JPS5831027A - Controlling method for atmosphere in heating furnace for steel material - Google Patents

Controlling method for atmosphere in heating furnace for steel material

Info

Publication number
JPS5831027A
JPS5831027A JP12985181A JP12985181A JPS5831027A JP S5831027 A JPS5831027 A JP S5831027A JP 12985181 A JP12985181 A JP 12985181A JP 12985181 A JP12985181 A JP 12985181A JP S5831027 A JPS5831027 A JP S5831027A
Authority
JP
Japan
Prior art keywords
fuel
zone
air
heating
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12985181A
Other languages
Japanese (ja)
Inventor
Kazuo Yamaguchi
和夫 山口
Kazuyuki Nakasuji
中筋 和行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12985181A priority Critical patent/JPS5831027A/en
Publication of JPS5831027A publication Critical patent/JPS5831027A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To improve the yield and quality of steel materials from suppressed formation of scale and decreased quantity of scale loss in the stage of heating the steel materials in a heating furnace by controlling the concn. of CO in an atmosphere in a soaking zone automatically. CONSTITUTION:Many steel materials W are passed through the heating zone 1a and soaking zone 1b of a heating furnace 1, whereby the materials are heated to working temps. for rolling, etc. In an arithmetic controller 14, the rate of supplying fuel necessary in the zone 1b is operated and is outputted to a flow rate controller 13 for fuel, by which a fuel control valve 52 is controlled. Here, the ratio and quantity of air are operated so as to control the concn. of CO in the zone 1b analyzed with a CO analyzer 9 to 0.5-1.5% and are outputted to a flow rate controller 12 for air, by which an air control valve 51 is controlled. In the zone 1a, on the other hand, the concn. of O2 in a gaseous atmosphere analyzed with an O2 analyzer 8 is inputted to an arithmetic controller 14 which controls an air control valve 41 and a fuel control valve 42 by means of a flow rate controller 10 for air and a flow rate controller 11 for fuel so as to improve combustion efficiency and to decrease fuel consumption.

Description

【発明の詳細な説明】 本発明は鋼塊、鋼片等の鋼材に圧延等の加工を行うべく
鋼材を加熱する方法において、鋼材のスケール生成を抑
制し、鋼材のスケールロス量、即ち焼滅多量を低減する
鋼材加熱炉の炉内雰囲気制御方法を提案したものである
DETAILED DESCRIPTION OF THE INVENTION The present invention suppresses scale formation in steel materials in a method of heating steel materials such as steel ingots and billets in order to perform processing such as rolling. This paper proposes a method for controlling the atmosphere in a steel heating furnace that reduces the amount of heat generated.

一般に鋼塊、鋼片等の鋼材は加熱中に酸化されてスクー
ルを生成し、その分だけ鋼材が目減りする。このスケー
ルロスによる鋼材の焼滅多量は加熱温度、加熱雰囲気に
よって大きく変化する。加熱温度との関係をみると鋼材
の焼滅多量は900℃程度で目立ち始め、1100℃以
上では著しく増加するが、圧延等の加工の前処理として
鋼材を加熱する場合は1000℃以上に加熱する必要が
あり1鋼材の焼減り量は無視できない。例えば加熱炉か
らの鋼材抽出温度が1000〜1100℃程度の場合、
鋼材の焼滅多量は従来0.9%程度であり、また上記抽
出謹度が更に高い場合、鋼材の焼減り量は急漱に増加す
る。このようにスケールが発生して鋼材の焼減り量が増
加すると材料歩留りに影響を及ぼし、またスケールが剥
離せずに後工程へ持越されると鋼材表面のスケール疵の
原因となり鋼材の品質を低下せしめる。
In general, steel materials such as steel ingots and billets are oxidized during heating to produce schools, and the steel material loses its weight accordingly. The amount of steel material burnt out due to this scale loss varies greatly depending on the heating temperature and heating atmosphere. Looking at the relationship with heating temperature, the amount of burnout in steel materials starts to become noticeable at around 900°C, and increases significantly above 1100°C, but when heating steel materials as a pretreatment for processing such as rolling, heating to 1000°C or higher is recommended. This is necessary, and the amount of heat loss per steel material cannot be ignored. For example, when the temperature for extracting steel material from the heating furnace is about 1000 to 1100°C,
Conventionally, the amount of burnout of steel materials is about 0.9%, and if the above-mentioned extraction tolerance is even higher, the amount of burnout of steel materials increases rapidly. When scale occurs and the amount of burnout of the steel increases, it affects the material yield, and if the scale does not peel off and is carried over to subsequent processes, it causes scale defects on the surface of the steel, reducing the quality of the steel. urge

これに治して従来の鋼材加熱炉でtio、ガス濃度によ
る炉内雰囲気制御が行われている・が、これは焼減り量
の減少を主目的とした制御ではなく、燃料原単位の同上
を目的として加熱炉からの鋼材抽出温度を後゛工程に支
障がない程度に可及的に低下せしめることKより結果的
に鋼材の焼滅多量が減少されるのみであシ、それ以上の
焼減り量抑制は望むことができなかった。
To overcome this, in conventional steel heating furnaces, the atmosphere inside the furnace is controlled by tio gas concentration, but this control is not aimed primarily at reducing the amount of burnout, but rather at reducing the fuel consumption per unit of production. As a result, the temperature at which the steel material is extracted from the heating furnace is lowered as much as possible to the extent that it does not interfere with subsequent processes.As a result, the amount of steel material burned out is reduced, and the amount of steel material burned out is reduced. Restraint could not be desired.

本発明は所かる事情に鑑みてなされたものであり、燃料
原単位の悪化及び公害の発生を招来することなく鋼材の
スケール生成を抑制し、鋼材の焼減り量を低減して鋼材
の材料歩留り及び品質を向上せしめることを目的とする
The present invention has been made in view of the circumstances, and it is possible to suppress the scale formation of steel materials without deteriorating the fuel consumption rate or causing pollution, and to reduce the amount of burnout of the steel materials, thereby increasing the material yield of the steel materials. and to improve quality.

本発明に係る鋼材加熱炉の炉内雰囲気制御方法は、均熱
帯を空気及び燃料の流m調節又H還元性ガスの吹込みに
ょシ還元性雰囲気とすることを特徴とする。
The method for controlling the atmosphere in a steel heating furnace according to the present invention is characterized in that a soaking zone is made into a reducing atmosphere by adjusting the flow of air and fuel or by blowing H reducing gas.

以下本発明方法をその実施例を示す図面に基りて説明す
る。第1図は本発明方法の実施例を示す模式図であシ、
ブツシャ型連続炉である加熱炉1内釦はその人口1cか
ら出口1d″!でスキッドレール2が敷設されておシ、
入口rc側に付設されたブツシャ3の押込力にてワーク
Wが炉内へ順次押込まれることによりワークWがスキッ
ドレール2上を摺動されて加熱炉1内を白抜矢符方向へ
所定速度にて移動されるようになっておシ、出口1dま
で達するとワークwは炉外へ押出されて排出されるよう
になっている。加熱炉1は加熱帯1a及び均熱帯1bの
2つの加熱域から成っておシ、加熱帯1aにて表面から
内部へ漸次加熱されたワークWは均熱帯1bにて均熱に
保持されるようになっている。加熱帯1aには検出器6
及びバーナ4が装着されておシ、該検出器6はO1分析
計8に接続されており、また該バーナ4は空気調節弁4
1を介してプロア(図示せず)に、燃料調節弁42を介
して燃料タンク(図示せず)に夫々接続されている。一
方均熱帯1bKも同様に検出器7及びバーナ5が装着さ
れており、該検出器7FiCO分析器9に接続されてお
り、また該バーナ5は空気調節弁51を介してプロア(
図示せず)に、燃料調節弁52を介して燃料タンク(図
示せず)に夫々接続されている。なお加熱炉゛1の炉内
ガスは炉入口lc側に開設されている煙道1eより炉外
へ排出されるように構成されている。
The method of the present invention will be explained below based on drawings showing examples thereof. FIG. 1 is a schematic diagram showing an embodiment of the method of the present invention.
The inner button of the heating furnace 1, which is a continuous furnace, has a skid rail 2 installed from its population 1c to the exit 1d''!
The workpiece W is sequentially pushed into the furnace by the pushing force of the pusher 3 attached to the inlet rc side, and the workpiece W is slid on the skid rail 2 and is moved in the direction of the white arrow inside the heating furnace 1 in a predetermined direction. When the work w is moved at a high speed and reaches the outlet 1d, it is pushed out of the furnace and discharged. The heating furnace 1 consists of two heating zones, a heating zone 1a and a soaking zone 1b.The workpiece W, which is gradually heated from the surface to the inside in the heating zone 1a, is kept uniformly heated in the soaking zone 1b. It has become. A detector 6 is installed in the heating zone 1a.
and a burner 4 are installed, the detector 6 is connected to an O1 analyzer 8, and the burner 4 is connected to an air control valve 4.
1 and a fuel tank (not shown) through a fuel control valve 42, respectively. On the other hand, the soaking zone 1bK is similarly equipped with a detector 7 and a burner 5, and the detector 7 is connected to the FiCO analyzer 9, and the burner 5 is connected to the proa (
(not shown) are respectively connected to a fuel tank (not shown) via a fuel control valve 52. Incidentally, the furnace gas in the heating furnace 1 is configured to be discharged to the outside of the furnace through a flue 1e opened on the side of the furnace inlet lc.

空気調節弁41は空気流量制御装置11)10(加熱帯
用)に、燃料調節弁42は燃料流量制御装置11(加熱
帯用)に、空気調節弁51は空気流量制御装置12(均
熱帯用)に、燃料調節弁52は燃料流量制御装置13(
均熱帯用)に夫々接続されており、これらはいずれも演
算制御装置14に接続されている。該演算III御装@
14には前述の02分析計8及びCO分析計によシ得ら
れたデータが入力されるようになっておシ、そのデータ
に基いて空気流量制御装[10,12及び燃料流量制御
装置11.13の制御のための演算が行われ、各装置へ
出力されるようになっている。
The air control valve 41 is connected to the air flow control device 11) 10 (for the heating zone), the fuel control valve 42 is connected to the fuel flow control device 11 (for the heating zone), and the air control valve 51 is connected to the air flow control device 12 (for the soaking zone). ), the fuel control valve 52 is connected to the fuel flow control device 13 (
for the soaking area), and both of these are connected to the arithmetic and control unit 14. The operation III Goso @
The data obtained by the above-mentioned 02 analyzer 8 and CO analyzer are input to 14, and based on the data, the air flow control device [10, 12 and the fuel flow control device 11] is inputted. .13 control calculations are performed and output to each device.

叙上の如く構成された設備を用いて鋼塊、鋼片等の鋼材
を加熱する場合、まず加熱炉1内で最も高湿となりスケ
ールが生成しやすい均熱帯1bの雰囲気を還元性雰囲気
とするのであるが、その制御目標をして設定すべき数値
及びその根拠について説明する。第2図は実炉にて求め
たCOガス濃度(均熱帯1bにおける測定値)と焼減り
量(加熱炉1にて実際に処理した鋼材の焼滅Fj量)と
の関係を、横軸に焼減り量をとり、縦軸にCOガス濃度
をとって表わしたグラフであるが、COガス濃度が増加
するほど焼滅シ量が減少することが分かる。第3図は実
験にて求めたCoガス濃度と燃料原単位(単位重量の燃
料当たりの生成熱量)との関係を、横軸に燃料原単位を
とり、縦軸KCOCOガス濃度って表わしたグラフであ
るが、COガス濃度が約1.0%の条件で燃料原単位は
最高値を示していることが分かる。従って燃料原単位を
悪化せしめることなく焼減り量を減少せしめるためには
COガス濃度を0,5〜1.5%(望ましくは0.8〜
1.2%)K調節するのが好ましい。第4図は実炉にて
求めたCOガス濃度(均熱帯1bにおける測定値)と空
気比(バーナ5における空気比)との関係を、横軸に空
気比をとり、縦軸にCOガス濃度をとって表わしたグラ
フであるが、COガス濃度と空気比とは逆比例の関係が
あることが分かシ、この関係を利用して空気量を調節し
て空気比を所定の値に調節することによりCOガス濃度
を所望の値にすることができる。
When heating steel materials such as steel ingots and slabs using the equipment configured as described above, first, the atmosphere in the soaking zone 1b, which is the most humid in the heating furnace 1 and where scale is likely to form, is made into a reducing atmosphere. However, the numerical value to be set as the control target and its basis will be explained. Figure 2 shows the relationship between the CO gas concentration determined in the actual furnace (measured value in the soaking zone 1b) and the amount of burnout (the amount of burnout Fj of the steel material actually processed in the heating furnace 1) on the horizontal axis. This is a graph in which the amount of burnout is plotted and the vertical axis is the CO gas concentration, and it can be seen that as the CO gas concentration increases, the burnout amount decreases. Figure 3 is a graph showing the relationship between Co gas concentration and fuel consumption rate (heat generated per unit weight of fuel) determined through experiments, with fuel consumption on the horizontal axis and KCOCO gas concentration on the vertical axis. However, it can be seen that the fuel consumption rate shows the highest value when the CO gas concentration is about 1.0%. Therefore, in order to reduce the amount of burnout without worsening the fuel consumption rate, the CO gas concentration should be set at 0.5 to 1.5% (preferably 0.8 to 1.5%).
1.2%) It is preferable to adjust K. Figure 4 shows the relationship between the CO gas concentration (measured value in soaking zone 1b) and the air ratio (air ratio in burner 5) determined in an actual furnace, with the air ratio on the horizontal axis and the CO gas concentration on the vertical axis. This graph shows that there is an inversely proportional relationship between the CO gas concentration and the air ratio, and this relationship can be used to adjust the air amount to adjust the air ratio to a predetermined value. By doing so, the CO gas concentration can be set to a desired value.

従ってまず演算制御装置14は均熱帯1bにおける所要
熱量に応じた燃料供給量を演算し、そのデータを燃料流
量制御装置13へ出力し、燃料調節弁52の調節制御を
行わしめるが、この際CO分析計9によシ分析される均
熱帯1bのCOガス濃度が0.5〜1.5%となるよう
な空気比を@4図に示す如き関係に基いて演算し、その
空気比と上述の燃料供給量によって定まる理論空気量と
により空気供給量を演算し、そのデータを空気流量制御
装置−12へ出力し、空気調節弁51の調節制御を行わ
しめて均熱帯1bのCOガス濃度を0.5〜1、5%に
保持する。
Therefore, the arithmetic and control device 14 first calculates the amount of fuel to be supplied according to the required amount of heat in the soaking zone 1b, outputs the data to the fuel flow rate control device 13, and controls the fuel control valve 52. Calculate the air ratio such that the CO gas concentration in the soaking zone 1b analyzed by the analyzer 9 is 0.5 to 1.5% based on the relationship shown in Figure @4, and calculate the air ratio and the above-mentioned The air supply amount is calculated based on the theoretical air amount determined by the fuel supply amount of .5 to 1.5%.

一方加熱帯1a#′i酸化性雰囲気とすべく制御するが
、その理由は均熱帯1bにて発生した還元性ガス(CO
ガス)及び燃料の未燃分をそのまま加熱帯1aを経て煙
道1eより炉外へ排出すると公害の発生及び燃料原単位
の悪化を招来するからである。そこで02分析計8を用
いて分析された加熱帯1aのOオガス濃度を演算制御装
置14へ入力し、該演算制御装置14にて加熱帯1aが
酸化性雰囲気となり、燃焼効率も考慮した条件を演算し
、該演算結果に基いて空気流量制御装置10及び燃料流
i制御装置11を用いて空気調縮弁41及び燃料調節弁
42を調節制御する。
On the other hand, the heating zone 1a#'i is controlled to have an oxidizing atmosphere, and the reason for this is that the reducing gas (CO
This is because if the unburned portions of the fuel and gas are directly discharged from the furnace through the heating zone 1a and through the flue 1e, it will cause pollution and worsen the fuel consumption rate. Therefore, the O gas concentration in the heating zone 1a analyzed using the 02 analyzer 8 is inputted to the arithmetic and control device 14, and the arithmetic and control device 14 sets the conditions in which the heating zone 1a becomes an oxidizing atmosphere and also takes combustion efficiency into account. Based on the calculation results, the air conditioning valve 41 and the fuel regulating valve 42 are adjusted and controlled using the air flow control device 10 and the fuel flow i control device 11.

所かる制御を実施するととKよ多燃料原単位の悪化及び
公害の発生を招来することなく鋼材のスケール生成を抑
制し、鋼材の焼滅シ量を低減することができる。
If certain controls are carried out, it is possible to suppress the scale formation of steel materials and reduce the amount of burnout of steel materials without causing a deterioration of the fuel consumption rate or the occurrence of pollution.

なお本実施例では均熱帯1bの雰囲気を還元性雰囲気と
する手段として空気流量及び燃料流量を制御する方法を
用いたがCOガス等の還元性ガスを外部より適量供給す
る方法を用いてもよいことは勿論である。
In this example, a method of controlling the air flow rate and the fuel flow rate was used as a means for making the atmosphere in the soaking zone 1b a reducing atmosphere, but a method of supplying an appropriate amount of reducing gas such as CO gas from the outside may also be used. Of course.

次に本発明方法の効果を実施例に基いて説明する。第5
図はリムド鋼を従来法により加熱した場合と本発明方法
により加熱した場合とを比較したグラフである。横軸に
加熱温度をとり、縦軸に焼滅シ量を在炉時間の平方根で
除した数値をとって表わしており、一点鎖線は従来法に
よる場合、破線は均熱帯のCOガス濃度を、0〜1%に
制御した本発明方法による場合、実線は均熱帯のCOガ
ス濃度を1〜2%に制御した本発明方法による場合を夫
々表わしている。従来法による場合と比して本発明方法
による場合は大幅に焼滅シ量が低減できることが確認で
きた。
Next, the effects of the method of the present invention will be explained based on examples. Fifth
The figure is a graph comparing rimmed steel heated by the conventional method and heated by the method of the present invention. The horizontal axis shows the heating temperature, and the vertical axis shows the value obtained by dividing the burnout amount by the square root of the furnace time.The dashed line shows the CO gas concentration in the soaking zone, The solid lines represent the cases in which the CO gas concentration in the soaking zone is controlled to 1 to 2%, respectively. It was confirmed that the amount of burnout can be significantly reduced by the method of the present invention compared to the conventional method.

以上詳述した如く本発明方法による場合は加熱炉均熱帯
を還元雰囲気として鋼材を加熱するので燃料原単位の悪
化及び公害の発生を招来することなく鋼材の焼減り盪を
低減でき、鋼材の材料歩留り及び品質の向上に多大の効
果を奏する。
As described in detail above, in the case of the method of the present invention, the steel is heated in a reducing atmosphere in the soaking zone of the heating furnace, so it is possible to reduce burnout of the steel without causing deterioration of the fuel consumption rate or the occurrence of pollution. This has a great effect on improving yield and quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施例を示す模式図、第2図はC
Oガス濃度と焼減り量との関係を表わすグラフ、第3図
FiCOガス濃度と燃料原単位との関係を表わすクリア
、第4図はCOガス濃度と空気比との関係を表わすグラ
フ、第5図は本発明方法の効果を表わすクリアである。 1・・・加熱炉 1a・・・加熱帯 1b・・・均熱帯
4.5・・・バーナ 6.7・・・検知器 8・・・0
2分析計9・・・CO分析計 特 許 出 願 人   住友金属工業株式会社代理人
 弁理士  河 野 登 夫
FIG. 1 is a schematic diagram showing an embodiment of the method of the present invention, and FIG. 2 is a C
Graph showing the relationship between O gas concentration and burnout amount, Figure 3 Clear showing the relationship between FiCO gas concentration and fuel consumption rate, Figure 4 graph showing the relationship between CO gas concentration and air ratio, Figure 5 The figure is clear showing the effect of the method of the present invention. 1...Heating furnace 1a...Heating zone 1b...Soaking zone 4.5...Burner 6.7...Detector 8...0
2 Analyzer 9...CO analyzer patent applicant: Sumitomo Metal Industries, Ltd. Agent Patent attorney: Noboru Kono

Claims (1)

【特許請求の範囲】[Claims] 1、 鋼材加熱炉において、均熱帯を空気及び燃料の流
量調節又は還元性ガスの吹込みKよシ還元性雰囲気とす
ることを特徴とする炉内雰囲気制御方法。
1. A method for controlling the atmosphere in a steel heating furnace, characterized by creating a reducing atmosphere in the soaking zone by adjusting the flow rates of air and fuel or by blowing a reducing gas.
JP12985181A 1981-08-18 1981-08-18 Controlling method for atmosphere in heating furnace for steel material Pending JPS5831027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12985181A JPS5831027A (en) 1981-08-18 1981-08-18 Controlling method for atmosphere in heating furnace for steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12985181A JPS5831027A (en) 1981-08-18 1981-08-18 Controlling method for atmosphere in heating furnace for steel material

Publications (1)

Publication Number Publication Date
JPS5831027A true JPS5831027A (en) 1983-02-23

Family

ID=15019814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12985181A Pending JPS5831027A (en) 1981-08-18 1981-08-18 Controlling method for atmosphere in heating furnace for steel material

Country Status (1)

Country Link
JP (1) JPS5831027A (en)

Similar Documents

Publication Publication Date Title
JPS60174833A (en) Cooling method of hot steel sheet
EP0068637A2 (en) Method and system for controlling multi-zone reheating furnaces
US3345846A (en) Metal heating
JPS5831027A (en) Controlling method for atmosphere in heating furnace for steel material
US6935856B2 (en) Method of improving the temperature profile of a furnace
JPH0192322A (en) Method for controlling sheet temperature in continuous annealing furnace
US6955730B2 (en) Method for enhancing the metallurigcal quality of products treated in a furnace
JPS5842717A (en) Controlling method for atmosphere in heating furnace of steel material
JP4223238B2 (en) Steel strip heating temperature control method
JP2002220620A (en) Method for controlling pressure of heating furnace
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JP2009092328A (en) Furnace atmosphere control method for heating furnace
SU933756A1 (en) Method for automatically controlling fuel combustion in multizone through-type furnace
JPH0754055A (en) Method for controlling temperature of steel strip in continuous annealing furnace
USRE26960E (en) Metal heating
JPH0434610B2 (en)
JPH09272919A (en) Continuous heating method and apparatus therefor
JPH09209032A (en) Method for controlling optimum furnace pressure in heating furnace
JPH0555765B2 (en)
SU1357445A1 (en) Method of controlling combustion of fuel in continuous furnace
JP2002220621A (en) Method for controlling furnace pressure using regenerative burner
JP3197638B2 (en) Scale control method in heating furnace
JP2635882B2 (en) Method and apparatus for supplying water to heating furnace
SU1746142A1 (en) Method of control of fuel combustion in multizone through furnace
JPH0465887B2 (en)