JPS5831575A - Polycrystalline thin film transistor - Google Patents

Polycrystalline thin film transistor

Info

Publication number
JPS5831575A
JPS5831575A JP56128757A JP12875781A JPS5831575A JP S5831575 A JPS5831575 A JP S5831575A JP 56128757 A JP56128757 A JP 56128757A JP 12875781 A JP12875781 A JP 12875781A JP S5831575 A JPS5831575 A JP S5831575A
Authority
JP
Japan
Prior art keywords
film
thin film
polycrystalline
region
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56128757A
Other languages
Japanese (ja)
Inventor
Makoto Matsui
誠 松井
Yasuhiro Shiraki
靖寛 白木
Eiichi Maruyama
丸山 「えい」一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56128757A priority Critical patent/JPS5831575A/en
Priority to KR8203569A priority patent/KR900008942B1/en
Priority to CA000409651A priority patent/CA1195784A/en
Priority to EP19820304352 priority patent/EP0073603B1/en
Priority to DE8282304352T priority patent/DE3277101D1/en
Publication of JPS5831575A publication Critical patent/JPS5831575A/en
Priority to KR1019900010455A priority patent/KR910001910B1/en
Pending legal-status Critical Current

Links

Classifications

    • H01L29/78618
    • H01L29/70
    • H01L29/78

Abstract

PURPOSE:To enable large area and long length of a thin film transistor and to obtain a semiconductor material having 1cm<2>/V.sec of mobility of carrier by forming the length of the region in which at least the carrier moves longer than ten times of the diameter of crysralline grain when forming a semiconductor device using a polycrystalline semiconductor film. CONSTITUTION:A silicon film 2 having approx. 2,000Angstrom of the diameter of crystalline grain and approx. 2cm<2>/V.sec of mobility of carrier is formed on a sbustrate 1. Then, an SiO2 film 3 is coated by a vapor growing method in a thickness of 5,000Angstrom . Subsequently, windows for the source and drain regions are formed in the film 3. The interval between the source region and the drain region is 20mum. Accordingly, the channel length becomes 20mum. Then, an n<+> type layer 4, a field oxidized film 5, an SiO2 film 6, a source electrode 7, a drain electrode 8 and a gate electrode 9 are sequentially formed. Thereafter, a heat treatment is performed in H2 atmosphere, thereby manufacturing a thin film MOS field effect transistor of the structure provided with the channel of 20mum long.

Description

【発明の詳細な説明】 不発明は、絶縁性基体上に形成された多結晶半導体薄膜
t−素材として成るトランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a transistor consisting of a polycrystalline semiconductor thin film t-material formed on an insulating substrate.

本発明のトランジスタは、例えば液晶やエトクトロルミ
ネツセンス等を用いた平面表示装置の表示用基板に一体
化し駆動用に用いる半導体装置として利用して有用なも
のである。
The transistor of the present invention is useful, for example, when it is integrated into a display substrate of a flat display device using liquid crystal, ectoluminescence, etc., and utilized as a semiconductor device used for driving.

従来、液晶千面責示装置としては、例えば、単結晶81
基板上にM08トランジスタの二次元スイッチング・マ
トリットスと周辺走査回路とt 一体化し友集積回路と
して形成し、この単結晶Bt集積回路素子と対電極との
間に封入され九液晶t。
Conventionally, as a liquid crystal display device, for example, single crystal 81
A two-dimensional switching matrix of M08 transistors and a peripheral scanning circuit are integrated on the substrate to form a companion integrated circuit, and a liquid crystal is sealed between this single-crystal Bt integrated circuit element and a counter electrode.

前記単結晶81集積回路素子によって駆動する方式が採
用されている。この場合、基板が単結晶で′あるので、
作製し得る基板の大きさに限度があるために、作製し得
る液晶千面狭示装置の画面の大きさに限界がある。例え
ば、現在のところ作製しつるSIウェーハーの直径は最
大5インチであるから、5型以上のブラワン管に相当す
る大きさの画面は作製できない。大面積化かできないこ
とは、l1iil像装置としては大きな欠点である。
A driving method using the single crystal 81 integrated circuit element is adopted. In this case, since the substrate is a single crystal,
Since there is a limit to the size of the substrate that can be manufactured, there is a limit to the screen size of the liquid crystal display device that can be manufactured. For example, since the maximum diameter of SI wafers currently manufactured is 5 inches, it is not possible to manufacture a screen with a size equivalent to a 5-inch or larger Blauwan tube. The inability to increase the area is a major drawback as an 11iI imaging device.

この欠点をなくすために、非晶質基板上に非晶質半導体
膜もしくは多結晶半導体膜を形成し、これら、非晶質半
導体もしくは多結晶半導体を素材として上記のような果
槓回l16素子全形成し、平面表示装置の、駆動に用い
る方法も提案さnている。
In order to eliminate this drawback, an amorphous semiconductor film or a polycrystalline semiconductor film is formed on an amorphous substrate, and the entire 16 element as described above is manufactured using the amorphous semiconductor or polycrystalline semiconductor as a material. Methods for forming and driving flat display devices have also been proposed.

この場合には、非晶質基板上に真空蒸着等の方法テ形成
さytfc午導体薄導体薄膜るのでめるから、直径5イ
ンチを越えるような大面積化は可能でめシ、平面表示装
置の大面積化が可能となる。
In this case, since the YTFC conductor thin film is formed on the amorphous substrate using a method such as vacuum evaporation, it is possible to create a large area with a diameter of more than 5 inches. It becomes possible to enlarge the area.

しかし、非晶質半導体膜を用い友場合には、非晶質半導
体薄膜のキャリア移動度が著しく低いために、非晶質半
導体薄膜を素材として形成したトランジスタの特性が悪
いという欠点がおる。−万、多結晶半導体薄膜を用いた
場合には、キャリア移動度は、表示素子として萌える程
度には十分高いが、結晶粒径と素子の電流通wI(チャ
ンネル)&が略々同じ11度の場合には、結晶粒界が存
在するために、作製した素子毎の特性にバラツキが生じ
るという欠点がるる。すなわち、ある素子の電流通路は
結晶粒界を横切るが、他の素子の電流通路は結晶粒界を
横切らないということが起こり、各素子によって、キャ
リアの伝導が結晶粒界の影響金量けたり、受性なかった
りする。したがって、各素子によって、トランジスタ特
性18例えば伝達コンダクタンスが!4なる結果となる
However, when an amorphous semiconductor film is used, there is a drawback that the carrier mobility of the amorphous semiconductor thin film is extremely low, so that the characteristics of a transistor formed from the amorphous semiconductor thin film are poor. - When a polycrystalline semiconductor thin film is used, the carrier mobility is sufficiently high to be used as a display element. In some cases, the presence of grain boundaries causes variations in the characteristics of each fabricated device, which is a drawback. In other words, a current path in one element crosses a grain boundary, but a current path in another element does not cross a grain boundary, and carrier conduction depends on each element depending on the effect of grain boundaries. , there may be no receptivity. Therefore, depending on each element, the transistor characteristics 18, for example, the transfer conductance! The result is 4.

本発明の目的は、上記した従来技術の欠点金なくし、ト
ランジスタ特性の優れた、しかも一様な特性の薄膜トラ
ンジスタを提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a thin film transistor with excellent transistor characteristics and uniform characteristics.

本発明は所定の基板上に多結晶半導体膜が形成され、こ
の多結晶半導体膜を用いて半導体装置を形成する場合、
少なくともキャリアが走行する領域の長さが結晶粒径(
結晶粒が扁平な形状の場合は長径)の10倍以上となす
。なお、本明細書において結晶粒径は1平均の結晶粒径
”を意味するものとする。即ちキャリアの走行中に遭遇
する粒界の数に素子特性が依存するわけでらる。キャリ
アの走行する領域に十分多数の結晶粒が存在するためキ
ャリアは多数の結晶粒界の影響金量けるので、多数の半
導体装置を製造し九場合、その特性の一様性は良好なも
のとなる。この特性ばらつきの点からはキャリアの走行
する領域の長さが結晶粒通の50倍以上がよシ好筐しく
、特性のばらつtltよ)良く抑制することができる。
In the present invention, when a polycrystalline semiconductor film is formed on a predetermined substrate and a semiconductor device is formed using this polycrystalline semiconductor film,
At least the length of the area where carriers travel is the crystal grain size (
If the crystal grains are flat, the length should be at least 10 times the major axis. Note that in this specification, the crystal grain size refers to the average crystal grain size. In other words, the device characteristics depend on the number of grain boundaries encountered during carrier travel. Since there are a sufficiently large number of crystal grains in the area where the semiconductor device is formed, the carriers are affected by the large number of crystal grain boundaries, so when a large number of semiconductor devices are manufactured, the uniformity of their characteristics is good. From the viewpoint of characteristic variations, it is best if the length of the region in which the carriers travel is 50 times or more the length of the crystal grain, and the characteristic variations (tlt) can be well suppressed.

しかし、−万、各結晶粒径が余り小さい場合、牛導体材
料のものの特性(たとえば、キャリアの移動度)が劣化
するので、少なくとも150nm以上ろることがより好
筐しい。
However, if the crystal grain size is too small, the properties of the conductor material (eg, carrier mobility) will deteriorate, so it is more preferable that the crystal grain size be at least 150 nm or more.

勿論%仁れ以下の結晶粒径でろっても、素子特性のばら
つl!を低減化し、素子の一様化をはかるという点にお
いて、上記のキャリアの走行頒域の長さと結晶粒径の関
係が有用なことはいう萱でもない。
Of course, even if the crystal grain size is less than % grain size, there will be variations in device characteristics! Needless to say, the relationship between the length of the carrier traveling distribution area and the crystal grain size is useful in terms of reducing the carrier distribution area and making the device uniform.

半導体装置の回路設計上、キャリアの走行領域□の長さ
くたとえば電界効果トランジスタの場合、チャネル長に
該尚する)が定1っている場合、多結晶粒径を調節する
。−万、多結晶薄膜形成条件上の制約から結晶粒径の大
きさが制限を受け゛る場合、これに合わせて素子設計お
よび回路設計を行なう必要かめる。
In the circuit design of a semiconductor device, when the length of the carrier travel region □ (for example, in the case of a field effect transistor, this corresponds to the channel length) is constant, the polycrystalline grain size is adjusted. - If the size of crystal grains is restricted due to constraints on the conditions for forming polycrystalline thin films, it will be necessary to design elements and circuits accordingly.

キャリアの走行領域の長さの上限は設計上はないが実用
的には100μm以下であろう。また、粒径の下限も特
に設定t、11いが実用的には100λ以上でキャリア
の移動度を確保し得る。従って、キャリアの走行領域の
長さと粒径との比は実用的に10000倍s&が上限と
なろう。
Although there is no upper limit to the length of the carrier travel region in terms of design, it is probably 100 μm or less in practice. In addition, the lower limit of the particle size is particularly set at t, 11, but in practice, carrier mobility can be ensured at 100λ or more. Therefore, the practical upper limit of the ratio between the length of the carrier traveling area and the particle size will be 10,000 times s&.

半導体層の厚みとしては、チャンネルが形成されればよ
いので、最小IQQnm以上ろればよい。
As long as a channel is formed, the thickness of the semiconductor layer may be at least the minimum IQQ nm.

更にsoonm以上がよシ好ましい。Furthermore, it is more preferable that it be soon m or more.

基板としては、ガラス基板tはじめA401等のセラミ
ックス基板等非晶質もしくは多結晶基板が有用である。
As the substrate, an amorphous or polycrystalline substrate such as a glass substrate or a ceramic substrate such as A401 is useful.

ひとつには価格の点からであり、特にガラス基板は安価
である。更に基板として透光性のものを用いることが出
来る。
One reason is the cost, and glass substrates are especially inexpensive. Furthermore, a translucent substrate can be used as the substrate.

なお、好萱しい多結晶半導体膜の蒸着方法は次の通りで
ある。
Note that a preferred method for depositing a polycrystalline semiconductor film is as follows.

超高真空達成可能な真空蒸着装置は通常の超高真空装置
を持つ蒸着装置で良い。
The vacuum evaporation apparatus capable of achieving an ultra-high vacuum may be a evaporation apparatus having a normal ultra-high vacuum apparatus.

蒸着中の真空度はlXl0−aTorr  未満の高真
空となす、更に%に蒸着中の残留気体中の01は特性に
悪影響を及ぼすので、酸素分圧はlXl0−@’I’o
rr未満となす。
The degree of vacuum during vapor deposition is set to a high vacuum of less than lXl0-a Torr. Furthermore, since 01 in the residual gas during vapor deposition has an adverse effect on the characteristics, the oxygen partial pressure is set to lXl0-@'I'o.
less than rr.

蒸着速度は1.00 OA / hour ナイLl 
O,000人zhourを用いる。
The deposition rate is 1.00 OA/hour
Using 0,000 people zhour.

粒径の制御は蒸着膜の膜厚、基板温度、蒸着速度、およ
び真空ft−制御することで一応の目的を達し得る。第
1図は基板温度は600C,蒸着速度は5000人/h
our、蒸着中の真空度8xlO°@Torrの条件下
での蒸着膜の膜厚と平均の結晶粒径の関係を示す図であ
る。膜厚は水晶振動子を用いて測定し友。
The particle size can be controlled to some extent by controlling the thickness of the deposited film, the substrate temperature, the deposition rate, and the vacuum ft. In Figure 1, the substrate temperature is 600C and the deposition rate is 5000 people/h.
FIG. 4 is a diagram showing the relationship between the thickness of a deposited film and the average crystal grain size under the condition of a vacuum degree of 8×10°@Torr during deposition. Film thickness can be measured using a crystal oscillator.

又、場合によってはレーザ・アンニール等の手段によっ
て粒径を制御しても良い。
Further, depending on the case, the particle size may be controlled by means such as laser annealing.

多結晶シリコ/膜t7F11工して半導体装置を作製す
る丸めには、数段階の工程を経なければならない一一、
これらの工程における熱処理@11 t %超硬質ガラ
スの軟化点でめる820Cよシ低く押さえることによっ
て本発明の利点を十分に生かすことができる。軟化点の
低いガラス基板を用いる場合には、更に低く、例えば5
50C以下に押さえることも可能である。以下では、ト
ランジスタの例として、MO8型電界効果トランジスタ
11rIP11にとって説明する。
To fabricate a semiconductor device using polycrystalline silicon/film T7F11, several steps must be taken.
The advantages of the present invention can be fully utilized by suppressing the heat treatment in these steps to a temperature lower than 820C, which is the softening point of ultra-hard glass. When using a glass substrate with a low softening point, the softening point is even lower, for example 5.
It is also possible to keep the temperature below 50C. In the following, an MO8 field effect transistor 11rIP11 will be explained as an example of a transistor.

ゲート酸化膜を得るためには、一般には、シリコン基板
の熱酸化法によっているが、熱酸化の場合1000C以
上の高温全必要とするので、今の目的には便見ない。こ
の例では、300t:’以上500C以下の温度でS量
H4とOx t−反応さぜ、もしくは400C以上go
or以下の温度で8iH。
Generally, a gate oxide film is obtained by thermal oxidation of a silicon substrate, but since thermal oxidation requires a high temperature of 1000 C or more, it is not convenient for the present purpose. In this example, the S amount H4 and Ox t-react at a temperature of 300t:' or more and 500C or less, or at a temperature of 400C or more.
8iH at a temperature below or.

とNO,を反応させて、8’0@膜を気相成長さぞ、こ
の気相成長した810.膜をゲート酸化膜として用いる
The 8'0@ film was grown in a vapor phase by reacting with and NO, and the 810. The film is used as a gate oxide film.

’t’、従来は、ソース領域、ならびにドレイン領域を
形成するためには、熱拡散によって90層や00層を形
成する方法が一般的に行なわれている。しかし、この方
法は、1isoc@vの熱処理ケ必豐とするので、今の
目的には使えない。本発明では、熱拡散に代って、イオ
ン打ち込み法によってp+l−1もしくは、0+層を形
成する方法音用いる。イオン打ち込み後、電気的に活性
化するために熱処理するが、この際、熱処理、温には、
使用する基板の軟化点より低く押える必要がおる。
Conventionally, in order to form a source region and a drain region, a method of forming 90 layers or 00 layers by thermal diffusion has been generally used. However, this method cannot be used for the present purpose because it requires a heat treatment of 1 isoc@v. In the present invention, a method of forming a p+l-1 or 0+ layer by ion implantation is used instead of thermal diffusion. After ion implantation, heat treatment is performed to activate electrically, but at this time, the heat treatment and temperature are
It is necessary to keep the temperature lower than the softening point of the substrate used.

そこで、例えばBF、”の工うな550C′8度の低温
の熱処理で高い活性化のでさるイオンケ打ち込むとか、
或いは、例えばB9イオン等?打ち込んだあと、リバー
ス・アニーリング効果(逆焼鈍効果)が起こる直前の5
00C〜600C程度の温度で熱処理を行なう等の方法
を採用する。p+イオン、As+イオン等の場合、リバ
ース・アニーリング効果は80イオンの場合はど顕著で
はないが、500C〜600C程度の熱処理で十分活性
化できる。従って、500C〜6007:’程度の低温
工程で90層、n+層のいずれ金も形成することかでさ
る。超硬質ガラスのように軟化点温度が800Cよりも
高い基板を用いる場合には、5oocoa度で熱処理し
てもよいことは勿論である。
Therefore, for example, ion implantation with high activation is performed by heat treatment at a low temperature of 550C'8 degrees.
Or, for example, B9 ion? 5 after driving, just before the reverse annealing effect occurs.
A method such as heat treatment at a temperature of about 00C to 600C is adopted. In the case of p+ ions, As+ ions, etc., the reverse annealing effect is not as pronounced in the case of 80 ions, but it can be sufficiently activated by heat treatment at about 500C to 600C. Therefore, it is possible to form both the 90 layer and the n+ layer of gold in a low temperature process of about 500C to 6007:'. When using a substrate having a softening point higher than 800 C, such as ultra-hard glass, it goes without saying that heat treatment may be performed at 5 oocoa degrees.

以上の如き製造方法を用いることによって、大雨積もし
くは長尺化が可能で、かつキャリアの易動度が151宜
/v@(6)以上の半導体材料を得ることが出来る。
By using the manufacturing method as described above, it is possible to obtain a semiconductor material that can be produced in large amounts or in a long length and has a carrier mobility of 151/v@(6) or more.

以下、不発明を実施例を参照して詳細に説明する。Hereinafter, the invention will be explained in detail with reference to Examples.

の多結晶シリコン膜の表面層にチャンネルを設は九構造
のn−チャンネルMO8電界効果トランジスタ【作製す
る場合の実施例を、第2図の工程説明用断面図を用いて
説明する。
An embodiment in which a channel is formed in the surface layer of a polycrystalline silicon film to fabricate a nine-structure n-channel MO8 field effect transistor will be described with reference to the process-explanatory cross-sectional diagram of FIG.

まず、基板を超高真空達成可能な真空蒸着装置内に装着
する。装置は一般のものでよい。コーニング7059ガ
ラス基板1上に、基板温度600C5蒸着中の真空度8
X10””’I’orr、蒸着速度5000A/hou
rの条件で真空蒸着することにより、シリコン膜2 i
 1.5μmの厚みに被着する。
First, the substrate is placed in a vacuum evaporation device capable of achieving an ultra-high vacuum. The equipment may be of general type. On Corning 7059 glass substrate 1, substrate temperature 600C5 vacuum degree during deposition 8
X10""'I'orr, deposition rate 5000A/hou
A silicon film 2 i is formed by vacuum deposition under the conditions of r.
Deposit to a thickness of 1.5 μm.

(I11図建))。形成され九シリコン膜2は−わずか
に硼素がドープされたp!IIの多結晶シリコンでTo
#)、結晶粒径は約2000人%キャリア移動度は約れ
一/V・(6)でめる。
(I11 Zuken)). The silicon film 2 formed is - slightly boron doped p! II polycrystalline silicon To
#), the crystal grain size is approximately 2000%, and the carrier mobility is approximately 1/V·(6).

次に、基板温度400Cで気相成長法によシ8i0.膜
3t−500OAの厚みに被着する<m2図Φ))。次
に142図(C)のように、このsio。
Next, 8i0. The film is deposited to a thickness of 3t-500OA <m2 (Fig. Φ)). Next, as shown in Figure 142 (C), this sio.

膜にソース、およびドレイン領域の窓あけ1行なう、ソ
ース領域とドレイン領域の間隔は20μmとなす。従っ
てチャネル長は20μmとなる。次に100k15Vの
エネルギーのP0イオンを1×10” /clIM”の
ドース量で打ち込み、N、雰囲気中で600Cで30分
間熱処理することによって1ンースおよびドレイン領域
にn0層4を形成する。
A window is formed in the film for the source and drain regions, and the distance between the source and drain regions is 20 μm. Therefore, the channel length is 20 μm. Next, P0 ions with an energy of 100k15V are implanted at a dose of 1×10''/clIM'', and heat treatment is performed at 600C for 30 minutes in an N atmosphere to form an n0 layer 4 in the drain region.

次に%w42図(e)のようにフィールド用酸化膜5t
−残してgi□、を除去する。再び気相成長法によりゲ
ート酸化膜用に8i0.膜6を7500人の厚みに被着
する(第2図(1月。更に、ホトエッチフグ工程により
電極接触用孔を、第211Il(2)のようにあけ、全
面にAlt蒸着したあと、ホトエツテングエ福によりA
tを加工して、ソース電極7、ドレイン電極8、ゲート
電極9t−形成する。このあとH8雰囲気中で400C
30分間の熱処理を行なう。以上の工程により、多結晶
シリコン膜の弐面層に長さ20μmのチャンネルが設け
らn九構造の、薄膜MO8電界効果トランジスタが作製
された。この半導体装置は、トランジスタとして良好で
安定な特性を示す。
Next, as shown in Figure %w42 (e), the field oxide film 5t is
-remain and remove gi□. A gate oxide film of 8i0. A film 6 is deposited to a thickness of 7,500 mm (Fig. 2 (January). Furthermore, holes for electrode contact are made as shown in No. 211Il (2) using a photoetch process, and after Alt is deposited on the entire surface, a film is deposited using a photoetch process. A
t is processed to form a source electrode 7, a drain electrode 8, and a gate electrode 9t. After this, 400C in H8 atmosphere
Heat treatment is performed for 30 minutes. Through the above steps, a thin film MO8 field effect transistor having an n9 structure in which a channel with a length of 20 μm was provided in the second layer of the polycrystalline silicon film was manufactured. This semiconductor device exhibits good and stable characteristics as a transistor.

W2B図に試作したMOSFETのXaにおける特性例
を示す。ゲート電圧Vo’tパラメータとするドレイン
電1M I n対ドレイン電圧voiW性でめる。
Figure W2B shows an example of the characteristics of the prototype MOSFET at Xa. Determine the relationship between the drain voltage 1M I n and the drain voltage voiW using the gate voltage Vo't parameter.

この例においてチャネル長20μmに対して、結晶粒径
は略2000人である。従って、キャリアの走行方向に
十分多数の結晶粒が存在し、キャリアは多数の結晶粒界
の影響を受け、その影響による効果は多くの素子を製造
した場合、特性は一様化される。
In this example, for a channel length of 20 μm, the crystal grain size is approximately 2000 μm. Therefore, a sufficiently large number of crystal grains exist in the traveling direction of the carrier, the carrier is influenced by a large number of crystal grain boundaries, and the effects of this influence make the characteristics uniform when many devices are manufactured.

なお、以上の説明ではシリコン膜を用いて説明したが、
他の半導体材料九とえばゲルマニクム膜等においても同
様の考えが適用できることはいう1でもない。
Note that although the above explanation uses a silicon film,
It goes without saying that the same idea can be applied to other semiconductor materials, such as germanium films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蒸着膜の膜厚と結晶粒径の関係を示す図、18
2図は多結晶半導体膜を用いてMO8F’E’l’を製
造する工程を示す断面図、累3図は実施例のMO8FE
T+2)%性図である。 l・・・非晶質もしくは多結晶基板、2・・・多結晶シ
リコン、3・・・8 i 0.膜、4・・・不純物領域
、5・・・フィールド用酸化膜、6・・・ゲート酸化膜
、?、8.9・・・電極。 代理人 弁理士 薄田利幸 第  1   回 主 葦 膜 4   (ハノ ρ  to   zl)  ”za  to  56メ
Sρ (V)
Figure 1 is a diagram showing the relationship between the thickness of the deposited film and the crystal grain size, 18
Figure 2 is a cross-sectional view showing the process of manufacturing MO8F'E'l' using a polycrystalline semiconductor film, and Figure 3 is an example MO8FE.
T+2)% sex diagram. l... Amorphous or polycrystalline substrate, 2... Polycrystalline silicon, 3...8 i 0. Film, 4... Impurity region, 5... Field oxide film, 6... Gate oxide film, ? , 8.9...electrode. Agent Patent Attorney Toshiyuki Usuda 1st Main Reed Membrane 4 (Hano ρ to zl) ”za to 56me Sρ (V)

Claims (1)

【特許請求の範囲】 1、所定基板上に多結晶半導体薄膜が形成され1誼多結
晶半導体薄膜にキャリアを走行せしめるための一対の電
極像域と、前記キャリアを制御するための手段とを少な
くとも有する多結晶薄膜トランジスタにおいて、前記の
キャリア金走行せしめる領域の長さが実質的なキャリア
の走行方向における結晶粒の大きさの10倍以上t−V
することを特徴とする多結晶薄膜トランジスタ。 2、特許請求の範囲第1項記載の多結晶薄膜トランジス
タにおいて、前記のキャリアを走行せしめる領域の長さ
が実質的なキャリアの走行方向における結晶粒の大きさ
の50倍以上t−有することを4!徽とする。 3.4!許請求の範囲第1項又は11!2項記載の多結
晶薄膜トランジスタにおいて、少くともキャリアの走行
せしめる領域の各結晶粒径が150t1m以上なること
t%黴とする。 4.41許請求の範囲第1項〜W43項記載の多結晶薄
膜は圧力がIXIG−” ’fort未満の高真空下で
の真空蒸着法により形成されて成ること全特徴とする。
[Scope of Claims] 1. A polycrystalline semiconductor thin film is formed on a predetermined substrate, and at least a pair of electrode image areas for causing carriers to travel through the polycrystalline semiconductor thin film and means for controlling the carriers are provided. In the polycrystalline thin film transistor having a polycrystalline thin film transistor, the length of the region where the carrier gold travels is at least 10 times the size of the crystal grain in the substantial carrier traveling direction t-V.
A polycrystalline thin film transistor characterized by: 2. In the polycrystalline thin film transistor according to claim 1, the length of the region through which the carriers travel is 50 times or more the size of the crystal grain in the substantial carrier traveling direction. ! It is my honor. 3.4! In the polycrystalline thin film transistor according to claim 1 or 11!2, it is defined as t% mold that each crystal grain size in at least the region where carriers travel is 150 t1 m or more. 4.41 The polycrystalline thin film described in Claims 1 to W43 is characterized in that it is formed by a vacuum evaporation method under a high vacuum at a pressure of less than IXIG-'''fort.
JP56128757A 1981-08-19 1981-08-19 Polycrystalline thin film transistor Pending JPS5831575A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP56128757A JPS5831575A (en) 1981-08-19 1981-08-19 Polycrystalline thin film transistor
KR8203569A KR900008942B1 (en) 1981-08-19 1982-08-09 Poly-crystal thin-film transistor
CA000409651A CA1195784A (en) 1981-08-19 1982-08-18 Polycrystalline thin-film transistor
EP19820304352 EP0073603B1 (en) 1981-08-19 1982-08-18 Polycrystalline thin-film transistor,integrated circuit including such transistors and a display device including such a circuit
DE8282304352T DE3277101D1 (en) 1981-08-19 1982-08-18 Polycrystalline thin-film transistor,integrated circuit including such transistors and a display device including such a circuit
KR1019900010455A KR910001910B1 (en) 1981-08-19 1990-07-11 Surface display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56128757A JPS5831575A (en) 1981-08-19 1981-08-19 Polycrystalline thin film transistor

Publications (1)

Publication Number Publication Date
JPS5831575A true JPS5831575A (en) 1983-02-24

Family

ID=14992707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56128757A Pending JPS5831575A (en) 1981-08-19 1981-08-19 Polycrystalline thin film transistor

Country Status (3)

Country Link
JP (1) JPS5831575A (en)
KR (1) KR900008942B1 (en)
CA (1) CA1195784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100468A (en) * 1983-11-07 1985-06-04 Hitachi Ltd Thin film semiconductor device and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515967A (en) * 1974-07-03 1976-01-19 Suwa Seikosha Kk HANDOTA ISOCHI
JPS5617083A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Semiconductor device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515967A (en) * 1974-07-03 1976-01-19 Suwa Seikosha Kk HANDOTA ISOCHI
JPS5617083A (en) * 1979-07-20 1981-02-18 Hitachi Ltd Semiconductor device and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100468A (en) * 1983-11-07 1985-06-04 Hitachi Ltd Thin film semiconductor device and manufacture thereof
JPH0530053B2 (en) * 1983-11-07 1993-05-07 Hitachi Ltd

Also Published As

Publication number Publication date
KR840001391A (en) 1984-04-30
CA1195784A (en) 1985-10-22
KR900008942B1 (en) 1990-12-13

Similar Documents

Publication Publication Date Title
US6228692B1 (en) Thin film semiconductor device, method for fabricating the same and semiconductor device
US5534445A (en) Method of fabricating a polysilicon thin film transistor
JPH04234134A (en) Thin-film transistor and its manufacture
JP2505736B2 (en) Method for manufacturing semiconductor device
JPH03116875A (en) Thin film field effect transistor and method of manufacturing the same
JPH0422120A (en) Thin film semiconductor device
EP0073603B1 (en) Polycrystalline thin-film transistor,integrated circuit including such transistors and a display device including such a circuit
JPS5831575A (en) Polycrystalline thin film transistor
EP0043691B1 (en) Semiconductor device having a polycrystalline semiconductor film
JPH0393273A (en) Manufacture of thin film semiconductor device
JP2794833B2 (en) Method for manufacturing thin film transistor
JP3016486B2 (en) Thin film transistor
JP3279369B2 (en) Method for manufacturing field effect transistor
JPH0412629B2 (en)
KR910001910B1 (en) Surface display device
JP3130661B2 (en) Thin film transistor and method of manufacturing the same
JPH0319340A (en) Manufacture of semiconductor device
JPS63307776A (en) Thin-film semiconductor device and manufacture thereof
JPS631071A (en) Thin-film semiconductor device
JP2503626B2 (en) Method of manufacturing MOS field effect transistor
JPS5922365A (en) Polycrystalline thin-film transistor
JPH09181325A (en) Manufacture of thin film semiconductor device
JPS61231765A (en) Manufacture of thin film semiconductor device
JPH03241874A (en) Manufacture of thin film semiconductor device
JPS58182835A (en) Treatment of substrate for thin film transistor