a cathode using zinc as an active material. , 2 is hydrogen gas dissipation electrode, 3 and 4 are positive and
It is a negative terminal.

尚、水素ガス消失電極2は3相界面に配置され、電解液
はその量が規制されている。
Note that the hydrogen gas dissipation electrode 2 is placed at the three-phase interface, and the amount of electrolyte is regulated.

第2図は密閉式ニッケルー亜鉛電池の密閉後における放
置期間と電池内圧との関係を示す特性図であり、本発明
電池は水素ガス消失電極を有しない従来電池に比して電
池内圧が極めて低く保持されていることがわかる。
Figure 2 is a characteristic diagram showing the relationship between the storage period after sealing and the battery internal pressure of a sealed nickel-zinc battery.The battery of the present invention has an extremely low battery internal pressure compared to conventional batteries that do not have a hydrogen gas dissipation electrode. It can be seen that it is retained.

このようにニッケル或いはその化合物よりなる多孔性電
極を水素標準電極に対して一〇、3V乃至O,S Vの
電位に規制することにより水素ガスを効率的に消失させ
る理由は未だ明らかでないが、上記電位範囲においてニ
ッケルが水素ガスのイオン解離化に対して活性となるた
めであろうと推測される。
Although it is not yet clear why hydrogen gas can be efficiently dissipated by regulating the potential of a porous electrode made of nickel or its compound to a potential of 10.3 V to O.S.V. relative to a hydrogen standard electrode. It is presumed that this is because nickel becomes active for ion dissociation of hydrogen gas in the above potential range.

上述した如く、本発明は亜鉛或いは鉄等のようにアルカ
リ電解液と反応して水素を発生する物質を陰極活物質と
して利用せる電池において、ニッケル或いはその化合物
よりなる水素ガス消失電極にアルカリ電解液で水素標準
電極に対して−0,73■の電位を有するコバルトを含
有し、水素ガス消失電極を一〇、3■乃至一〇、8Vの
電位に規制することにより、電池放置中において電池内
部に発生する水素ガスを継続的に消失せしめるものであ
り、従来水素ガス消失用の触媒として利用されている高
価な貴金属を用いることなく、安価にこの種電池の密閉
化を可能ならしめることができその工業的価値は極めて
犬なるものである。
As mentioned above, the present invention provides a battery in which a substance that generates hydrogen by reacting with an alkaline electrolyte, such as zinc or iron, is used as a cathode active material, in which an alkaline electrolyte is added to a hydrogen gas dissipating electrode made of nickel or a compound thereof. By regulating the hydrogen gas dissipation electrode to a potential of 10.3V to 10.8V, the internal battery can be kept safe while the battery is left unused. It is a device that continuously dissipates the hydrogen gas generated during hydrogen gas dissipation, and it is possible to seal this type of battery at low cost without using the expensive precious metals conventionally used as catalysts for hydrogen gas dissipation. Its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の概略断面図、第2図は本発明電池
と従来電池における電池内圧と放置期間との関係を示す
特性比較図である。 1・・・・・・主電極群、2・・・・・・水素ガス消失
電極、3゜4・・・・・・陽・陰極端子。
FIG. 1 is a schematic cross-sectional view of the battery of the present invention, and FIG. 2 is a characteristic comparison diagram showing the relationship between battery internal pressure and storage period for the battery of the present invention and a conventional battery. 1...Main electrode group, 2...Hydrogen gas dissipation electrode, 3゜4...Positive/cathode terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 銀若しくはニッケルを活物質とする陽極と、該陽極
より犬なる容量を有し亜鉛又は鉄を活物質とする陰極と
、ニッケル或いはニッケル化合物よりなる水素ガス消失
電極とを備え、前記水素ガス消失電極にコバルトを含有
せしめ、標準水素電極に対して一〇、 3 V乃至−0
,8Vの電位に規制せしめたことを特徴とする密閉式ア
ルカリ蓄電池。
1.Equipped with an anode made of silver or nickel as an active material, a cathode having a larger capacity than the anode and made of zinc or iron as an active material, and a hydrogen gas dissipation electrode made of nickel or a nickel compound, The electrode contains cobalt and has a voltage of 10.3 V to -0 compared to a standard hydrogen electrode.
, a sealed alkaline storage battery characterized by being regulated to a potential of 8V.
JP50093623A 1975-07-30 1975-07-30 Mitsupeishiki alkaline chikudenchi Expired JPS5831705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50093623A JPS5831705B2 (en) 1975-07-30 1975-07-30 Mitsupeishiki alkaline chikudenchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50093623A JPS5831705B2 (en) 1975-07-30 1975-07-30 Mitsupeishiki alkaline chikudenchi

Publications (2)

Publication Number Publication Date
JPS5217625A JPS5217625A (en) 1977-02-09
JPS5831705B2 true JPS5831705B2 (en) 1983-07-07

Family

ID=14087440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50093623A Expired JPS5831705B2 (en) 1975-07-30 1975-07-30 Mitsupeishiki alkaline chikudenchi

Country Status (1)

Country Link
JP (1) JPS5831705B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195139U (en) * 1981-06-05 1982-12-10
JPS597639A (en) * 1982-07-05 1984-01-14 Fuji Photo Film Co Ltd Sheet work conveying mechanism
JPS611104U (en) * 1984-06-09 1986-01-07 株式会社 妙徳 Suction pad with sensor
JPS61189033U (en) * 1985-05-17 1986-11-25
JPS63230497A (en) * 1987-03-20 1988-09-26 日産自動車株式会社 Cargo gear for industrial car

Also Published As

Publication number Publication date
JPS5217625A (en) 1977-02-09

Similar Documents

Publication Publication Date Title
KR880007786A (en) Electrochemical Hydrogen Storage Alloys and Electrochemical Cells
US3438812A (en) Rechargeable alkaline cell
US5128219A (en) Gas-tight, sealed metal oxide/hydrogen storage battery
US5132177A (en) Alkaline storage cell
US4003754A (en) Hermetic alkaline storage battery
US4350745A (en) Electrochemical cells having hydrogen gas absorbing agent
US3874928A (en) Hermetically sealed secondary battery with lanthanum nickel anode
JPS60109183A (en) Sealed type nickel-hydrogen storage battery
JPS5831705B2 (en) Mitsupeishiki alkaline chikudenchi
JPH09120817A (en) Non-sintered nickel positive electrode and alkaline storage battery using it
JPS60100382A (en) Closed nickel-hydrogen storage battery
US2837590A (en) Molybdenum anode cell
JPS5831706B2 (en) Mitsupeishiki alkaline chikudenchi
US4318967A (en) Long-life galvanic primary cell
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
KR100307935B1 (en) Alkali accumulators in the form of button-cells
JPS61290668A (en) Sealed zinc alkaline storage battery
JP2846707B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
JPH0513096A (en) Metal hydride storage battery
JP3587213B2 (en) Negative electrode active material for air-Ga primary battery and air-Ga primary battery using the same
JPH044574A (en) Secondary battery
JP2865394B2 (en) Sintered cadmium cathode for alkaline storage batteries
JPH028419B2 (en)
JPH06150921A (en) Sealed nickel-hydrogen battery
JPH04196057A (en) Metal hydride sealed secondary battery