USRE26960E - Metal heating - Google Patents

Metal heating Download PDF

Info

Publication number
USRE26960E
USRE26960E US26960DE USRE26960E US RE26960 E USRE26960 E US RE26960E US 26960D E US26960D E US 26960DE US RE26960 E USRE26960 E US RE26960E
Authority
US
United States
Prior art keywords
air
temperature
metal
heating
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of USRE26960E publication Critical patent/USRE26960E/en
Assigned to FIRST PENNSYLVANIA BANK N A, A NATIONAL BANKING ASSOCIATION reassignment FIRST PENNSYLVANIA BANK N A, A NATIONAL BANKING ASSOCIATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SELAS CORPORATION OF AMERICA A CORP OF PA
Assigned to SELAS CORPORATION OF AMERICA A CORP. OF PA reassignment SELAS CORPORATION OF AMERICA A CORP. OF PA RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: FIRST PENNSYLVANIA BANK N.V., FOR ITSELF AND AS AGENT FOR THE PHILADELPHIA NATIONAL BANK
Assigned to BANCBOSTON FINANCIAL COMPANY reassignment BANCBOSTON FINANCIAL COMPANY SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SELAS CORPORATION OF AMERICA
Assigned to SELAS CORPORATION OF AMERICA reassignment SELAS CORPORATION OF AMERICA RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANCBOSTON FINANACIAL COMPANY A MA TRUST
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material

Definitions

  • ABSTRACT OF THE DISCLOSURE A process of heating metals without scaling by heating with a stoichiometric mixture of fuel and combustion supporting gas until the metal reaches scaling temperature, then changing to a rich mixture and continuing the heating until the metal reaches the desired temperature.
  • the present invention relates to the heating of metals and more partciularly to the scale-free heating of metals for hot forming or other purposes.
  • the metal is heated in a furnace that is directly fired by burners using a substantially stoichiometric mixture of fuel gas and a combustion supporting gas containing oxygen which is usually air and will be so referred to herein [air] until the work reaches a temperature where its surface is about to oxidize.
  • a combustion supporting gas containing oxygen which is usually air and will be so referred to herein [air]
  • the fuel ratio is changed to a rich mixture so that the products of combustion are reducing or, in any event, non-oxidizing.
  • the heating is continued under these conditions until the work is brought up to the desired temperature.
  • the invention is applicable to the heating of any metal. It is particularly useful, however, in the heating of metals which oxidize at elevated temperatures such as steel or copper, for example.
  • FIG. 1 is a section through a furnace of a type which can be used for the invention.
  • FIG. 2 is a diagram showing the supplies of fuel and air and the controls for these supplies by which the invention can be carried out.
  • FIG. 1 there is shown a furnace 1 in which a slab, billet or other metal piece 2 is to be heated to hot working temperature.
  • the work piece is mounted on supports 3 so that the hot gases of the furnace can circulate around it in order to heat it evenly.
  • the furnace is heated by a plurality of burners 4 which fire directly into the furnace chamber and around the work.
  • burners are of a type shown in Pat. No. 3,262,484 and the disclosure thereof is incorporated herein by reference.
  • the burners include a refractory block 5 that forms a portion of the furnace wall with each block being provided with a cup-shaped depression 6 in the face thereof into which fuel gas and combustion supporting gas, usually air, are discharged for burning.
  • a chamber 7 Attachcd to the rear of the burners and to the furnace wall is a chamber 7 in which are located the supply pipes for fuel and air and through which furnace gases are drawn directly from the furnace chamber to preheat the air supply.
  • the chamber is provided with a vent 8 through which these gases are exhausted.
  • a main air supply 9 with several branches.
  • One of these branches, 11, is connected to supply primary air to each of the burners of the furnace, two of which are shown in FIG. 2 of the drawing.
  • Air flows from pipe 11 through branches 12 to the inlet pipe 13 of each burner.
  • a secondary air line 14, also supplied by the main air supply 9, is connected with each of the burners through branches 15 that connect with secondary air pipe 16 of the burners.
  • a third air supply line, called the ejector air and indicated at 17, is used to supply air to a pipe 19 in vent 8 to aspirate the furnace gases from the furnace chamber through burner chamber 7 to the atmosphere.
  • a gas supply pipe 20 leading to all of the burners has a branch 21 to each burner, which branch is connected to a fuel supply pipe 22 of the individual burners.
  • thermocouple 23 The temperature of the interior of the furnace is measured by a thermocouple 23, or other suitable temperature sensing device, which is connected by a lead 24 with a standard temperature controller 25.
  • This controller and the other controllers, to be described below, are preferably of the pneumatic contol type and operate in a well known manner to vary a control air output proportionately with changes in temperature or other variables being measured.
  • the control pressure from instrument 25 is applied through a control line 26 to a pneumatically operated valve 27 in the gas supply line.
  • the temperature of the furnace is used to control the supply of fuel and the supply of fuel is used to control the amount of air.
  • an orifice 28 in the fuel line downstream of control valve 27.
  • the differential pressure across this orifice is applied to a standard ratio control instrument which may well be a controlling flow meter with an adjustable control point setting. Variations into the flow of the gas acting on this instrument produce a variable control pressure that is applied through a line 32 to a pneumatically operated valve 33 in the primary air supply line 11.
  • a standard ratio control instrument which may well be a controlling flow meter with an adjustable control point setting. Variations into the flow of the gas acting on this instrument produce a variable control pressure that is applied through a line 32 to a pneumatically operated valve 33 in the primary air supply line 11.
  • the air supply is also varied to maintain the proper ratio of fuel and air.
  • the temperature of the work is used, as it increases, to vary the ratio of fuel to air that is supplied to the burners.
  • the temperature of the work is measured by a thermocouple 34 or other suitable temperature responsive element which is connected by leads 35 to a pneumatic control instrument 36.
  • control instrument 36 will produce a variable control pressure which is applied through control line 37 to a pneumatic control valve 38 located in secondary air supply line 14.
  • a branch of line 37, indicated at 39, also permits this control pressure to be applied to the ratio adjusting mechanism of controller 31.
  • the ejector air supply which is normally constant, can be regulated by a manually operated valve 41 that is located in the ejector air supply line 17.
  • control instrument 31 is adjusted so that the proper ratio of fuel and air will be supplied to the burners.
  • the burners are then ignited and the furnace is heated by radiation from the burner cups and the products of combustion.
  • the furnace is maintained at the desired temperature, as measured by the temperature responsive element 23, by control instruments 25 and 31, adjusting valves 27 and 33 respectively.
  • the work is to be heated for rolling or forging the furnace temperature will be about 2400 F. or higher.
  • the combustion supporting gas-fuel gas [air-gas] ratio will be maintained at substantially stoichiometric, which for air and natural gas will be about 9.6 to l.
  • the products of combustion for this fuel-air ratio are oxidizing to steel above about 1400 F.
  • controller 36 will produce a control pressure in line 37, opening valve 38 and operating to adjust instrument 31 to change the air-gas ratio from stoichiometric to a rich mixture in which there is at least a 30% deficiency of air.
  • the air-gas ratio will be about to 1.
  • Valve 38 can be adjusted to open and instrument 31 can be adjusted to shift the gas-air ratio when the work reaches 1400 F. as mentioned, or the valve can be ad justed to open gradually and the instrument adjusted to shift ratio gradually as the work temperature varies through a range of temperature, say from 1300 F. to 1500 P. if desired. Adjustments of this type are conventional in pneumatic control instruments.
  • the heating of the work will continue in the fuel-rich furnace atmosphere.
  • This atmosphere is reducing and will not only prevent any oxidation of the work from taking place but will reduce any slight oxide that may have been formed while the metal continues to be heated to above a hot working temperature of 2250 to 2300 F.
  • the work when the work is heated it has a clean surface and may be moved directly from the furnace to a rolling mill or forge, for example, without the delay ordinarily required for descaling and cleaning and loss of heat which occurs during that time.
  • controller 36 is adjusted to apply a ratio adjusting pressure to ratio controller 31 and open valve 38 when the metal has reached a temperature of about 600 F. Thereafter the metal is heated in a non-oxidizing atmosphere as it is raised to a hot working temperature of about 1650 F.
  • the method of heating a metal which oxidizes at elevated temperatures which comprises heating the metal in direct contact with products of combustion resulting from burning a substantially stoichiometric mixture of fuel gas and air in the presence of the metal until the metal has reached a temperature at which its surface will begin to oxidize in the presence of said products of combustion, then continuing the heating of the metal in direct contact with products of combustion resulting from burning, in the presence of the metal, a rich mixture of fuel gas and air having at least a 40% deficiency of air from said first mentioned temperature to the hot working temperature for said metal.
  • the method of heating without scaling a material that oxidizes at elevated temperatures which comprises placing the material in the c pmbustion zone of a direct fired furnace having burners in the wall thereof, supplying fuel gas and air to the burners, regulating said supplies to substantially stoichiometric proportions, burning the fuel and air to heat the material to a temperature where surface oxidation will begin to take place, changing the fuel-air ratio to the burners so that there is at least a 40% deficiency of air, thereby creating a reducing atmosphere, and continuing to heat the material in said reducing atmosphere until the material has reached the final desired temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

Oct. 6, 1970 R Q 555 Re. 26,960
METAL HEATING Original Filed Aug. 1. 1966 FIG.2
I G I FUEL AIR INVENTOR. FREDERIC O. HESS Z4 awn ATTORNEY.
United States Patent Oflice Re. 26,960 Reissued Oct. 6, 1970 26,960 METAL HEATING Frederic O. Hess, Skytop, Pa., assignor to Selas Corporation of America, Dresher, Pa., a corporation of Pennsylvania Original No. 3,345,846, dated Oct. 10, 1967, Ser. No. 569,340, Aug. 1, 1966. Application for reissue Apr. 29, 1969, Ser. No. 835,852 Int. Cl. B2ld 31/00, 37/16; C21d 1/74, N06; F27d 7/00 US. Cl. 72200 8 Claims Matter enclosed in heavy brackets appears in the original patent but forms no part of this reissue specification; matter printed in italics indicates the additions made by reissue.
ABSTRACT OF THE DISCLOSURE A process of heating metals without scaling by heating with a stoichiometric mixture of fuel and combustion supporting gas until the metal reaches scaling temperature, then changing to a rich mixture and continuing the heating until the metal reaches the desired temperature.
Summary of the invention The present invention relates to the heating of metals and more partciularly to the scale-free heating of metals for hot forming or other purposes.
Ordinarily in the heating of steel billets for rolling, for example, the surface of the metal becomes heavily oxidized or covered with scale which must be removed before the metal is formed. The scale has an insulating effect which increases the time of heating. More importantly, however, the scale represents a substantial metal loss. In addition, any billet that has surface defects before heating, such as cracks, ,must be scrapped since the surfaces of the defect also become oxidized below the surface of the billet and are rolled or hammered into the final shape.
It is an object of the invention to provide a method of heating metal which normally oxidizes at elevated temperatures in such a manner that its surface is clean when the heating is completed.
It is a further object of the invention to provide a method of heating metals so that surface defects are kept clean or cleaned to such an extent that they are repaired during subsequent hot forming.
In practicing the invention, the metal is heated in a furnace that is directly fired by burners using a substantially stoichiometric mixture of fuel gas and a combustion supporting gas containing oxygen which is usually air and will be so referred to herein [air] until the work reaches a temperature where its surface is about to oxidize. At that time the fuel ratio is changed to a rich mixture so that the products of combustion are reducing or, in any event, non-oxidizing. The heating is continued under these conditions until the work is brought up to the desired temperature.
The invention is applicable to the heating of any metal. It is particularly useful, however, in the heating of metals which oxidize at elevated temperatures such as steel or copper, for example.
The various features of novelty which characterize my invention are pointed out with particularity in the claims annexed to and forming a part of this specification. For a better understanding of the invention, however, its advantages and specific objects attained with its use, reference should be had to the accompanying drawings and descriptive matter in which I have illustrtaed and described a preferred embodiment of the invention.
In the drawings:
FIG. 1 is a section through a furnace of a type which can be used for the invention, and
FIG. 2 is a diagram showing the supplies of fuel and air and the controls for these supplies by which the invention can be carried out.
Detailed description Referring to FIG. 1, there is shown a furnace 1 in which a slab, billet or other metal piece 2 is to be heated to hot working temperature. The work piece is mounted on supports 3 so that the hot gases of the furnace can circulate around it in order to heat it evenly. The furnace is heated by a plurality of burners 4 which fire directly into the furnace chamber and around the work. These burners are of a type shown in Pat. No. 3,262,484 and the disclosure thereof is incorporated herein by reference.
The burners, as shown in FIG. 2, include a refractory block 5 that forms a portion of the furnace wall with each block being provided with a cup-shaped depression 6 in the face thereof into which fuel gas and combustion supporting gas, usually air, are discharged for burning. Attachcd to the rear of the burners and to the furnace wall is a chamber 7 in which are located the supply pipes for fuel and air and through which furnace gases are drawn directly from the furnace chamber to preheat the air supply. The chamber is provided with a vent 8 through which these gases are exhausted.
In the system there is provided a main air supply 9 with several branches. One of these branches, 11, is connected to supply primary air to each of the burners of the furnace, two of which are shown in FIG. 2 of the drawing. Air flows from pipe 11 through branches 12 to the inlet pipe 13 of each burner. A secondary air line 14, also supplied by the main air supply 9, is connected with each of the burners through branches 15 that connect with secondary air pipe 16 of the burners. A third air supply line, called the ejector air and indicated at 17, is used to supply air to a pipe 19 in vent 8 to aspirate the furnace gases from the furnace chamber through burner chamber 7 to the atmosphere. A gas supply pipe 20 leading to all of the burners has a branch 21 to each burner, which branch is connected to a fuel supply pipe 22 of the individual burners.
The temperature of the interior of the furnace is measured by a thermocouple 23, or other suitable temperature sensing device, which is connected by a lead 24 with a standard temperature controller 25. This controller and the other controllers, to be described below, are preferably of the pneumatic contol type and operate in a well known manner to vary a control air output proportionately with changes in temperature or other variables being measured. In this case the control pressure from instrument 25 is applied through a control line 26 to a pneumatically operated valve 27 in the gas supply line. In operation, the temperature of the furnace is used to control the supply of fuel and the supply of fuel is used to control the amount of air. To this end, there is provided an orifice 28 in the fuel line downstream of control valve 27. The differential pressure across this orifice is applied to a standard ratio control instrument which may well be a controlling flow meter with an adjustable control point setting. Variations into the flow of the gas acting on this instrument produce a variable control pressure that is applied through a line 32 to a pneumatically operated valve 33 in the primary air supply line 11. Thus, as the fuel supply is varied in order to maintain the furnace temperature at the desired value, the air supply is also varied to maintain the proper ratio of fuel and air.
The temperature of the work is used, as it increases, to vary the ratio of fuel to air that is supplied to the burners. To this end, the temperature of the work is measured by a thermocouple 34 or other suitable temperature responsive element which is connected by leads 35 to a pneumatic control instrument 36. As the temperature response of measuring element 34 varies, control instrument 36 will produce a variable control pressure which is applied through control line 37 to a pneumatic control valve 38 located in secondary air supply line 14. A branch of line 37, indicated at 39, also permits this control pressure to be applied to the ratio adjusting mechanism of controller 31. The ejector air supply, which is normally constant, can be regulated by a manually operated valve 41 that is located in the ejector air supply line 17.
In practicing the invention, prior to the time a piece of work is placed in the furnace, control instrument 31 is adjusted so that the proper ratio of fuel and air will be supplied to the burners. The burners are then ignited and the furnace is heated by radiation from the burner cups and the products of combustion. The furnace is maintained at the desired temperature, as measured by the temperature responsive element 23, by control instruments 25 and 31, adjusting valves 27 and 33 respectively. Ordinarily if the work is to be heated for rolling or forging the furnace temperature will be about 2400 F. or higher. The combustion supporting gas-fuel gas [air-gas] ratio will be maintained at substantially stoichiometric, which for air and natural gas will be about 9.6 to l. The products of combustion for this fuel-air ratio are oxidizing to steel above about 1400 F.
During the operation of the furnace, products of combustion are being drawn back through chamber 7 of the burners by the aspirating effect of the ejector air in vent 8. These combustion products serve to preheat air flowing to the burner as disclosed in said Pat. 3,262,484.
The work is placed in the furnace to be heated. Because of the high temperature of the furnace and the fact that products of combustion can circulate freely around most of the work surface, heating of the work will take place rapidly. At the fuel-air ratio mentioned, the furnace gases will not be oxidizing to the work until it reaches 1400- 1500 F. When the work reaches about 1400 F., as measured by elements 34, controller 36 will produce a control pressure in line 37, opening valve 38 and operating to adjust instrument 31 to change the air-gas ratio from stoichiometric to a rich mixture in which there is at least a 30% deficiency of air. Preferably the air-gas ratio will be about to 1. This cuts down the primary combustion air to about 53% of stoichiometric, the remaining 47% deficiency being supplied through pipes 14 and as secondary air. The unburned gas in the rich mixture of products of combustion being drawn through the chambers 7 of the burners, mixes with the secondary air supplied to said chambers to burn therein. Ordinarily natural gas will not burn with an air-gas ratio of 5 to 1 unless the air is preheated to at least 1000 F. Burning of the secondary air and raw gas of the exhaust gases in chamber 7 will preheat the primary air to above l0OO P. so that the rich mixture supplied to the burners will burn at a high temperature in the furnace chamber, with the products of combustion being in direct contact with the work.
Valve 38 can be adjusted to open and instrument 31 can be adjusted to shift the gas-air ratio when the work reaches 1400 F. as mentioned, or the valve can be ad justed to open gradually and the instrument adjusted to shift ratio gradually as the work temperature varies through a range of temperature, say from 1300 F. to 1500 P. if desired. Adjustments of this type are conventional in pneumatic control instruments.
After the ratio adjustment has taken place, the heating of the work will continue in the fuel-rich furnace atmosphere. This atmosphere is reducing and will not only prevent any oxidation of the work from taking place but will reduce any slight oxide that may have been formed while the metal continues to be heated to above a hot working temperature of 2250 to 2300 F. Thus, when the work is heated it has a clean surface and may be moved directly from the furnace to a rolling mill or forge, for example, without the delay ordinarily required for descaling and cleaning and loss of heat which occurs during that time.
When a slab, for example, with surface defects such as cracks is heated as described above, the atmosphere of the furnace chamber will not only keep the surface of the slab clean, it apparently also cleans the surfaces of the cracks. Thereafter, when the slab is hot worked, such as being rolled, the surfaces of the cracks will weld together so that the resulting strip is perfect. This surface welding under pressure is only possible because of the manner in which the heating takes place.
While the invention is particularly useful in the heating of steel, it is equally as useful in the heating of any metal that oxidizes during normal heating for hot working. It is necessary to determine the temperature at which the metal will begin to oxidize, and at that temperature of the metal set the controls to adjust the ratio controller to reduce the supply of primary air and start the secondary air supply to the burner chambers. In the heating of copper, for example, controller 36 is adjusted to apply a ratio adjusting pressure to ratio controller 31 and open valve 38 when the metal has reached a temperature of about 600 F. Thereafter the metal is heated in a non-oxidizing atmosphere as it is raised to a hot working temperature of about 1650 F.
From the above it will be seen that there is provided a method for the rapid, scale-free heating of metals which oxidize at elevated temperatures. By surrounding substantially the entire surface of the metal object with high temperature products of combustion in a furnace at an elevated temperature, and regulating the analysis of these products of combustion as the metal temperature increases not only heats the metal rapidly, but also permits defects to be cured during subsequent treatment.
While in accordance with the provisions of the statutes I have illustrated and described the best form of embodiment of my invention now known to me, it will be apparent to those skilled in the art that changes may be made in the form of the apparatus disclosed without departing from the spirit and scope of the invention set forth in the appended claims, and that in some cases certain features of my invention may be used to advantage without a corresponding use of other features.
What is claimed is:
1. The method of heating a metal which oxidizes at elevated temperatures which comprises heating the metal in direct contact with products of combustion resulting from burning a substantially stoichiometric mixture of fuel gas and air in the presence of the metal until the metal has reached a temperature at which its surface will begin to oxidize in the presence of said products of combustion, then continuing the heating of the metal in direct contact with products of combustion resulting from burning, in the presence of the metal, a rich mixture of fuel gas and air having at least a 40% deficiency of air from said first mentioned temperature to the hot working temperature for said metal.
2. The method of claim 1 in which the fuel gas is natural gas and the first mentioned air-gas ratio is about 9.6 to l and in which the air-gas ratio of the rich mixture is about 5 to 1.
3. The method of heating without scaling a material that oxidizes at elevated temperatures which comprises placing the material in the c pmbustion zone of a direct fired furnace having burners in the wall thereof, supplying fuel gas and air to the burners, regulating said supplies to substantially stoichiometric proportions, burning the fuel and air to heat the material to a temperature where surface oxidation will begin to take place, changing the fuel-air ratio to the burners so that there is at least a 40% deficiency of air, thereby creating a reducing atmosphere, and continuing to heat the material in said reducing atmosphere until the material has reached the final desired temperature.
4. The method of claim 3 in which the air is used for combustion is preheated to at least 1000 F. when the fuel-air ratio is changed to give a deficiency of air.
5. The method of claim 3 in which the material being heated is steel and in which the steel is heated to about 1400 F. before the fuel-air ratio is changed to produce a reducing atmosphere, and continuing the heating of the steel until it reaches a temperature of about 2250 F.
6. The method of claim 3 in which the material being heated is copper and in which the copper is heated to about 600 F. before the fuel-air ratio is changed to produce a reducing atmosphere, and continuing the heating of the copper until it has reached a temperature of about 1650 F.
7. The method of claim 3 in which the material being heated is a steel slab having a crack on its surface, cleaning the surfaces of the crack by the reducing atmosphere while the slab is being heated to the final desired temperature, which is rolling temperature, and rolling the slab thereby welding the surfaces of the crack together.
8. The method of heating a metal which oxidizes at elevated temperatures which compirses heating the metal in direct contact with products of combustion resulting from burning a substantially stoichiometric mixture of a fuel and a combustion supporting gas in the presence of the metal to produce hot products of combustion that are oxidizing t0 the metal at temperatures above about 1300 F., continuing heating the metal in said products of combustion until the metal surface reaches Substantially oxidizing temperature, changing the ratio of the fuel and combustion supporting gas so that there is at least a 30% 6 deficiency of the combustion supporting gas so that the products of combustion are reducing to the metal, and continuing to heat the metal in the presence of the reducing products of combustion until it reaches the hot working temperature.
References Cited The following references, cited by the Examiner, are
of record in the patented file of this patent or the original patent.
UNITED STATES PATENTS 2,587,900 3/1952 Robiette 148-16.? 2,763,476 9/1956 Ness et al. 263-15 2,886,303 5/1959 Rusciano 263-15 3,331,594 7/1967 Davies l48-16.7 2,799,491 7/1957 Rusciano 266-5 2,844,365 7/1958 Rusciano 266-5 2,845,260 7/1958 Rusciano 263-15 2,848,207 8/1958 Rusciano 263-15 3,022,057 2/1962 Schmidt et al. 263-15 3,125,327 3/1964 Williams 263-15 3,159,387 12/1964 Campbell et al. 263- 3,170,681 2/1965 Davies 263-40 FOREIGN PATENTS 697,734 9/1953 Great Britain.
CHARLES W. LANHAM, Primary Examiner E. M. COMBS, Assistant Examiner US. Cl. X.R.
US26960D 1969-04-29 1969-04-29 Metal heating Expired USRE26960E (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83585269A 1969-04-29 1969-04-29

Publications (1)

Publication Number Publication Date
USRE26960E true USRE26960E (en) 1970-10-06

Family

ID=25270624

Family Applications (1)

Application Number Title Priority Date Filing Date
US26960D Expired USRE26960E (en) 1969-04-29 1969-04-29 Metal heating

Country Status (1)

Country Link
US (1) USRE26960E (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511124A (en) 1983-05-03 1985-04-16 Lone Star Steel Company Method and composition for fluidization of accumulated pit scrap in soaking pits

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511124A (en) 1983-05-03 1985-04-16 Lone Star Steel Company Method and composition for fluidization of accumulated pit scrap in soaking pits

Similar Documents

Publication Publication Date Title
US3345846A (en) Metal heating
US4357135A (en) Method and system for controlling multi-zone reheating furnaces
US2395276A (en) Fuel burner
MX2008010969A (en) Metal heat treating methods and devices.
US3836320A (en) Minimum scale reheating furnace and means relating thereto
USRE26960E (en) Metal heating
US2329211A (en) Continuous heating furnace and method of operating the same
US3099437A (en) Temperature controlled forge furnace or the like and method of operating same
US2277595A (en) Furnace
US2458624A (en) Method and apparatus for artificially compensating for thermal load changes in heat-treatment furnaces
US2691515A (en) Forge furnace control
US2228564A (en) Heat treating furnace
US2160610A (en) Metallurgical furnace
KR100286644B1 (en) Apparatus and method for controlling temperature of strip in heating zone of annealing furnace
JPS6254024A (en) Method for controlling automatic combustion in heating furnace
JP3213095B2 (en) Atmosphere control device in heating furnace
JP2789350B2 (en) Bright annealing method and apparatus for stainless steel strip
JPH078372B2 (en) Control method of heating temperature of stainless steel strip
US3331594A (en) Method and apparatus for scale free heating of metals
JPH08291327A (en) Continuous heating apparatus
DE936397C (en) Furnace for annealing and quenching of elongated metal parts, especially wire patent furnace
JPH03153824A (en) Billet heating furnace
JPS56149513A (en) Combustion controlling method for heat equipment
JP3364091B2 (en) Temperature control method for continuous annealing furnace
JPH0585621B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIRST PENNSYLVANIA BANK N A 19TH FL.CENTRE SQ WEST

Free format text: SECURITY INTEREST;ASSIGNOR:SELAS CORPORATION OF AMERICA A CORP OF PA;REEL/FRAME:003997/0981

Effective date: 19820217

AS Assignment

Owner name: SELAS CORPORATION OF AMERICA A CORP. OF PA

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST PENNSYLVANIA BANK N.V., FOR ITSELF AND AS AGENT FOR THE PHILADELPHIA NATIONAL BANK;REEL/FRAME:004096/0520

Effective date: 19821231

AS Assignment

Owner name: BANCBOSTON FINANCIAL COMPANY,MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNOR:SELAS CORPORATION OF AMERICA;REEL/FRAME:004557/0143

Effective date: 19860529

Owner name: BANCBOSTON FINANCIAL COMPANY, 100 FEDERAL STREET,

Free format text: SECURITY INTEREST;ASSIGNOR:SELAS CORPORATION OF AMERICA;REEL/FRAME:004557/0143

Effective date: 19860529

AS Assignment

Owner name: SELAS CORPORATION OF AMERICA, PENNSYLVANIA

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANCBOSTON FINANACIAL COMPANY A MA TRUST;REEL/FRAME:004945/0988

Effective date: 19880805

Owner name: SELAS CORPORATION OF AMERICA, DRESHER, PA 19025 A

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:BANCBOSTON FINANACIAL COMPANY A MA TRUST;REEL/FRAME:004945/0988

Effective date: 19880805