JPS5829722A - Preparation of diphenylalkane - Google Patents

Preparation of diphenylalkane

Info

Publication number
JPS5829722A
JPS5829722A JP12845581A JP12845581A JPS5829722A JP S5829722 A JPS5829722 A JP S5829722A JP 12845581 A JP12845581 A JP 12845581A JP 12845581 A JP12845581 A JP 12845581A JP S5829722 A JPS5829722 A JP S5829722A
Authority
JP
Japan
Prior art keywords
fraction
reaction
hydrogen fluoride
diphenylalkanes
anhydrous hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12845581A
Other languages
Japanese (ja)
Inventor
Hiroyuki Omori
大森 博之
Koichi Fujita
耕一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP12845581A priority Critical patent/JPS5829722A/en
Publication of JPS5829722A publication Critical patent/JPS5829722A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled compound by reacting styrene, etc. with a mixed alkylbenzene obtained as a by-product of the thermal cracking of petroleum hydrocarbons, in the presence of anhydrous hydrogen fluoride, keeping the weight ratio of the total hydrocarbon to the anhydrous hydrogen fluoride, the dropping rate of the mixed alkylbenzene and the reaction temperature within specific ranges. CONSTITUTION:Diphenylalkanes are prepared by adding a 6-8C fraction or 8C fraction obtained as a by-product of the thermal cracking of petroleum hydrocarbons dropwise to benzene or a 1-4C alkylbenzene in the presence of anhydrous hydrogen fluoride. In the above process, the reaction is carried out by keeping the weight ratio of the total hydrocarbons to the anhydrous hydrogen fluoride to 1/2-1/200, preferably 1/50-1/100, the dropping rate of the 6-8C or 8C fraction to 130-0.5g/min.l preferably 70-1.0g/min.l in case of 6-8C fraction and 20-0.05g/min.l, preferably 10-0.1g/min.l in case of 8C fraction, and the reaction temperature at 0-100 deg.C, preferably 15-60 deg.C. USE:Synthetic oil for plasticizer, solvent, thermal medium, electrical insulation oil, hydraulic oil, refrigerator oil, etc.

Description

【発明の詳細な説明】 本発明は、ジフェニルアルカン類の製造法に関するもの
である・本発明の方法によれば、効率よく、目的とする
ジフェニルアルカン類を製造できるO 本発明の方法で製造されるジフェニルアルカン類とは、
同一の炭素原子に2個のベンゼン環が結合しているジフ
ェニルメタン骨格を有するものである。ジフェニルアル
カン類は、耐熱性、相溶性、電気特性などに優れており
、可塑剤、溶剤、熱媒体、電気絶縁油、作動油、冷凍機
油などに適した合成油として広く用いられているが、殊
に可塑剤、溶剤などに適するものは副生トリフェニルア
ルカン類などの少ないものである。
Detailed Description of the Invention The present invention relates to a method for producing diphenylalkanes. According to the method of the present invention, the desired diphenylalkanes can be efficiently produced. What are diphenylalkanes?
It has a diphenylmethane skeleton in which two benzene rings are bonded to the same carbon atom. Diphenylalkanes have excellent heat resistance, compatibility, and electrical properties, and are widely used as synthetic oils suitable for plasticizers, solvents, heat carriers, electrical insulation oils, hydraulic oils, refrigeration oils, etc. Particularly suitable as plasticizers, solvents, etc. are those with low levels of by-product triphenylalkanes.

石油系炭化水素の熱分解で副生ずる混合アルキルベンゼ
ンと、スチレン又はスチレン系化合4N:を反応させて
、ジフェニルアルカン類を製造する? 方法は公知である。例えば、特開昭48−47858号
公報にはフッ化水素を触媒として使用する方法が開示さ
れている。しかしながら、この場合には樹脂状物が多量
に生成し、目的の製品が得られないし、上記触媒系では
その後もこの問題点が解決されてはいない(特開昭53
−135959号公報参照)。さらに、これらの方法で
は1/lI製さねたスチレン又はスチレン系化合物を使
用する為、ジフェニルアルカン類のコストは高くなり好
tL〈lい。又、特開昭53−130624号公報には
、スチレンを含むキシレン留分をノ・ロゲン化金輌を除
く酸触媒に液相で接触させる方法が開示されているが、
硫酸を触媒として使用すると、芳香族化合物、不飽和脂
肪族炭化水素類のスルホン化物が副生じ、その結果、反
応液の乳化が著しく、オイル層と酸L−の分離が困難で
、目的物の回収率が極めて低くなる問題が発生した。
Is it possible to produce diphenylalkanes by reacting mixed alkylbenzene, a by-product of thermal decomposition of petroleum hydrocarbons, with styrene or styrene-based compound 4N? The method is known. For example, JP-A-48-47858 discloses a method using hydrogen fluoride as a catalyst. However, in this case, a large amount of resinous material is produced, making it impossible to obtain the desired product, and this problem has not been solved in the above-mentioned catalyst system since then (Japanese Patent Laid-Open No. 53
(Refer to Publication No.-135959). Furthermore, in these methods, since 1/lI-made styrene or styrene-based compounds are used, the cost of diphenylalkanes is high and it is preferable that tL<l. Furthermore, JP-A-53-130624 discloses a method in which a xylene fraction containing styrene is brought into contact in a liquid phase with an acid catalyst excluding a halogenated metal.
When sulfuric acid is used as a catalyst, aromatic compounds and sulfonated unsaturated aliphatic hydrocarbons are produced as by-products, resulting in significant emulsification of the reaction solution, making it difficult to separate the oil layer and acid L-, and preventing the target product from being separated. A problem occurred where the recovery rate was extremely low.

一方、ベンゼン又はアルキルベンゼンに対するスチレン
類の付加は、1モル付υ口体であるジフェニルアルカン
類の生成のみならず、2モル付加体であるトリフェニル
アルカン類も副生じ、ジフェニルアルカン類へのスチレ
ン類の選択率が低下する・ 本発明者らは、上記問題点を解決すべく鋭意検討を行い
、石油系炭化水素の熱分解で副生するC6〜C8留分又
はC8留分を用いた場合、触媒として無水フッ化水素を
用いても、特定の製造条件を選定すれば、上記問題点が
解決でき、効率よく、高収率でジフェニルアルカン類を
得ることを見いだし、本発明を完成するに至った。
On the other hand, the addition of styrenes to benzene or alkylbenzenes not only produces diphenylalkanes, which are 1 molar adducts, but also produces triphenylalkanes, which are 2 molar adducts, and styrenes to diphenylalkanes. The present inventors conducted extensive studies to solve the above problems, and found that when using a C6-C8 fraction or a C8 fraction that is a by-product of thermal decomposition of petroleum hydrocarbons, We have discovered that even if anhydrous hydrogen fluoride is used as a catalyst, the above problems can be solved by selecting specific production conditions, and diphenylalkanes can be obtained efficiently and in high yields, leading to the completion of the present invention. Ta.

即ち、本発明は、ベンゼン又はCl−04アルキルベン
ゼン中に、石油系炭化水素の熱分解で副生するC6〜C
m留分又はC,留分を膚下し、無水フッ化水素の存在下
、ジフェニルアルカン類を製造する方法において、全炭
化水素と無水フッ化水素の重量比が1 /2〜1 /z
 o o、 Cs−Cs留分又はC画分の滴下速度がC
6〜C8留分の場合130〜0.5f/分・t、 C,
留分の場合20〜o、o s t7;’)−t 。
That is, the present invention provides C6-C byproducts in benzene or Cl-04 alkylbenzene during thermal decomposition of petroleum hydrocarbons.
A method for producing diphenylalkanes in the presence of anhydrous hydrogen fluoride by applying the m-fraction or C-fraction, wherein the weight ratio of total hydrocarbons to anhydrous hydrogen fluoride is 1/2 to 1/z.
o o, the dropping rate of Cs-Cs fraction or C fraction is C
In the case of 6-C8 fraction, 130-0.5 f/min・t, C,
For fractions 20~o, o s t7;')-t.

反応温度が0〜100℃であることを特徴とする方法を
提供するにある。
The object of the present invention is to provide a method characterized in that the reaction temperature is 0 to 100°C.

本発明の方法に用いる石油系炭化水素の熱分解で副生す
るC6〜Ca留分とは、ナフサ、ガソリン、溶油、軽油
などの石油系炭化水素の熱分解油のうちの、沸点範囲が
70〜165℃の留分のもので、この留分にはC−〜C
Iの芳香族化合物としてベンゼン、トルエン、エチルベ
ンゼン、キシレン類、スチレン類、C3アルキルベンゼ
ン類の他に不飽和脂肪族炭化水素類、飽和脂肪族炭化水
素類などが含まれる。C8留分とは、該熱分解油のうち
の沸点範囲が、115〜155℃の留分のもので、この
留分にはベンゼンを除< Ca〜cm留分の他の炭化水
素が含まれる。
The C6 to Ca fraction produced by the thermal decomposition of petroleum hydrocarbons used in the method of the present invention refers to the pyrolysis oil of petroleum hydrocarbons such as naphtha, gasoline, melt oil, and light oil, which has a boiling point range. It is a fraction of 70-165℃, and this fraction contains C- to C-C.
The aromatic compounds of I include benzene, toluene, ethylbenzene, xylenes, styrenes, C3 alkylbenzenes, as well as unsaturated aliphatic hydrocarbons, saturated aliphatic hydrocarbons, and the like. The C8 fraction is a fraction of the pyrolysis oil with a boiling point range of 115 to 155°C, and this fraction contains other hydrocarbons excluding benzene from the Ca to cm fraction. .

本発明の方法に用いるC@〜C8留分及びCa’jl1
分中に含まれる不飽和脂肪族炭化水素類は、通常、該留
分中に2〜20 wt%程度存在する。この不飽和脂肪
族炭化水素類は、スチレンと反応し、重合により消費さ
れるスチレン分と合せ、全体としてスチレンの有効転換
率を低下させるので、不飽和脂肪族炭化水素類を全く含
まないか、含んでも微量であるようなC6〜cm留分又
はC・留分に代わる留分を用いる場合には無かった新た
な問題点を生ずる。しかしながら、本発明の方法は、上
記問題点をも解決するものである。
C@~C8 fraction and Ca'jl1 used in the method of the present invention
The unsaturated aliphatic hydrocarbons contained in the fraction are usually present in an amount of about 2 to 20 wt%. These unsaturated aliphatic hydrocarbons react with styrene, and together with the styrene consumed during polymerization, reduce the effective conversion rate of styrene as a whole. When using a C6-cm fraction or a fraction that contains only a trace amount in place of the C-fraction, a new problem arises that did not exist when using a fraction instead of the C.sub.6-cm fraction or the C.fraction. However, the method of the present invention also solves the above problems.

本発明の方法に用いるCI −Caアルキルベンゼント
シテハ、トルエン、キシレン類、エチルベンゼン、イソ
ブチルベンゼン、n−ブチルベンゼン、イソグロビルベ
ンゼン、n−jロピルベンゼン、ジエチルベンゼン、t
−ブチルベンゼンなどが用いられる。
CI-Ca alkylbenzene used in the method of the present invention, toluene, xylenes, ethylbenzene, isobutylbenzene, n-butylbenzene, isoglobylbenzene, n-j propylbenzene, diethylbenzene, t
-Butylbenzene and the like are used.

本発明の方法は、反応器に所定量のベンゼン又はC1〜
C4アルキルベンゼンと無水フッ化水素を仕込み、所定
の温度に保つ。この反応系を攪拌しながらC−〜Cs留
分又はC8留分を、所定の滴下速度で滴下する。目的生
成物であるジフェニルアルカンは、Cm〜C8留分又は
C8留分中のスチレン類1モルと、ベンゼン又ハC1〜
Caアルキルベンゼン1モルの反応により生成する。こ
の際、スチレン類が2モル付加した生成物や、脂肪族オ
レフィンとベンゼン又はC1〜C4アルキルベンゼンと
の反応による重質のアルキルベンゼン、更にオレフィン
類の重合物等の副生物が生成する。これらの副生物は、
反応後蒸留分離される。
In the method of the present invention, a predetermined amount of benzene or C1-
C4 alkylbenzene and anhydrous hydrogen fluoride are charged and maintained at a predetermined temperature. While stirring this reaction system, a C- to Cs fraction or a C8 fraction is added dropwise at a predetermined dropping rate. The target product, diphenylalkane, is obtained by combining 1 mole of styrenes in the Cm to C8 fraction or the C8 fraction, and benzene or C1 to C8.
It is produced by the reaction of 1 mole of Ca alkylbenzene. At this time, by-products such as a product with 2 moles of styrene added, heavy alkylbenzene resulting from the reaction of an aliphatic olefin with benzene or C1-C4 alkylbenzene, and a polymer of olefins are produced. These by-products are
After the reaction, it is separated by distillation.

反応系の全炭化水素に対する無水フッ化水素の重量比は
、1/2〜1/200.好ましくは1/10〜1/20
0.更に好ましくは115o〜1/100である。無水
7フ化水素の使用量が多いと則反応が進行し、ジフェニ
ルアルカン類の収率が低下する。無水フッ化水素の使用
量が少いと、反応速度が低下する。
The weight ratio of anhydrous hydrogen fluoride to the total hydrocarbons in the reaction system is 1/2 to 1/200. Preferably 1/10 to 1/20
0. More preferably, it is 115o to 1/100. When the amount of anhydrous hydrogen heptafluoride used is large, the regular reaction proceeds and the yield of diphenylalkanes decreases. When the amount of anhydrous hydrogen fluoride used is small, the reaction rate decreases.

ジフェニルアルカン類の収量を高めるには、C−〜C8
留分又はC8留分の反応系への滴下速度を調整すること
が必要でおる。更に詳しくは、C6〜C8留分又はC8
留分を、反応単位液量当妙に換算しそれぞれ130〜0
.55F/分−t、 20〜0.05t/分・t、好ま
しくはそれぞれ70〜1.01/分・t110〜0.1
#1分−1とCs〜Ca留分又はcm留分の滴下速度を
調整する0滴下速度が速いと、スチレン類の重合の割合
が高まりジフェニルアルカン類の収率が低下する・一方
、滴下速度が遅いと全体としての生産速度が遅く、一定
生産量を得るに必要とする反応器容積が大幅に増大し、
経済的でない。なお、C6〜Cs留分又はC8留分滴下
の際に、該留分を7ノズルから噴霧し、導入することも
できるO 反応温度は、0〜100℃が好ましく、殊に、15〜6
0℃が好ましい。反応温度が低すぎると、ジフェニルア
ルカン類の収率が低下し、反応温度が高すぎるとスチレ
ン類の重合反応が速くなり、ジフェニルアルカン類の収
率はまた低くなる。
To increase the yield of diphenylalkanes, C- to C8
It is necessary to adjust the rate of dropping the fraction or C8 fraction into the reaction system. More specifically, C6-C8 fraction or C8
The fractions are converted into reaction unit liquid volumes of 130 to 0, respectively.
.. 55F/min-t, 20-0.05t/min-t, preferably 70-1.01/min-t110-0.1, respectively
#1 Adjust the dropping speed of the Cs to Ca fraction or cm fraction. If the dropping speed is high, the rate of polymerization of styrenes increases and the yield of diphenylalkanes decreases. On the other hand, the dropping speed If it is slow, the overall production rate will be slow, and the reactor volume required to obtain a constant production amount will increase significantly.
Not economical. In addition, when dropping the C6 to Cs fraction or the C8 fraction, the fraction can also be sprayed and introduced from 7 nozzles.The reaction temperature is preferably 0 to 100°C, particularly 15 to 6
0°C is preferred. If the reaction temperature is too low, the yield of diphenylalkanes will decrease, and if the reaction temperature is too high, the polymerization reaction of styrene will become faster, and the yield of diphenylalkanes will also decrease.

反応圧力は特に限定されるものではないが、所定の反応
温度で無水7フ化水素が液状を俣つのに必要な圧力であ
ることが好ましい。
Although the reaction pressure is not particularly limited, it is preferably a pressure necessary for anhydrous hydrogen heptafluoride to remain in a liquid state at a predetermined reaction temperature.

本発明においては、反応生成物の反応系中の濃度を、反
応系中の全炭化水素量に対し、50重量シ以下に保持す
ることが好ましい。該反応生成物の濃度が、50重量%
を越えると副生物である重質物が増加し、ジフェニルア
ルカン類の収率が低くなる。
In the present invention, it is preferable to maintain the concentration of the reaction product in the reaction system at 50% by weight or less based on the total amount of hydrocarbons in the reaction system. The concentration of the reaction product is 50% by weight
When the amount exceeds 100%, the amount of heavy substances as by-products increases and the yield of diphenylalkanes decreases.

本発明の反応条件を用いる場合には、反応系中に含まれ
る微量の水分は特に問題とならない・しかじ、反応系中
に含まれる水分の増加と共に副生物である重合物の生成
が増大し、ジフェニルアルカン類の収率が低下する。C
6〜C8留分又はQ留分の滴下速度が速い場合には、反
応系中に含まれる水分の増加と共に、ジフェニルアルカ
ン類の収率が低下する。このため、無水フッ化水素に対
する反応系中の水分は、2%以下に保つことが好ましい
1、又、無水フッ化水素の使用量が比較的少ない場合に
は、原料中の水分が無水フン化水素に対する水分の比率
を相対的に大きくするので、十分に脱水した原料を用い
ることが好ましい。
When using the reaction conditions of the present invention, the trace amount of water contained in the reaction system is not a particular problem.However, as the amount of water contained in the reaction system increases, the production of polymer products as by-products increases. , the yield of diphenylalkanes decreases. C
When the dropping rate of the 6-C8 fraction or the Q fraction is fast, the yield of diphenylalkanes decreases as the water content in the reaction system increases. For this reason, it is preferable to keep the moisture content in the reaction system for anhydrous hydrogen fluoride at 2% or less. Since the ratio of water to hydrogen is relatively large, it is preferable to use sufficiently dehydrated raw materials.

反応終了後、フッ化水素の分離は、無水7ツ化水素を全
炭化水素に対して1000重量倍以上使用した場合、静
置分離で行う。フッ化水素は下層から回収され、反応系
にもどして再使用される。
After completion of the reaction, hydrogen fluoride is separated by static separation when anhydrous hydrogen heptadide is used at least 1000 times the weight of all hydrocarbons. Hydrogen fluoride is recovered from the lower layer and returned to the reaction system for reuse.

上層のジフェニルアルカン類を含む炭化水素は、アルカ
リ水溶液で中オロ処理後水洗を行なうか又は、穏やかな
加熱により、フッ化水素を蒸発除去する。
Hydrocarbons containing diphenylalkanes in the upper layer are treated with an alkaline aqueous solution and washed with water, or by gentle heating to evaporate and remove hydrogen fluoride.

その後、必要に応じてアルミナ処理を行い、次いで蒸留
によりジフェニルアルカン類を得る。蒸留回収し九ジフ
ェニルアルカン類が着色している場合は、これを活性白
土、活性炭、シリカゲル、活性アルミナなどを用いて色
相を改良でき、か\る吸着処理は臭素価の低減、脱臭に
も効果がある。
Thereafter, alumina treatment is performed as necessary, and then diphenylalkanes are obtained by distillation. If the 9-diphenylalkanes recovered by distillation are colored, the color can be improved using activated clay, activated carbon, silica gel, activated alumina, etc. Such adsorption treatment is also effective in reducing the bromine number and deodorizing. There is.

以下(−実施例及び比較例をあげて本発明を説明する。The present invention will be explained below with reference to Examples and Comparative Examples.

実施例1 ナフサの熱分解で副生ずる炭化水素から、C6〜C8留
分である沸点70〜165℃の留分とs cmm留 分である沸点111〜155℃の留分をそれぞれ蒸留分
離した。これらの留分の組成を次に示す。
Example 1 A C6-C8 fraction with a boiling point of 70-165°C and an SCMM fraction with a boiling point of 111-155°C were separated by distillation from hydrocarbons produced as a by-product during the thermal decomposition of naphtha. The compositions of these fractions are shown below.

C6〜C8留分 C8留分 ベンゼン    ゛  46.2wt%  −トルエン
    :   23.5 1   1.6wt%キシ
レン類   ’   9.7  t   32.1  
zエチルベンゼン :   2.0  g    6.
2  gスチレン類   ’   4.8  N   
31,5  ttCa’Tルキルベンゼン:    0
.3  #    5.5  z飽和炭化水素  : 
  5.6#    9.8#不飽和炭化水lL:  
 7.6N   13.2#合計  100.Ott 
 100.0 #内部コイル及び外部ジャケット付10
tモネル製オートクレーブに、4132F(4,75t
)の混合キシレン(0−キシレン: 16.OW1%、
m−キシレン: 29.9 wt%、p−キシレン: 
12.8 wt集、エチルベンゼン: 40.1 w@
%、−’F:(D他:1・2w1%)及び611Fの無
水フッ化水素を入れ30Cに保つ。これに260 t 
(0,3t )の上記C8留分を1.8#1分・tの滴
下速度で滴下した。反応は、発熱反応であるので、前記
留分滴下時は、オートクレープの内部コイルに冷媒を通
し、外部ジャケットに温水を通して反応湯度を30℃に
調節して行った。
C6-C8 fraction C8 fraction benzene 46.2 wt% -Toluene: 23.5 1 1.6 wt% xylenes ' 9.7 t 32.1
zEthylbenzene: 2.0 g 6.
2 g styrene '4.8 N
31,5 ttCa'Trukylbenzene: 0
.. 3 #5.5 z Saturated hydrocarbon:
5.6# 9.8# unsaturated hydrocarbon 1L:
7.6N 13.2#Total 100. Ott
100.0 #10 with internal coil and external jacket
4132F (4,75t) in a Monel autoclave.
) mixed xylene (0-xylene: 16.OW1%,
m-xylene: 29.9 wt%, p-xylene:
12.8 wt collection, ethylbenzene: 40.1 w@
%, -'F: (D and others: 1.2w1%) and 611F anhydrous hydrogen fluoride are added and maintained at 30C. 260 tons for this
(0.3 t) of the above C8 fraction was added dropwise at a dropping rate of 1.8 #1 min·t. Since the reaction is an exothermic reaction, the temperature of the reaction water was adjusted to 30°C by passing a refrigerant through the inner coil of the autoclave and passing hot water through the outer jacket when dropping the distillate.

反応後、反応液を5%苛性ソーダ水溶液で中和し、水洗
後、無水塩化カルシウムで乾燥してから減圧下に過剰の
未反応芳香族化合物を除去した後、51Hgの減圧下、
139〜I41Cの留分を134を回収した・ 回収した留分は、屈折率、赤外吸収スペクトル、質量分
析及びガスクロマトグラフィでジフェニルアルカン類で
あることを確認した。
After the reaction, the reaction solution was neutralized with a 5% aqueous solution of caustic soda, washed with water, dried over anhydrous calcium chloride, and removed excess unreacted aromatic compounds under reduced pressure.
134 was collected from the fractions 139 to I41C. The collected fractions were confirmed to be diphenylalkanes by refractive index, infrared absorption spectrum, mass spectrometry, and gas chromatography.

実施例2〜6、比較例1〜6 原料、反応条件等を表−1に示す条件に変えた他は実施
例1と同様にしてジフェニルアルカン類を合成した。結
果は表−1に示す。
Examples 2 to 6, Comparative Examples 1 to 6 Diphenyl alkanes were synthesized in the same manner as in Example 1, except that the raw materials, reaction conditions, etc. were changed to those shown in Table 1. The results are shown in Table-1.

実施例7 混合キシレン: 2500 f (2,87t ’) 
、前記C6〜Ca留分:1700F(1,96t)、滴
下速度:55t/分・tとした他は実施例1と同様に反
応を行い、反応後、実施例1と同様にして未反応芳香族
化合物を除去した後、5 us Hgの減圧下、120
〜141℃の留分を1261回収した。
Example 7 Mixed xylene: 2500 f (2,87 t')
The reaction was carried out in the same manner as in Example 1, except that the C6 to Ca fraction: 1700F (1,96 t) and the dropping rate were 55 t/min.t. After the reaction, unreacted aroma was removed in the same manner as in Example 1. After removing the group compounds, 120
1261 fractions of ~141°C were collected.

回収した留分け、実施例1と同様に分析して、本発明の
ジフェニルアルカン類であることを確認した・ (以下余白) 比較例7 混合キシレン: 344.5 f、CS留分:1351
P。
The collected fraction was analyzed in the same manner as in Example 1, and it was confirmed that it was the diphenylalkanes of the present invention (blank below) Comparative Example 7 Mixed xylene: 344.5 f, CS fraction: 1351
P.

Cs留分の滴下速度:11.4y1分・t、触媒として
80%硫酸:100F、反応温度:15℃、Cs留分滴
下時間:30分、滴下後の反応熟成時間ニア0分とした
他は実施例1と同様に反応し、ジフェニルアルカン類を
回収した。回収ジフェニルアルカンの収率は、21モル
%であった。尚、−昼夜静置しても硫酸と炭化水素との
分離が悪いので、全炭化水素と等量の石油エーテルで2
回炭化水素の回収を行ったが、炭化水素の全回収率は6
4%に過ぎなかった。
Cs fraction dropping rate: 11.4y1 min/t, 80% sulfuric acid as a catalyst: 100F, reaction temperature: 15°C, Cs fraction dropping time: 30 minutes, reaction aging time after dropping was near 0 minutes. The reaction was carried out in the same manner as in Example 1, and diphenylalkanes were recovered. The yield of recovered diphenylalkane was 21 mol%. In addition, since separation of sulfuric acid and hydrocarbons is poor even if left standing day and night, 2
The total recovery rate of hydrocarbons was 6 times.
It was only 4%.

実施例及び比較例から、本発明の方法によれば、効率よ
く、目的とするジフェニルアルカン類を製造できること
が明らかである。
It is clear from the Examples and Comparative Examples that the desired diphenylalkanes can be efficiently produced by the method of the present invention.

特許出願人  三菱油化株式会社 代理人 弁理士 古 川 秀 利 代理人 弁理士 長 谷 正 久Patent applicant: Mitsubishi Yuka Co., Ltd. Agent: Patent Attorney Hidetoshi Furukawa Agent: Patent Attorney Masahisa Nagatani

Claims (1)

【特許請求の範囲】[Claims] ベンゼン又4d Ct −Caアルキルベンゼン中ニ、
石油系炭化水素の熱分解で副生するC6〜C8留分又は
C8留分を滴下し、無水フッ化水素の存在下、1/20
0.06〜aS留分又はcm留分の滴下速度がC6〜C
畠留分の場合130〜o、sy1分・l−s Cs留分
の場合20〜0.05 f/分・t、反応温度が0〜1
00℃であることを特徴とする方法。
Benzene or 4d Ct-Ca alkylbenzene,
A C6 to C8 fraction or a C8 fraction produced by thermal decomposition of petroleum hydrocarbons is added dropwise, and in the presence of anhydrous hydrogen fluoride, 1/20
The dropping rate of 0.06~aS fraction or cm fraction is C6~C
In the case of Hatake fraction, 130~o, sy1min・l-s In the case of Cs fraction, 20~0.05 f/min・t, reaction temperature is 0~1
A method characterized in that the temperature is 00°C.
JP12845581A 1981-08-17 1981-08-17 Preparation of diphenylalkane Pending JPS5829722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12845581A JPS5829722A (en) 1981-08-17 1981-08-17 Preparation of diphenylalkane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12845581A JPS5829722A (en) 1981-08-17 1981-08-17 Preparation of diphenylalkane

Publications (1)

Publication Number Publication Date
JPS5829722A true JPS5829722A (en) 1983-02-22

Family

ID=14985126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12845581A Pending JPS5829722A (en) 1981-08-17 1981-08-17 Preparation of diphenylalkane

Country Status (1)

Country Link
JP (1) JPS5829722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206507A (en) * 1989-02-06 1990-08-16 Kubota Ltd Placement frame for facing concrete for pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897858A (en) * 1972-03-28 1973-12-13
JPS53135959A (en) * 1977-04-27 1978-11-28 Nippon Petrochemicals Co Ltd Aralkylation of alkylbenzen
JPS55113724A (en) * 1979-02-26 1980-09-02 Mitsubishi Gas Chem Co Inc Preparation of aromatic binuclide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4897858A (en) * 1972-03-28 1973-12-13
JPS53135959A (en) * 1977-04-27 1978-11-28 Nippon Petrochemicals Co Ltd Aralkylation of alkylbenzen
JPS55113724A (en) * 1979-02-26 1980-09-02 Mitsubishi Gas Chem Co Inc Preparation of aromatic binuclide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206507A (en) * 1989-02-06 1990-08-16 Kubota Ltd Placement frame for facing concrete for pipe

Similar Documents

Publication Publication Date Title
RU2366642C2 (en) Hydrocarbons synthesis
JP2001503025A (en) Alkylation method using zeolite β
JPH01279992A (en) Isomerization and ring opening method of raw material stream containing paraffin and cyclic hydrocarbon
US3931350A (en) Process for producing alkylaromatics
US4407731A (en) Preparation of metal oxide-supported boron fluoride catalysts
JP2001294542A (en) Acid catalyst isomerization of substituted diaryl compounds
JP2642281B2 (en) Method for producing alkylbenzene
JP2001515056A (en) Method for alkylating aromatics with a dilute stream containing propylene and ethylene
US6100437A (en) Alkylation process of alkyl-benzene with olefin using a sodium-and-potassium catalyst
US4009217A (en) Process for production and dehydrogenation of ethylbenzene
JP2887011B2 (en) Catalytic alkenylbenzene cyclization
US3352935A (en) Dehydrohalogenation process
NO301106B1 (en) Process for regeneration of alkylation catalyst and process for alkylation
US4048248A (en) Process and catalyst for the conversion of aromatic hydrocarbons
JPS5829722A (en) Preparation of diphenylalkane
US4208268A (en) Method of processing thermal cracked by-product oil
NO126079B (en)
US3325554A (en) Process for the production of olefines by the dehydrochlorination of alkyl chlorides
JPS6254406B2 (en)
KR0186001B1 (en) Catalytic process for production of sec-butylbenzene
JP3118673B2 (en) Method for catalytic production of liquid hydrocarbons from natural gas
JPS6358811B2 (en)
US3848006A (en) Paraffin halogenation process
CA1040220A (en) Production of stilbene and styrene
JPS6232732B2 (en)