JPS5831076A - Method and device for forming film by physical vapor deposition method - Google Patents

Method and device for forming film by physical vapor deposition method

Info

Publication number
JPS5831076A
JPS5831076A JP12841281A JP12841281A JPS5831076A JP S5831076 A JPS5831076 A JP S5831076A JP 12841281 A JP12841281 A JP 12841281A JP 12841281 A JP12841281 A JP 12841281A JP S5831076 A JPS5831076 A JP S5831076A
Authority
JP
Japan
Prior art keywords
plated
container
vessel
vapor deposition
vibrating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12841281A
Other languages
Japanese (ja)
Inventor
Takashi Kuhara
隆 久原
Makoto Nagaoka
誠 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP12841281A priority Critical patent/JPS5831076A/en
Publication of JPS5831076A publication Critical patent/JPS5831076A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a uniform film efficiently even with relatively small objects such as powder, granules or the like by transmitting oscillations through a vessel disposed in a bell-jar on the object to be plated in said vessel and forming the film in such a state. CONSTITUTION:After the inside of a bell-jar A is evacuated 1 to a prescribed degree of vacuum, the gaseous Ar introduced therein is ionized by a high frequency or DC power source, whereby the object to be plated in a vessel 4 disposed in the bell-jar A is sputtered. During the sputtering, oscillations of desired frequencies and waveforms are generated from a waveform generator B and are transmitted to an oscillating body 3 on a sample table 2 via current leading-in terminals 7, electric wires 8 and electrodes 5, 5 and are further transmitted to the object in the vessel 4 via the vessel 4. As a result, the film is formed uniformly even on the extremely small object to be plated.

Description

【発明の詳細な説明】 本発明は、真空蒸着、スパッタリング、イオンブレーテ
ィング等の物理的蒸着法によって被メッキ体の表面に被
膜を形成する方法、及び。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for forming a film on the surface of a plated object by a physical vapor deposition method such as vacuum deposition, sputtering, or ion blating.

その装置に関するものであり、被メッキ体が粉体1粒体
、小部品といったように比較的小さい物の場合でも、均
一被膜を効率的に形成することができるようにすること
を目的としてなされたものである。
It is related to the device, and was designed to make it possible to efficiently form a uniform coating even when the object to be plated is relatively small, such as a single particle of powder or a small part. It is something.

従来、小物表面への物理的蒸着を均一になす□ 方法と
しては、ベルシア内にバレルを配置し。
Conventionally, the method of uniformly applying physical vapor deposition to the surface of small objects was to place a barrel inside Versier.

このバレルを回転させることにより、バレル内の被メッ
キ体たる小物を動か°し、蒸着源に対する被メッキ体の
面を変化させる方法が知られているが。
A method is known in which the barrel is rotated to move a small object, which is the object to be plated, inside the barrel, thereby changing the surface of the object to be plated with respect to the vapor deposition source.

ωバレルの回転が連続的であっても、被メッキ体の動き
は、相互間の摩擦力の存在や凹凸的嵌り合いによって、
僅かながらも静止状態となることがあり、均一被膜形成
に悪影響を及ぼす。
ω Even if the rotation of the barrel is continuous, the movement of the object to be plated will be affected by the frictional force between them and the uneven fit.
It may become stationary even if slightly, which has an adverse effect on uniform film formation.

■バレルの回転の駆動をベルシア壁を通して行うので、
真空度の維持が煩わしく、さりとて。
■Since the rotation of the barrel is driven through the Berscia wall,
Maintaining the degree of vacuum is a hassle.

駆動源であるモーター等をベルシア内に配置することは
、ベルシア内の空間をいたずらに損うだけでなく、モー
ターがら発生するガスによる汚染や、モーター自体の能
力損傷の原因となり、決して好ましくない。
Placing the drive source, such as a motor, inside the Versia not only unnecessarily damages the space inside the Versia, but also causes contamination by gas generated by the motor and damage to the performance of the motor itself, which is definitely not desirable.

といった欠点を有していた。It had such drawbacks.

本発明は、上述した点に僅みなされ次ものであり、以下
、添付図面に示す実施例に基づいて説明すると、第1図
において、参照符号Aは。
The present invention is not limited to the above-mentioned points, and will be described below based on the embodiments shown in the accompanying drawings. In FIG. 1, reference numeral A indicates.

真空蒸着、スパッタリング、イオンブレーティング等の
物理的蒸着装置のベルシア部の一部を示すが、排気孔1
を通しての排気系を阻害しないよう形成された試料台2
には、接着、螺子止め等による固定もしくは単に載置さ
れ次だけの振動体3が存し、この振動体5には、蒸着源
(もしくはターゲット)(図示ぜず)に対峙すルウステ
ンレス、タングステン、チタン、タンタル等よりなる容
器4が接着、螺子止め等により固着されている。ここで
、試料台2としては。
A part of the Versier part of the physical vapor deposition equipment such as vacuum evaporation, sputtering, ion blating, etc. is shown, and the exhaust hole 1 is shown.
The sample stage 2 is formed so as not to obstruct the exhaust system through the
, there is a vibrating body 3 fixed by adhesion, screwing, etc., or simply mounted, and this vibrating body 5 includes a stainless steel, tungsten, etc. A container 4 made of , titanium, tantalum, or the like is fixed by adhesive, screws, or the like. Here, as the sample stage 2.

専用に誂えたものでもよいが、勿論、装置の一部として
もとより存するものを使用してよい。
It may be a specially-made one, but of course, one that already exists as part of the device may also be used.

また、振動体5の振動が不要部分に伝わることを防止す
る為に、振動吸収材を適宜箇所に介在させてもよい。更
に、振動体5及び容器4の配置場所も、被メッキ体が振
動によって容器4円から飛び出さなければ、適宜箇所、
適宜向きで潰ってよいし、容器4に対する方向制御機構
が付加されていてもよい。
Moreover, in order to prevent the vibration of the vibrating body 5 from being transmitted to unnecessary parts, a vibration absorbing material may be interposed at an appropriate location. Furthermore, the vibrating body 5 and the container 4 should be arranged at appropriate locations as long as the object to be plated does not jump out of the container 4 due to vibration.
It may be crushed in an appropriate direction, or a direction control mechanism for the container 4 may be added.

振動体3としては9種々の材料を選択することができる
。即ち、水晶、ロッシェル塩、ADP。
Nine different materials can be selected for the vibrating body 3. namely, quartz, Rochelle salt, and ADP.

チタン酸バリウム磁器、ジルコン酸lチタン酸。Barium titanate porcelain, zirconate titanate.

鉛磁器、ニオブ酸系鉛磁器等の圧電形振動体。Piezoelectric vibrator made of lead porcelain, niobic acid-based lead porcelain, etc.

ニッケル、アル7エロ、磁歪用フェライト磁器等の磁歪
形振動体、あるいは通常のスピーカーと同様原理を有す
る動電形振動体等である。これらをどのように選択し、
また、どのような大きさ、形状にするかは、被メッキ体
や処理条件等により適宜となる。
These include magnetostrictive vibrators such as nickel, Al7Ero, and magnetostrictive ferrite porcelain, or electrodynamic vibrators that have the same principle as ordinary speakers. how to choose these
Further, the size and shape to be used are determined depending on the object to be plated, processing conditions, etc.

また、振動体3の振動方向も例えば容器4に対し垂直あ
るいは水平とい−)たように適宜設定されるが、振動体
3の振動と容器4に入れられる被メッキ体の運動とは常
に一致しているものではない。即ち、第2図に拡大して
示したように1本実施例においては、容器4は局部を除
き平板状となっており、電極(例えば銀電極)5を介し
てはいるが、実質的に直接振動体5に取り付けられてい
るので、振動体3が図面において上下方向に振動すれば
、被メッキ体も同じく上下方向に運動する(跳ねる)が
、容器4が。
The direction of vibration of the vibrating body 3 is also set as appropriate, for example, perpendicular or horizontal to the container 4, but the vibration of the vibrating body 3 and the movement of the object to be plated placed in the container 4 always coincide. It's not something you have. That is, as shown enlarged in FIG. 2, in this embodiment, the container 4 has a flat plate shape except for the local part, and although the electrode (for example, a silver electrode) 5 is interposed therebetween, the container 4 is substantially flat. Since it is directly attached to the vibrating body 5, if the vibrating body 3 vibrates in the vertical direction in the drawing, the object to be plated also moves (jumps) in the vertical direction, but the container 4.

例えば、規則的もしくは不規則的な凹凸もしくは波状の
底面を有してい几り、茶碗状もしくは半球状であれば、
被メッキ体に与えられる運動方向は振動体3の振動方向
と異なることになる。
For example, if it has a regular or irregular uneven or wavy bottom surface and is solid, bowl-shaped, or hemispherical,
The direction of motion given to the object to be plated is different from the direction of vibration of the vibrating body 3.

このことは、被メッキ体の運動が、各自の置かれた場所
の近傍だけでなく、被メツキ体全体が流れとしての運動
を有していてもよいことを示すものでもあフ、ま危、振
動体5と容器4との構造が1通常、製品の組立の際使用
されるパーツフィーダー(例えば直進フィーダー)のよ
うな工学的構造を有していてもよいことを示すものでも
ある。尚、振動体3自体5が一様振動しないものの場合
もある。
This indicates that the movement of the object to be plated is not limited to the vicinity of the place where each object is placed, but the entire object to be plated may have movement as a flow. This also indicates that the structure of the vibrating body 5 and the container 4 may have an engineering structure, such as a parts feeder (for example, a linear feeder) that is normally used during product assembly. Note that there are cases where the vibrating body 3 itself does not vibrate uniformly.

さて、第1図に戻り、振動体3に対する電気的接続は、
ベルシア壁の7ランジ6に設けられた電流導入端子7を
介し、外部の波形発生器Bに接続している。ここで、電
流導入端子7を7ランジ6に設けたのは、市販の物理的
蒸着装置には通常いくつかのメクラフランジが設けられ
ており、かつ、このメクラ7ランジと同一規格の電流導
入端子7付きフランジ6も市販されているので、従来の
装置をそのまま活用し得るようなし几為であシ、勿論、
専用の装置とするならば、ベルシア壁におけるシールを
十分にした上、電線8を波形発生器Bに直接接続すれば
よい。
Now, returning to FIG. 1, the electrical connection to the vibrating body 3 is as follows.
It is connected to an external waveform generator B via a current introduction terminal 7 provided on a 7-lunge 6 of the Versier wall. Here, the current introduction terminal 7 was provided on the 7 lange 6 because commercially available physical vapor deposition equipment is usually provided with several blind flanges, and the current introduction terminal 7 has the same standard as this blind 7 lange. Since the flange 6 with 7 is also commercially available, it is not possible to use the conventional device as is.
If a dedicated device is used, the electric wire 8 may be directly connected to the waveform generator B after a sufficient seal is provided on the Versier wall.

電線8が短絡予防の為、碍子やテフロン等による被覆を
施されているのが好ましいのは勿論であるが、装置の汎
用性を高める為に、振動体3や容器4等を取りはずし可
能にすることが好ましいので、電線8の電流導入端子7
に対する取p付けは、半田付けでもよいけれど、適宜コ
ネクター等を用いて着脱可能とされている方がよい。
It is of course preferable that the electric wire 8 is coated with an insulator or Teflon to prevent short circuits, but in order to increase the versatility of the device, the vibrating body 3, container 4, etc. should be removable. Since it is preferable that the current introduction terminal 7 of the electric wire 8
Although soldering may be used for attachment to the connector, it is preferable that the connector be detachable using an appropriate connector or the like.

ま几、波形発生器Bは通常のものを使用すればよいが、
波形スイープ部を設けておくのが好ましい場合がある。
However, you can use a normal waveform generator B.
It may be preferable to provide a waveform sweep section.

即ち、容器4に付与される振動は容器4の各部分におい
て−t66 I&輻の大小を生じ、被メッキ体の被膜が
不均一化する場合もあるので2 これを防止する為のも
のであり。
That is, the vibration applied to the container 4 causes the magnitude of -t66 I&radius to vary in each part of the container 4, and the coating on the object to be plated may become non-uniform, so this is to prevent this.

前記したように、容器4内における被メッキ体の位置を
経時変化させるような【また場合でも。
As mentioned above, even in cases where the position of the object to be plated within the container 4 changes over time.

作動させたからといって決して損はない。There's no harm in turning it on.

次に、処理について説明するが、物理的蒸着としての処
理自体には、従来と比べ何ら特殊性を必要としない。例
えば、スパッタリングの一例を述べると、ベルシア内を
1×・10  ’ Torr以上の真空とした後、アル
ゴンガスを導入して1×10 〜1×10″′5Tor
r程度の真空とし。
Next, the processing will be explained, but the physical vapor deposition processing itself does not require any special features compared to conventional methods. For example, to describe an example of sputtering, after creating a vacuum of 1×·10' Torr or higher in Vershear, argon gas is introduced to create a vacuum of 1×10 to 1×10'''5 Torr.
Create a vacuum of about r.

2 高周波もしくは直流電源によりアルゴンガスをイオン化
し、スパッタリング処理する。勿論。
2 Ionize argon gas using a high frequency or DC power source and perform sputtering treatment. Of course.

他のスパッタリング処理や、真空蒸着、イオンブレーテ
ィング等についても特殊性はないし。
There are no special features regarding other sputtering processes, vacuum evaporation, ion blating, etc.

必要に応じての被メツキ体加熱等の手段も採用されてよ
い。
Measures such as heating the body to be plated may also be employed as necessary.

要点は、処理を行うに際して、被メッキ体には、容器を
振動させることによって運動を与えておくことである。
The key point is to give motion to the object to be plated by vibrating the container during the treatment.

前記したようにこの運動は与えられるエネルギーやその
方向等適宜設定され、またその為に、前記装置を用い穴
場合、波形発生器BによV、正弦波、方形波、三角波等
を発生し1例えば50〜1000■ぐらいまで昇圧され
る波形制御をなし、また、その周波数を、使用する振動
体3の共振周波数(例えば10〜1’0O00H2)に
同調させ几り、スイープし九すする。容器4の形状等が
寄与することも前記した通りである。
As mentioned above, the energy given and the direction of this motion are set appropriately, and for this purpose, when using the above device, the waveform generator B generates V, sine waves, square waves, triangular waves, etc. For example, the waveform control is performed such that the pressure is increased to about 50 to 1000 cm, and the frequency is tuned to the resonant frequency of the vibrating body 3 used (for example, 10 to 1'0000H2) and swept. As described above, the shape of the container 4 and the like also contribute.

如何なる手段に依ろうと、容器を振動させ。Vibrate the container by any means.

これを被メッキ体に伝えると、被メッキ体の運動は蒸着
源(もしくはターゲット)に対する面を連続的に変化す
ることになる。従って、被メッキ体の表面には均一被膜
を形成することができる。
When this is transmitted to the object to be plated, the movement of the object to be plated will continuously change the surface relative to the deposition source (or target). Therefore, a uniform coating can be formed on the surface of the object to be plated.

尤も、被メッキ体が比較的平らなものの場合。Especially when the object to be plated is relatively flat.

平らな底面を有する容器に並べ入れ、この容器を底面に
平行に振動させると、被メッキ体の蒸着源(もしくはタ
ーゲット)に対する面が変化しない場合もあるので、こ
のような場合には。
In such cases, if the containers are placed in a container with a flat bottom and the container is vibrated parallel to the bottom, the surface of the object to be plated relative to the evaporation source (or target) may not change.

要はある。There is a point.

〈実施例1〉 第1図に示したベルシア部を有する真空蒸着装置で蒸着
処理を施した。振動体5は直径50鶴、厚さ5襲のチタ
ン酸バリウム磁器製、また。
<Example 1> Vapor deposition treatment was performed using a vacuum evaporation apparatus having a Versier section shown in FIG. The vibrating body 5 is made of barium titanate porcelain with a diameter of 50 mm and a thickness of 5 mm.

容器4は底面が直径1001Bのステンレス製で。The bottom of container 4 is made of stainless steel and has a diameter of 1001B.

底面にはわずかの碗状を付与しておいた。容器4に、そ
れぞれ約0.4)IIBの径を有するガラス粒を、2〜
3層となるよう敷き入れ、蒸着源(銅球を入れたコニカ
ルバスケット状タングステン線)の下方200謡にその
表面が位置するよう設置後、真空度3XID   To
rr  にて銅を蒸着した。
The bottom surface was given a slight bowl shape. In the container 4, 2 to 2 glass particles each having a diameter of about 0.4) IIB are added.
Lay them in three layers, and place them so that the surface is located 200 degrees below the evaporation source (a conical basket-shaped tungsten wire containing copper balls).
Copper was deposited at rr.

この際、振動体の振動方向は垂直とし、容器4に与える
振動は300Vに昇圧され次男形波をスイープ−するこ
とで、容器4に発生する定常波の節と腹とを経時変化さ
せた。これによって。
At this time, the vibration direction of the vibrator was vertical, and the vibration applied to the container 4 was boosted to 300 V to sweep the second son wave, thereby changing the nodes and antinodes of the standing wave generated in the container 4 over time. by this.

設定したガラス粒の最大跳ね量的51m1が得られ次O 約10秒間の蒸着後、各々のガラス粒表面には一様に銅
被膜が形成されておV、未蒸着部分は観察されなかっ次
After the set maximum splashing amount of glass particles of 51 ml was obtained, a copper coating was uniformly formed on the surface of each glass particle after about 10 seconds of vapor deposition, and no undeposited areas were observed.

〈実施例2〉 第1図に示し九ベルシア部を有するスノくツ、タリング
装置(200W、高周波電源)でスパッタリグ処理を施
し友。振動体3及び容器4は実施例1と同様のものを用
いた。容器4に平均粒径α05wkのアルミナ粉を3語
根度の厚さになるよう入れ、ターゲット(銅)の下方5
01sにその表面が位置するよう設置後、いったん真空
度を5×10−6Torrにした後、アルゴンガスを導
入し、  3X10   Torrでスパッタリング処
理した。
<Example 2> The shoes shown in FIG. 1 and having a nine-sided part were subjected to sputtering treatment using a talling device (200 W, high frequency power supply). The vibrating body 3 and container 4 were the same as in Example 1. Pour alumina powder with an average particle size of α05wk into container 4 to a thickness of 3 degrees, and place it under the target (copper) 5.
After installation so that the surface was located at 01s, the degree of vacuum was once set to 5 x 10-6 Torr, argon gas was introduced, and sputtering treatment was performed at 3 x 10 Torr.

この際、容器4に与える振動は600vに昇圧された6
KH2の方形波によ−)f16約30分間のスパッタリ
ング処理後、各々のアルミナ粉表面には一様に銅被膜が
形成されており、容器4に発生する定常波の影響は実質
的に見られなかった。
At this time, the vibration applied to the container 4 was increased to 600V.
After approximately 30 minutes of sputtering treatment using the square wave of KH2 (F16), a copper film was uniformly formed on the surface of each alumina powder, and the influence of the standing wave generated in the container 4 was virtually not observed. Ta.

以上述べ九ように9本発明によると、極めて小さな被メ
ッーキ体に対しても均一被膜を効率的に形成することが
できるので、ボールペンのボ□ −ル、電子部品等の各
種セラミック材料、腕時計の部品、ボルト、ナツト等の
表面処理、らるいは、顔料の表面処理、S料化、焼結材
料用粉体の表面処理といつ几ように9種々の工業材料に
適用することができる。
As stated above, according to the present invention, it is possible to efficiently form a uniform coating even on extremely small objects to be plated. It can be applied to a variety of industrial materials such as surface treatment of parts, bolts, nuts, etc., surface treatment of pigments, S coating, and surface treatment of powder for sintered materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の一実施例を示す要部縦断面図、
第2図は第1図の振動体部分の拡大図である。 3・・・・・・振動体、  4・・・・・・容器、  
5・・・・・・電極。 6・・・・・・フランジ、  7・・・・・・電流導入
端子、 A・・・・・・ベルシア部。 B・・・・・・波形発生器 特許出願人 ぺんてる株式会社
FIG. 1 is a longitudinal cross-sectional view of essential parts showing an embodiment of the device of the present invention;
FIG. 2 is an enlarged view of the vibrating body portion of FIG. 1. 3... Vibrating body, 4... Container,
5... Electrode. 6... Flange, 7... Current introduction terminal, A... Versier part. B...Waveform generator patent applicant Pentel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)被メッキ体を動かしながら物理的蒸着法により前
記被メッキ体に被膜を形成する方法において、ペルシア
内に配置され比容器を振動することにより、前記容器内
の被メッキ体にその振動を伝え、この状態で被膜を形成
することを特徴とする物理的蒸攬。込による被膜形成方
法。 し〕
(1) In a method of forming a coating on the object to be plated by a physical vapor deposition method while moving the object to be plated, the vibration is applied to the object to be plated inside the container by vibrating a specific container placed in the persian. physical vaporization, which is characterized by the formation of a film in this state. Film formation method by including. death〕
(2)被メッキ体を入れる容器を固着し九電磁気的振動
体をベルシア内に配置し、ま穴、前記振動体に駆動波形
を付与す′る波形発生器をペルシア外に配置したことを
特徴とする物理的蒸着装置。
(2) A container containing the object to be plated is fixed, an electromagnetic vibrating body is placed inside the Persia, and a hole and a waveform generator for applying a driving waveform to the vibrating body are placed outside the Persia. physical vapor deposition equipment.
(3)前記振動体と前記□波形発生器との電気的接続を
、ペルシア壁のフランジに設けられ次電流導入端子を介
して雇したことを特徴とする特許請求の範囲第2項記載
の物理的蒸着装置0
(3) The physics according to claim 2, characterized in that the electrical connection between the vibrating body and the □ waveform generator is made through a current introduction terminal provided on a flange of the Persian wall. Targeted vapor deposition equipment 0
JP12841281A 1981-08-17 1981-08-17 Method and device for forming film by physical vapor deposition method Pending JPS5831076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12841281A JPS5831076A (en) 1981-08-17 1981-08-17 Method and device for forming film by physical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12841281A JPS5831076A (en) 1981-08-17 1981-08-17 Method and device for forming film by physical vapor deposition method

Publications (1)

Publication Number Publication Date
JPS5831076A true JPS5831076A (en) 1983-02-23

Family

ID=14984126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12841281A Pending JPS5831076A (en) 1981-08-17 1981-08-17 Method and device for forming film by physical vapor deposition method

Country Status (1)

Country Link
JP (1) JPS5831076A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483660A (en) * 1987-09-25 1989-03-29 Tdk Corp Vacuum film formation
DE19757681C2 (en) * 1996-12-25 2003-06-26 Nat Ind Res I Of Nagoya Nagoya Sintered material based on cubic boron nitride and process for its production
JP2016122750A (en) * 2014-12-25 2016-07-07 株式会社島津製作所 Work holder and deposition device
RU179897U1 (en) * 2017-10-17 2018-05-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Device for supplying energy to a technological sprayer
CN110359014A (en) * 2019-06-11 2019-10-22 惠科股份有限公司 Evaporation plating equipment and crucible device
JP2020520871A (en) * 2017-04-20 2020-07-16 ロレックス・ソシエテ・アノニムRolex Sa Manufacturing method of ceramic parts
CN116288211A (en) * 2023-03-27 2023-06-23 西安工程大学 Device and method for preparing coated powder by utilizing magnetron sputtering

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836082A (en) * 1971-09-09 1973-05-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836082A (en) * 1971-09-09 1973-05-28

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483660A (en) * 1987-09-25 1989-03-29 Tdk Corp Vacuum film formation
DE19757681C2 (en) * 1996-12-25 2003-06-26 Nat Ind Res I Of Nagoya Nagoya Sintered material based on cubic boron nitride and process for its production
JP2016122750A (en) * 2014-12-25 2016-07-07 株式会社島津製作所 Work holder and deposition device
JP2020520871A (en) * 2017-04-20 2020-07-16 ロレックス・ソシエテ・アノニムRolex Sa Manufacturing method of ceramic parts
RU179897U1 (en) * 2017-10-17 2018-05-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Device for supplying energy to a technological sprayer
CN110359014A (en) * 2019-06-11 2019-10-22 惠科股份有限公司 Evaporation plating equipment and crucible device
CN116288211A (en) * 2023-03-27 2023-06-23 西安工程大学 Device and method for preparing coated powder by utilizing magnetron sputtering

Similar Documents

Publication Publication Date Title
NZ197232A (en) Vacuum plating a substrate using rf field and dc ion accelerating potential
KR101725431B1 (en) Pvd rf dc open/closed loop selectable magnetron
KR940010866A (en) Microwave Plasma Treatment System and Processing Method
JP2010500470A (en) ECR plasma source
JP2011179120A (en) Apparatus and method of physical vapor deposition with multi-point clamp
JP4156520B2 (en) Radial power megasonic transducer
JPS5831076A (en) Method and device for forming film by physical vapor deposition method
US6468387B1 (en) Apparatus for generating a plasma from an electromagnetic field having a lissajous pattern
JP3181473B2 (en) Plasma processing equipment
JP2002512310A (en) Small diameter coils enhance the uniformity of metal films formed by inductively coupled plasma deposition
JPH10251849A (en) Sputtering device
JP5717783B2 (en) High frequency tuning substrate bias physical vapor deposition apparatus and driving method thereof
JP4204695B2 (en) Vapor deposition source, vapor deposition equipment
JP3079069B2 (en) Plasma processing apparatus and method for modifying the surface of a substrate
JP2592396B2 (en) Thin film forming equipment
JP2766755B2 (en) Substrate coating method
JPS60189925A (en) High frequency discharge reactor
JP2913736B2 (en) CVD equipment
JPH11302840A (en) Sputtering apparatus
JPS63153265A (en) Sputtering device
JP4004146B2 (en) Plasma generating apparatus and substrate surface processing method
JPH06330309A (en) Method for forming film by collimation sputtering method and apparatus therefor
JP3040073B2 (en) Plasma processing equipment
JP4087155B2 (en) Deposition equipment
JP3138810B2 (en) Ion plating equipment