JPS5830335B2 - Manufacturing method of microporous resin membrane - Google Patents

Manufacturing method of microporous resin membrane

Info

Publication number
JPS5830335B2
JPS5830335B2 JP6410675A JP6410675A JPS5830335B2 JP S5830335 B2 JPS5830335 B2 JP S5830335B2 JP 6410675 A JP6410675 A JP 6410675A JP 6410675 A JP6410675 A JP 6410675A JP S5830335 B2 JPS5830335 B2 JP S5830335B2
Authority
JP
Japan
Prior art keywords
membrane
peg
solvent
porosity
pvc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6410675A
Other languages
Japanese (ja)
Other versions
JPS51140958A (en
Inventor
晃 清水
幸夫 広瀬
啓 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP6410675A priority Critical patent/JPS5830335B2/en
Publication of JPS51140958A publication Critical patent/JPS51140958A/en
Publication of JPS5830335B2 publication Critical patent/JPS5830335B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、非対称多孔質構造を有する微多孔性樹脂膜の
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a microporous resin membrane having an asymmetric porous structure.

一般に、微多孔性膜は限外濾過膜、電解隔膜など微孔を
利用した特異な用途を有する。
In general, microporous membranes have unique uses that utilize micropores, such as ultrafiltration membranes and electrolytic diaphragms.

これらの膜の性能として下記の3点が特に要求される。The following three points are particularly required for the performance of these membranes.

(1)数十ミクロン以下の均一な孔径を有する。(1) It has a uniform pore diameter of several tens of microns or less.

(2)大きな透過性(透水量、通気度)を有する。(2) Has high permeability (water permeability, air permeability).

(3)強度、安定性(耐水性、耐熱性、耐薬品性)を有
し、膜寿命が長い。
(3) It has strength, stability (water resistance, heat resistance, chemical resistance), and has a long membrane life.

従来の微多孔性膜の製法は、良溶媒と貧溶媒の混合溶媒
に樹脂を溶解し、この混合液を流誕し、乾燥して微孔を
生成させる方法(以下「流誕法」と呼ぶ)が最も一般的
である。
The conventional manufacturing method for microporous membranes involves dissolving resin in a mixed solvent of a good solvent and a poor solvent, and then pouring this mixed solution and drying it to generate micropores (hereinafter referred to as the "drifting method"). ) are the most common.

この流灘法により得られる膜は、フェルト状の網目構造
を有し、孔径が均一である。
The membrane obtained by this flowing method has a felt-like network structure and has uniform pore diameters.

しかしながら、膜の空隙率は通常50〜80 vo1%
位であり、透過性能は十分でない。
However, the porosity of the membrane is usually 50-80 vo1%
The transmission performance is not sufficient.

本発明は、かかる欠点のない、即ち均一な細孔分布を有
し、非対称多孔質構造により空隙率と透過性能を向上さ
せた充分有用な樹脂膜を提供することを目的とし、その
要旨とするところは、塩化ビニル樹脂とポリアルキレン
グリコールとを一種又は二種以上の溶媚I)に溶解し、
得られた溶液を流誕した後、乾燥工程を経ることなく直
ちに塩化ビニル樹脂に貧溶媒、ポリアルキレングリコー
ルに良溶媒となる溶ml)中に浸漬することを特徴とす
る非対称多孔質構造を有する微多孔性樹脂膜の製造法に
存する。
The purpose of the present invention is to provide a sufficiently useful resin membrane that is free from such drawbacks, that is, has a uniform pore distribution, and has improved porosity and permeability due to its asymmetric porous structure. However, by dissolving vinyl chloride resin and polyalkylene glycol in one or more kinds of solubilizers I),
It has an asymmetric porous structure characterized in that after the obtained solution is poured out, it is immediately immersed in a solution (ml) that is a poor solvent for vinyl chloride resin and a good solvent for polyalkylene glycol without going through a drying process. It consists in a method for manufacturing a microporous resin membrane.

本発明の上記塩化ビニル樹脂(以下rVcRJと略記す
る)としては、ポリ塩化ビニル(pvc)、塩化ビニル
共重合体、これらと他の樹脂とのブレンド物があり、塩
化ビニル共重合体としては、例えば塩化ビニルと酢酸ビ
ニル、塩化ビニリデン、エチレン、アクリル酸などとの
二元又は三元以上の共重合体がある。
The vinyl chloride resin (hereinafter abbreviated as rVcRJ) of the present invention includes polyvinyl chloride (PVC), vinyl chloride copolymer, and blends of these and other resins. As the vinyl chloride copolymer, For example, there are binary or ternary copolymers of vinyl chloride and vinyl acetate, vinylidene chloride, ethylene, acrylic acid, etc.

また、ポリアルキレングリコール(以下IPAGjと略
記する)としては、ポリエチレングリコール(PEG)
、ポリプロピレングリコール(PPG)、又はこれらの
共重合体などがある。
In addition, polyalkylene glycol (hereinafter abbreviated as IPAGj) includes polyethylene glycol (PEG).
, polypropylene glycol (PPG), or copolymers thereof.

溶媒(1)としては、ジメチルホルムアミド、ジメチル
アセトアミド、ジメチルスルホキシド、テトラヒドロフ
ラン、アセトンとベンゼンの混合溶媒などがあり、溶媚
旬としては、水、アルコール、エステル、アルデヒド、
これらの混合溶媒などが用いられる。
Examples of the solvent (1) include dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetrahydrofuran, and a mixed solvent of acetone and benzene. Examples of the solvent include water, alcohol, ester, aldehyde,
Mixed solvents of these are used.

なお、PAGの溶解性を制御するため、金属塩や無機酸
を添加することも有効である。
Note that in order to control the solubility of PAG, it is also effective to add a metal salt or an inorganic acid.

更に、本発明方法の製造条件に関して、VCRlPAG
の分子量は特に限定されるものではないが、例えば重合
度1000のPVCを使用する場合PEGの分子量は好
ましくは200〜1oooである。
Furthermore, regarding the manufacturing conditions of the method of the present invention, VCRlPAG
Although the molecular weight of PEG is not particularly limited, for example, when PVC with a polymerization degree of 1000 is used, the molecular weight of PEG is preferably 200 to 100.

マトリックスの種類及び重合度により、好ましいPAG
の種類及び分子量、溶媒などは異なる。
Preferred PAG depending on the type of matrix and degree of polymerization
The type, molecular weight, solvent, etc. of each are different.

例えば、PvCとPEGとの混合割合は溶媒に十分溶解
する範囲で任意に変えることができる。
For example, the mixing ratio of PvC and PEG can be arbitrarily changed within a range that allows sufficient dissolution in the solvent.

但し、実用的に有意義な透過性能を得るには膜中にある
程度以上の空隙率が必要であり、このためPEG/PV
Cの比の最少限度がある。
However, in order to obtain practically meaningful permeation performance, a certain level of porosity is required in the membrane, and for this reason, PEG/PV
There is a minimum limit on the ratio of C.

また、実用的な膜強度を有するには、マトリックス(p
vc)含量を大きくする必要があり、このため、PEG
/PVCの比の最大限度がある。
In addition, in order to have practical film strength, the matrix (p
vc) content needs to be increased, and for this reason, PEG
There is a maximum limit for the ratio of /PVC.

従って、PEG/PVCの比を成膜可能条件下でどのよ
うに変化しても微孔を生成しうるが、好ましくはPEG
/PVCの比が1/10〜10/1である。
Therefore, micropores can be generated by changing the PEG/PVC ratio under conditions that allow film formation, but preferably PEG/PVC
/PVC ratio is 1/10 to 10/1.

浸漬する溶媒については前述したが、実用的には水が好
ましい。
The solvent for immersion has been described above, but water is preferred from a practical standpoint.

浸漬する温度はマトリックスの軟化点以下が適当である
The immersion temperature is suitably below the softening point of the matrix.

上述のようにして得られた膜は、図2および4(走査型
電子顕微鏡写真による断面構造、250倍)に示すとお
り、非対称多孔質構造を有する。
The membrane obtained as described above has an asymmetric porous structure, as shown in FIGS. 2 and 4 (cross-sectional structure by scanning electron micrograph, magnified at 250 times).

これらの膜の対応する表面構造はそれぞれ図1および3
(同写真による、2500倍)に示すとおり微細な孔を
有し、孔径として10μ以下の微孔を有する膜が得られ
る。
The corresponding surface structures of these membranes are shown in Figures 1 and 3, respectively.
As shown in the photo (2500 times magnification), a membrane having fine pores with a pore diameter of 10 μm or less is obtained.

ここで云うところの非対称多孔質構造とは、逆浸透膜に
用いられるanisotropic membrane
(異方性膜又は非対称膜)の構造と同類である。
The asymmetric porous structure referred to here refers to the anisotropic membrane used in reverse osmosis membranes.
(anisotropic membrane or asymmetric membrane).

即ち、膜表面は緻密な層(通常、5kin 1aye
r )、膜内部は多孔質な層(通常、porous
1ayer )より成っている。
That is, the membrane surface has a dense layer (usually 5 kin 1 aye
r ), the inside of the membrane is a porous layer (usually porous
1ayer).

このとき、多孔質な層は図2,4に示すとおり、円筒状
の構造を有している。
At this time, the porous layer has a cylindrical structure as shown in FIGS. 2 and 4.

更に詳細に観察すると、より表面に近い部分では円筒状
構造は崩れ、網目状に近い構造に移行し、緻密な層に連
結している。
When observed in more detail, the cylindrical structure collapses in areas closer to the surface and shifts to a nearly mesh-like structure, which is connected into a dense layer.

従来得られた膜は、例えば特願昭48− 139379号に記載のとおり、網目状多孔質構造を全
面に有し、上記のような非対称多孔質構造を有しない。
Conventionally obtained membranes have a network porous structure over the entire surface, as described in Japanese Patent Application No. 48-139379, and do not have the above-mentioned asymmetric porous structure.

この相違点は、調製された溶液を流産後、前述の如く乾
燥工程を経ることなく溶媒に浸漬するか、乾燥工程を経
て浸漬するかにより、溶液中の高分子凝集過程に差異を
生じることによる。
This difference is due to the difference in the polymer aggregation process in the solution, depending on whether the prepared solution is immersed in the solvent without going through the drying process or after the drying process as described above. .

以下、本発明の特徴をPvCとPEGをジメチルホルム
アミド溶媒に溶解し、流産し、水中に浸漬した場合を例
にとり具体的に説明する。
Hereinafter, the features of the present invention will be specifically explained using an example in which PvC and PEG are dissolved in a dimethylformamide solvent, aborted, and immersed in water.

第1に、流産、浸漬処理過程を通じマトリックスとして
のPVCとPEGが比較的ミクロに分散する。
First, PVC and PEG as a matrix are dispersed in a relatively microscopic manner through the immersion treatment process.

これは本発明の最も基本的かつ重要な点である。This is the most basic and important point of the invention.

即ち、生成する微孔径が均一かつ微細であることを意味
する。
That is, it means that the diameter of the generated micropores is uniform and fine.

第2に、流産により容易に製膜ができ、工業的製膜が可
能である。
Second, membrane formation can be easily performed by miscarriage, and industrial membrane formation is possible.

流産条件の変化により、任意に所定の構造を有する膜が
得られ、膜性能の再現性が良い。
By changing the miscarriage conditions, membranes with arbitrary predetermined structures can be obtained, and the reproducibility of membrane performance is good.

第3に、PEGは水溶性であるため、常温の水媒体でP
vCは凝固し、PEGは抽出される。
Third, since PEG is water-soluble, P
The vC is solidified and the PEG is extracted.

第4に、PEGは高分子(オリゴマーを含む)であるた
め、適度の粘性を有し、PVCとPEGの界面は溶解状
態と凝集状態との間の“ゆらぎ現象゛′が生じていると
思われる。
Fourth, since PEG is a polymer (including oligomers), it has a moderate viscosity, and it is thought that a "fluctuation phenomenon" between a dissolved state and an agglomerated state occurs at the interface between PVC and PEG. It will be done.

このことが、単に貧溶媒を用いて得ることのできない安
定したPVCマトリックスの形成をうながしている。
This facilitates the formation of a stable PVC matrix that cannot be obtained simply by using poor solvents.

第5に、PVCは強度、安定性の高い素材として有用で
ある。
Fifth, PVC is useful as a material with high strength and stability.

第6に、非対称多孔質構造は、従来の網目状のそれと異
なり、空隙率を極めて高くでき、従来の迷路のような透
過路を一直線上にして透過性を向上させる。
Sixth, the asymmetric porous structure, unlike the conventional mesh-like structure, can have an extremely high porosity, thereby aligning the conventional maze-like permeation path and improving permeability.

第7に、従来の濾過膜と異なり空隙率が高いため、微孔
中に乾燥剤などを充填した新規な膜素材として有用であ
る。
Seventh, unlike conventional filtration membranes, it has a high porosity, so it is useful as a new membrane material in which the micropores are filled with a desiccant or the like.

用途に関しては濾過膜の他、例えば通気性を利用した包
装材料、高空隙性を利用して乾燥剤など充填した膜、電
池セパレーター、人工腎臓用などの拡散透析膜などがあ
る。
Applications include, in addition to filtration membranes, packaging materials that take advantage of their air permeability, membranes filled with desiccant materials that take advantage of their high porosity, battery separators, and diffusion dialysis membranes for use in artificial kidneys.

次に実施例によって本発明を更に具体的に説明するが、
本発明はその要旨を超えない限り以下の実施例に制約さ
れるものではない。
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

なお、実施例において、膜孔径は表面構造の走査型電子
顕微鏡写真より算定し、透過量は差圧0.5kg/cr
Aのとき単位時間、単位面積当りの値をもって示した。
In the examples, the membrane pore diameter was calculated from a scanning electron micrograph of the surface structure, and the permeation amount was calculated based on a differential pressure of 0.5 kg/cr.
In the case of A, the values are expressed per unit time and unit area.

空隙率は膜中に包含される水の量から換算し、空間の体
積割合で示した。
The porosity was calculated from the amount of water contained in the membrane and expressed as a volume percentage of space.

以下の実施例において割合を示す部は重量による。In the following examples, parts expressed as percentages are by weight.

実施例 1 pvc(重合度1000)7部、PEG(分子量600
)21部、ジメチルホルムアミド72部より均一な溶液
を調製する。
Example 1 7 parts of PVC (degree of polymerization 1000), PEG (molecular weight 600)
) and 72 parts of dimethylformamide to prepare a homogeneous solution.

この溶液を20℃恒温槽中にて40×40CrrLのガ
ラス板上に流源し、直ちに50℃水中に浸漬し、膜を得
た。
This solution was poured onto a 40×40 CrrL glass plate in a 20° C. constant temperature bath, and immediately immersed in 50° C. water to obtain a film.

得られた膜は膜厚300μ、透水量1.1cc 7mm
/ crti、空隙率89%となり、走査型電子顕微
鏡で観察すると膜孔径o、iμ以下、表面構造は図1、
断面構造は図2のとおりであった。
The obtained membrane has a thickness of 300 μm and a water permeability of 1.1 cc 7 mm.
/ crti, the porosity was 89%, and when observed with a scanning electron microscope, the membrane pore diameter was less than o, iμ, and the surface structure was as shown in Figure 1.
The cross-sectional structure was as shown in FIG.

この膜は粒径0.05μのNBRエマルジョンを分離し
た。
This membrane separated an NBR emulsion with a particle size of 0.05μ.

なお、同一条件にて流産後溶媒を20℃で30分間揮発
させると、もはや網目状の断面構造となり、空隙率は8
1%へ低下し、透水量も低下する。
In addition, if the solvent is volatilized at 20°C for 30 minutes under the same conditions, the cross-sectional structure becomes a network, and the porosity becomes 8.
This decreases to 1%, and the water permeability also decreases.

実施例 2 pvc(重合度1000)9部、PEG(分子量600
)36部、ジメチルホルムアミド55部より均一な溶液
を調製する。
Example 2 9 parts of PVC (degree of polymerization 1000), PEG (molecular weight 600)
) and 55 parts of dimethylformamide to prepare a homogeneous solution.

この溶液を20℃恒温槽中にて40X40(mのガラス
板上に流激し、直ちに50℃水中に浸漬し、膜を得た。
This solution was poured onto a 40×40 (m) glass plate in a constant temperature bath at 20° C., and immediately immersed in water at 50° C. to obtain a film.

得られた膜は膜厚250μ、透水量0.7cc 7m1
yt / crii、空隙率85%となり、走査型電子
顕微鏡で観察すると膜孔径0.1μ以下、表面構造は図
3、断面構造は図4のとおりであった。
The obtained membrane has a thickness of 250μ and a water permeability of 0.7cc 7m1
yt/crii, porosity was 85%, and when observed with a scanning electron microscope, the membrane pore diameter was 0.1 μ or less, the surface structure was as shown in FIG. 3, and the cross-sectional structure was as shown in FIG. 4.

この膜は粒径0.5μのNBRエマルジョンを分離した
This membrane separated an NBR emulsion with a particle size of 0.5μ.

なお同一条件にて流産後溶媒を30分間揮発すると、も
はや網目状の断面構造となり、空隙率は55%へ低下し
、透水量も低下する。
If the solvent is evaporated for 30 minutes under the same conditions after a miscarriage, the cross-sectional structure becomes a network, the porosity decreases to 55%, and the amount of water permeation decreases.

実施例 3 実施例1と同様にして流産し、直ちに0℃氷水中に浸漬
して膜を得た。
Example 3 A miscarriage was carried out in the same manner as in Example 1, and the membrane was immediately immersed in ice water at 0° C. to obtain a membrane.

得られた膜は膜厚300μ、膜孔径0.5μ、透水量1
.7cc/馴/cni、空隙率91%の性能を有した。
The obtained membrane had a thickness of 300μ, a pore diameter of 0.5μ, and a water permeability of 1.
.. It had a performance of 7 cc/f/cni and a porosity of 91%.

実施例 4 実施例1と同様にして、50℃恒温槽中にて流源し、直
ちに室温水中に浸漬して当該膜を得た。
Example 4 In the same manner as in Example 1, the membrane was poured into a 50° C. constant temperature bath and immediately immersed in room temperature water to obtain the membrane.

得られた膜は膜厚150μ、膜孔径0.7μ、透水量2
. Q cc /耶/crrt、空隙率93%の性能を
有した。
The obtained membrane had a thickness of 150μ, a pore diameter of 0.7μ, and a water permeability of 2.
.. It had the performance of Qcc/Y/crrt and porosity of 93%.

実施例 5 実施例1と同様にして、5℃恒温槽中にて流産し、直ち
に室温水中に浸透して膜を得た。
Example 5 In the same manner as in Example 1, abortion was carried out in a 5° C. constant temperature bath, and the membrane was immediately immersed in room temperature water to obtain a membrane.

得られた膜は、膜厚200μ、膜孔径0.1μ以下、透
水量0.2CC/馴/ crA、空隙率90%の性能を
有した。
The obtained membrane had a thickness of 200μ, a pore diameter of 0.1μ or less, a water permeability of 0.2CC/acid/crA, and a porosity of 90%.

実施例 6 分子量10000PEGを使用した以外は実施例1と同
様にして膜を得た。
Example 6 A membrane was obtained in the same manner as in Example 1 except that PEG with a molecular weight of 10,000 was used.

得られた膜は膜厚350μ、膜孔径0.1μ以下、透水
量Q、 3 cc /min/ c4、空隙率87%の
性能を有した。
The obtained membrane had a thickness of 350μ, a pore diameter of 0.1μ or less, a water permeability Q of 3 cc/min/c4, and a porosity of 87%.

実施例 7 pvcO代わりに酢酸ビニル含有量20%の塩化ビニル
−酢酸ビニル共重合体(日本ゼオン製)を使用した以外
は実施例1と同様にして膜を得た。
Example 7 A membrane was obtained in the same manner as in Example 1, except that a vinyl chloride-vinyl acetate copolymer (manufactured by Nippon Zeon) having a vinyl acetate content of 20% was used instead of pvcO.

得られた膜は膜厚400μ、膜孔径0.1μ以下、透水
量o、2cc/闘/ crA、空隙率88%の性能を有
した。
The obtained membrane had a thickness of 400μ, a pore diameter of 0.1μ or less, a water permeability of 2 cc/cm/crA, and a porosity of 88%.

【図面の簡単な説明】[Brief explanation of the drawing]

図1,3は本発明法によって得られた微多孔性樹脂膜の
走査型電子顕微鏡写真(2500倍)による表面構造、
図2,4はそれぞれ対応する膜の同写真(250倍)に
よる断面構造を示す。
Figures 1 and 3 are scanning electron micrographs (2500x) of the surface structure of the microporous resin film obtained by the method of the present invention;
2 and 4 each show the cross-sectional structure of the corresponding film taken in the same photograph (250x magnification).

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ビニル樹脂とポリアルキレングリコールとを一
種又は二種以上の溶媒に溶解し、得られた溶液を流舐し
た後、乾燥工程を経ることなく直ちに塩化ビニル樹脂に
貧溶媒、ポリアルキレングリコールに良溶媒となる溶媒
中に浸漬することを特徴とする非対称多孔質構造を有す
る微多孔性樹脂膜の製造法。
1. After dissolving vinyl chloride resin and polyalkylene glycol in one or more solvents and licking the resulting solution, immediately dissolve the vinyl chloride resin in a poor solvent and the polyalkylene glycol in a good manner without going through a drying process. A method for producing a microporous resin membrane having an asymmetric porous structure, which comprises immersing the membrane in a solvent.
JP6410675A 1975-05-30 1975-05-30 Manufacturing method of microporous resin membrane Expired JPS5830335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6410675A JPS5830335B2 (en) 1975-05-30 1975-05-30 Manufacturing method of microporous resin membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6410675A JPS5830335B2 (en) 1975-05-30 1975-05-30 Manufacturing method of microporous resin membrane

Publications (2)

Publication Number Publication Date
JPS51140958A JPS51140958A (en) 1976-12-04
JPS5830335B2 true JPS5830335B2 (en) 1983-06-28

Family

ID=13248479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6410675A Expired JPS5830335B2 (en) 1975-05-30 1975-05-30 Manufacturing method of microporous resin membrane

Country Status (1)

Country Link
JP (1) JPS5830335B2 (en)

Also Published As

Publication number Publication date
JPS51140958A (en) 1976-12-04

Similar Documents

Publication Publication Date Title
EP0413552B1 (en) Asymmetric porous polyamide membranes
US20120318741A1 (en) Self-Assembled Block Copolymer Membrane
US4220543A (en) Ethylene-vinyl alcohol membranes having improved properties and a method of producing the same
US20090173694A1 (en) Isoporous membrane and method of production thereof
JPS6227006A (en) Microporous membrane
EP1007195A1 (en) Highly asymmetric polyethersulfone filtration membrane
JP6484171B2 (en) Hydrophilic vinylidene fluoride porous hollow fiber membrane and method for producing the same
US5151182A (en) Polyphenylene oxide-derived membranes for separation in organic solvents
TW201622805A (en) Microporous polyvinylidene fluoride flat membrane
Shekarian et al. Polyacrylonitrile (PAN)/IGEPAL blend asymmetric membranes: preparation, morphology, and performance
KR900002095B1 (en) Production of porous membrane
JPS596231A (en) Porous fluorocarbon resin membrane and its production
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JP3386904B2 (en) Cellulose acetate hollow fiber separation membrane and method for producing the same
JPS6138208B2 (en)
JPS5830335B2 (en) Manufacturing method of microporous resin membrane
US20220226783A1 (en) Additive manufacturing of self-assembled polymer films
JP2713294B2 (en) Method for producing polysulfone-based resin semipermeable membrane
JPS5891731A (en) Asymmetrical porous membrane of polyvinyl fluoride and its production
JP3294783B2 (en) Stock solution
JPH0359733B2 (en)
JP3305778B2 (en) Hydrophilized polysulfone-based resin hollow fiber membrane and method for producing the same
JPS6052844B2 (en) Manufacturing method of vinyl chloride resin ultrafiltration membrane
JPH0696105B2 (en) Method for producing aromatic polysulfone hollow fiber membrane
JPS62282606A (en) Production of porous hollow fiber membrane made of polyvinylidene fluoride