JPS6254406B2 - - Google Patents

Info

Publication number
JPS6254406B2
JPS6254406B2 JP57047316A JP4731682A JPS6254406B2 JP S6254406 B2 JPS6254406 B2 JP S6254406B2 JP 57047316 A JP57047316 A JP 57047316A JP 4731682 A JP4731682 A JP 4731682A JP S6254406 B2 JPS6254406 B2 JP S6254406B2
Authority
JP
Japan
Prior art keywords
isobutene
catalyst
butene
mordenite
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57047316A
Other languages
Japanese (ja)
Other versions
JPS58164523A (en
Inventor
Satoshi Sakurada
Takao Hashimoto
Noriaki Tagaya
Tsugio Maejima
Kayako Ueda
Masahiro Kokubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP57047316A priority Critical patent/JPS58164523A/en
Priority to US06/476,015 priority patent/US4454367A/en
Priority to EP83301545A priority patent/EP0090569B1/en
Priority to DE8383301545T priority patent/DE3361755D1/en
Priority to CA000424240A priority patent/CA1196029A/en
Publication of JPS58164523A publication Critical patent/JPS58164523A/en
Priority to US06/597,821 priority patent/US4513166A/en
Publication of JPS6254406B2 publication Critical patent/JPS6254406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 本発明は特定の固体酸量を有する高シリカ含有
型のモルデナイト触媒を用いてイソブテンを選択
的に低重合する方法に関し、詳しくは共存するイ
ソブテン含有炭化水素成分中のイソブテンのみを
選択的に低重合する方法に関するものである。 背景技術 イソブテンを含有する炭化水素混合物中のイソ
ブテンを重合して低重合体とする方法としては、
従来からシリカ・アルミナ、ゼオライト、陽イオ
ン交換樹脂等の固体酸触媒に接触させる方法が知
られており、C4炭化水素中のイソブテンの除去
方法に利用されている。 例えば、C4炭化水素混合物を、パラジウ
ム、白金、ニツケル等の異性化触媒と接触させて
1−ブテンを2−ブテンに異性化し、更に活性白
土、シリカ・アルミナ等の固体酸触媒と接触させ
て、イソブテンを低重合させ、得られる低重合体
を分離除去する方法(特開昭51−8201号公報)、
約8Åから約8.2Å迄の有効細孔開口を有する
結晶性分子ふるい(10×分子ふるい)と接触させ
イソブテンを除去する方法(特公昭47−42803号
公報)、合成ゼオライト(ZSM−4)と接触さ
せ、イソブテンを選択的に低重合させる方法(特
公昭51−29121号公報)、陽イオン交換樹脂が充
填された蒸留搭に供給し、イソブテンを低重合さ
せて搭底から分離除去する方法(米国特許第
4215011号明細書)等が知られている。 しかしながら、いずれの方法においてもC4
化水素混合物中に含有する1−ブテンは2−ブテ
ンに異性化してしまうので、イソブテンを含有し
ない1−ブテンを製造する方法としては不適当で
ある。 発明の要旨 本発明者らは、イソブテンのみを選択的に重合
し、1−ブテンの2−ブテンへの異性化には活性
を示さない触媒を開発することを目的として検討
した結果、本発明を完成すると共に、本発明の触
媒を使用することにより、1−ブテン中に不純物
として含有するイソブテンを選択的に重合させて
イソブテンの低重合体として分離除去することに
より、1−ブテンの損失を伴わずに、1−ブテン
中のイソブテンを効果的に除去することに成功し
たものである。 すなわち本発明は水素交換型あるいは水素交換
型前駆体モルデナイトを水蒸気存在下で水熱処理
を行い、次いで酸と接触させることにより得ら
れ、ピリジン吸着量が触媒1g当り0.05〜0.25ミ
リモルの固体酸量を有し、かつシリカ/アルミナ
(モル比)が50〜200のモルデナイト触媒(以下、
固体酸触媒ということがある。)を、イソブテン
及び1−ブテンを含有する炭化水素混合物と接触
させることからなる該炭化水素混合物中のイソブ
テンの低重合方法を要旨とするものである。 固体酸触媒 本発明において用いられる固体酸触媒は、ピリ
ジン吸着法によつて固体酸量の測定できるピリジ
ン吸着量が固体酸触媒1g当り0.05ないし0.25ミ
リモルのものであり、そのものが比較的低級オレ
フインの炭素を活性化してカルボニウムイオンと
する場合第3級炭素のみを選択的に活性化でき
る。 固体酸量を制御されたシリカ/アルミナ比が50
〜200の高シリカ含有型モルデナイト触媒がイソ
ブテンのみを選択的に重合し、1−ブテンの2−
ブテンへの異性化には活性を示さない。 固体酸量を制御さた高シリカ含有型モルデナイト 本発明において用いられる固体酸量を制御され
た高シリカ含有型モルデナイト触媒は一般的に次
に示す単位セルを有する天然または合成モルデナ
イト 4Na2O・4Al2O3・4OSiO2・24H2O を水素交換型あるいは水素交換前駆体に変換
し、次いで水蒸気の存在下高温で水熱処理を行
い、さらに強酸によりアルミニウム抽出を行うこ
とにより得られる。 この水熱反応は水蒸気存在下熱処理を行うもの
であり、その際水蒸気分圧と処理温度を適宜に選
択することによつてシリカ/アルミナ比を50〜
200にすると共に固体酸量を制御することができ
る。 高シリカ含有型モルデナイトの触媒1g当りの
ピリジン吸着量を0.05〜0.25ミルモルにするには
水熱処理の際の水蒸気分圧は1%〜60%、望まし
くは5%〜40%であり、処理温度は600℃〜1000
℃、望ましくは650℃〜750℃が好ましい。この範
囲以下の温度では固体酸量を制御できない。また
水蒸気不存在下では固体酸量の大きいモルデナイ
トしか得られず、水蒸気分圧がこの範囲より大き
いと脱アルミニウム以外の反応も起りやすくなり
固体酸量を著しく小さくする。 水熱処理の時間は1〜10時間好ましくは2〜5
時間でその効果を充分に示すことができる。 水熱処理に次いで行われる酸抽出処理は水熱処
理によつてモルデナイト骨格構造よりはずれ、空
洞内に存在するAlOH2+や比較的弱い骨格構造に
位置しているアルミニウム原子を除去するために
行われる。酸抽出処理において用いられる酸は無
機酸の塩酸、硝酸、硫酸、りん酸、有機酸の酢
酸、塩化酢酸、三塩化酢酸、くえん酸、酒石酸、
しゆう酸等が使用できる。これらの内塩酸、硫酸
及び硝酸のような鉱酸を用いるのが好ましい。ま
たこれらの酸を抽出処理に用いる際は4規定以上
好ましくは6規定以上の濃度のものを用いるのが
好ましい。酸抽出処理は常温から100℃までの温
度範囲で行うのが好ましい。 酸抽出処理モルデナイトは400℃〜700℃好まし
くは500℃〜600℃の水熱処理よりもおだやかな条
件で焼成処理し、不安定な結晶状態を安定化させ
る必要がある。 このようにして得られた、ピリジン吸着量がモ
ルデナイト1g当り0.05〜0.25ミリモルで、シリ
カ/アルミナ比が50〜200の高シリカ含有型モル
デナイトはそのままあるいは成形した後本発明の
反応触媒として用いることができる。 前処理 本発明で触媒として使用する高シリカ含有型モ
ルデナイトは長時間使用しても触媒性能の劣化は
少いという特徴を有しているが、触媒として使用
する前に、前処理として予め炭化水素と反応温度
よりも高い温度で接触させることによつて、触媒
の活性を一層長時間接続することができる。 前処理に使用する炭化水素は、どのような炭化
水素でもよいが、オレフイン、ジオレフイン、芳
香族炭化水素等の不飽和炭化水素が望ましく、特
に原料となる炭化水素混合物を用いるのが操作上
有利である。 前処理は液相又は気相で、本反応(原料炭化水
素の接触反応)の反応温度よりも高く300℃以下
の温度で、10分〜5時間接触させるのが望まし
く、特に液相で、反応温度140〜200℃、反応時間
0.5〜2時間、液時空間速度(LHSV)1〜20時
-1の条件で行うのが望ましい。 炭化水素混合物 本発明で用いられる炭化水素混合物は、イソブ
テン及び1−ブテンを含有するものならばどのよ
うな混合物でも用いることができるが、工業的に
は、例えば石油の精製、分解、改質等により得ら
れるC4の炭化水素の混合物、石油の熱分解によ
りエチレンを製造する際に副生するC4留分から
ブタジエンを除去したブタン−ブテン留分或いは
n−ブタン、イソブタンを含む炭化水素の混合物
の脱水素で得られるC4炭化水素混合物等が有利
に用いられる。これらのC4炭化水素混合物はそ
のまま用いられる。 これらの炭化水素は、通常n−ブテン(1−ブ
テン、トランス−2−ブテン、シス−2−ブテ
ン)及びイソブテンの他に、n−ブタン、イソブ
タン、ブタジエン並びに微量のC3炭化水素及び
C5炭化水素を含む。これら各成分の含有量は、
特に限定されないが、高純度の1−ブテンの製造
を目的とする場合は、少なくとも20モル%のn−
ブテン、0.1〜50モル%のイソブテンを含む炭化
水素混合物を用いるのが有利である。 イソブテンの重合条件 イソブテンを本発明に係るモルデナイト触媒と
接触させることによつてイソブテンの低重合体が
得られるが、その重合条件は、気相又は液相反
応、反応温度20〜180℃、反応圧力大気圧〜100
Kg/cm2であり、好ましくは、液相反応、反応温度
60〜140℃、反応圧力は液相を維持できる圧力で
通常10〜50Kg/cm2である。又、液相反応の場合の
LHSVは原料について、0.01〜50時間-1、好まし
くは0.1〜10時間-1である。 本発明により、原料中に含まれるイソブテンは
殆んど完全に二量体及び三量体以上の低重合体と
なるが、1−ブテンは殆んど異性化しない。低重
合されたイソブテンの低重合体はさらに分離除去
されるが、その方法は特定するものではなく、公
知の方法を採用すればよい。 かくすることにより、イソブテンを殆んど含ま
ない留分を得ることができるが、さらにその留分
から1−ブテン及び/又は2−ブテンを回収分離
する方法は、特定の方法を採ることなく通常行な
われている方法で行えばよい。 発明の効果 本発明の方法によると、原料炭化水素混合物中
に含まれるイソブテンを、1−ブテンの2−ブテ
ンへの異性化及びn−ブテンの損失を殆んど起す
ことなく、殆んど完全に、C4炭化水素との分離
が容易な二量体及び三量体以上の低重合体に転換
することができ、その低重合体の除去工程を組合
せるとイソブテンを完全に除去することができ
る。従つて、該重合体を除去した留分からイソブ
テンを殆んど含まない高純度の1−ブテン及び/
又は2−ブテンを回収することができる。 本発明の方法によると1−ブテンの異性化を伴
わずにイソブテンを選択的に低重合することがで
き、このイソブテンの低重合体は1−ブテンから
容易に分離することができるので、1−ブテンの
精製法として利用できる。図面はその例を示す。 第1図において、イソブテンを不純物として含
む1−ブテン留分は、管11から、固体酸量の制
御された触媒が充填されたイソブテン重合槽1に
供給されて、1−ブテン留分中に含まれるイソブ
テンが選択的に低重合された後、管12より抜き
出される。更に、管21から、同じく固体酸量の
制御された触媒が充填された二段目のイソブテン
重合槽2に送られ、残余のイソブテンが低重合さ
れる。次いで、イソブテンの低重合体を含む1−
ブテン留分は、管31を通して蒸留搭3に送ら
れ、蒸留によりイソブテンの低重合体は管33か
ら抜き出されると共にイソブテンを殆んど含まな
い高純度の1−ブテンは管32から抜き出され分
離回収される。 第1図では、2個のイソブテン重合槽を用いた
例で説明したが、イソブテンの含有量が微量の場
合は、イソブテン重合槽は1個でも充分にその目
的を果たすことができ、又必要に応じて3個以上
用いることも可能である。 原料の1−ブテン留分中に2−ブテンが含まれ
る場合は、1−ブテンと2−ブテンの分離方法
は、第1図において2−ブテンがイソブテンの低
重合体と共に管33から抜き出されるよう蒸留搭
3の運転条件を設定して行なわれる。又、第2図
に示すように2−ブテンを管34から抜き出すよ
うに設計した蒸留搭3を用いることができる。更
に第1図において、管33から抜き出されたイソ
ブテンの低重合体と2−ブテンの混合物は、第3
図に示すように管41より蒸留搭4に供給するこ
とにより、蒸留により2−ブテンは管42から又
イソブテンの低重合体は管43から容易に分離す
ることができる。 実施例 次に、本発明を実施例及び比較例により具体的
に説明する。但し、本発明は実施例のみに限定さ
れるものではない。なお、実施例及び比較例にお
けるパーセント(%)は、特に断らない限りモル
%である。 実施例 1 高シリカ含有型モルデナイトの触媒の調製 市販高結晶性ナトリウム型モルデナイト(ノー
トン社製、商品名Zeolon 900Na)の1/16インチ
ペレツト100gを1規定塩酸500ml中に浸漬し80℃
で1時間撹拌処理を行つた。終了後傾斜法により
酸溶液を除き更に新しい1規定塩酸500mlを注
ぎ、80℃で1時間撹拌処理を行つた。塩酸溶液を
除去後塩素イオンが検出されなくなるまで温水で
洗浄した。次いで110℃で熱風乾燥を行つてモル
デナイトの水素イオン交換型前駆体を得た。得ら
れた水素イオン交換型前駆体を30%の水蒸気分圧
下で室温より徐々に昇温し650℃で4時間水熱処
理を行つた。冷却後12規定の塩酸500mlを用い90
℃で6時間還流処理を行いアルミニウムを抽出し
た。塩酸溶液を除去後塩素イオンが検出されなく
なるまで温水で洗浄し、次いで110℃で熱風乾燥
を行つた。風乾後マツフル炉を用いて650℃で3
時間焼成し、高シリカ含有型モルデナイトを得
た。得られたモルデナイトの組成とシリカ/アル
ミナ比は表に示す値を有していた。 得られた高シリカ含有型モルデナイトを30〜
100メツシユに粉砕し500℃1時間焼成して吸着成
分を除去し、0.075gを精秤しリアクターに充填
した。一方15.5℃の一定温度に保持された水浴中
にピリジンを入れたバブラーを浸し、窒素にてバ
ブリングしてリアクター内に充填された触媒に室
温でピリジンを吸着させた。 次いで窒素流通下でリアクターを300℃まで
徐々に昇温し、物理吸着したピリジンが脱離する
まで300℃に保つた。その後ガスクロマトグラフ
イーによりピリジン脱離が観測されなくなつたの
を確認して、10℃/分の昇温速度でリアクターを
300℃から950℃まで昇温し、脱離してくるピリジ
ンをガスクロマトグラフイーにより定量した。こ
の脱離してくるピリジンの量はモルデナイトの固
体酸量に比例する。結果を表に示す。 接触反応 上記で得られた触媒を充填した筒状反応器にブ
タン26.2%、イソブテン1.3%、1−ブテン7.5
%、2−ブテン65%からなるC4炭化水素混合物
を供給して、反応温度80℃、反応圧力35Kg/cm2
(窒素ガスで加圧)、LHSV3.0時間-1の条件下で液
相による接触反応を行つた。反応開始16時間後の
反応器出口の炭化水素混合物を分析した結果を表
に示した。 また反応時間の経過とともにイソブテンの変換
率を追跡し、劣化係数αをK=K0e〓tより求め
た。ここでKは時間tにおけるイソブテン二量化
反応速度定数、K0は外挿によつて求められる初
期反応速度定数、αは劣化係数である。その結果
を表に示した。 比較例 1 実施例1で得た水素イオン交換型前駆体をマツ
フル炉を用い650℃で4時間焼成し、続いて実施
例1と同様に塩酸で抽出処理、焼成を行いモルデ
ナイト触媒を得た。触媒のピリジン吸着量及び組
成、シリカ/アルミナ比を表に示した。この触媒
を用い実施例1と同様の接触反応を行いその結果
を表に示した。 比較例 2 実施例1における水熱処理で水蒸気分圧を100
%、処理温度を700℃、処理時間を3時間にした
以外は実施例1と同じ方法でモルデナイト触媒を
調製し、接触反応を行つた。その結果を表に示し
た。 比較例 3 実施例1における水熱処理で水蒸気分圧を65
%、処理温度を650℃、処理時間を3時間にした
以外は実施例1と同じ方法でモルデナイト触媒を
調製し、接触反応を行つた。その結果を表に示し
た。 実施例 2 実施例1における酸処理で、塩酸の代わりに硝
酸を用いる以外は実施例1と同様の方法で触媒を
調製し、接触反応を行つた。その結果を表に示し
た。 実施例 3 実施例1における酸処理で、塩酸の代わりに硫
酸を用いる以外は実施例1と同様の方法で触媒を
調製し、接触反応を行つた。その結果を表に示し
た。 実施例 4 触媒の調製 純水1500g中に硫酸アルミニウム67g、濃硫酸
19.7g、塩化ナトリウム140gを溶解し、これに
水ガラス(3号)490gを添加し、2.5Na2O・
Al2O3・23SiO2・99H2Oからなる組成を有する水
性反応混合物を得た。この混合物を約1時間室温
にて熟成した後、オートクレーブに張り込み速や
かに昇温し180℃にて20時間維持した。得られた
固体生成物は室温まで冷却して過し、十分水洗
した後110℃にて乾燥した。生成物の一部を空気
中700℃で焼成した後水を室温にて吸着させ化学
分析を行い以下の組成の合成モルデナイトを得
た。 800℃灼熱減量 10.0重量% SiO2 79.1〃 Al2O3 5.96〃 Na2O 3.51〃 SiO2/Al2O3(モル比) 22.6〃 生成物の一部はX線粉末回折分析により、その
面間隔からモルデナイトの結晶構造を有すること
が確められた。 得られた合成モルデナイト100gを実施例1と
全く同じ操作により処理を行つて高度シリカ含有
型モルデナイトを得た。組成およびピリジン吸着
量は次の通りであつた。 組成 800℃灼熱減量 3.2重量% SiO2 95.1〃 Al2O3 1.22〃 Na2O 0.11〃 SiO2/Al2O3(モル比) 133 ピリジン吸着量(mmol/gモルデナイト) 全ピリジン吸着量 0.108 接触反応 この触媒を用いて実施例1と同様の方法で接触
反応を行つた。その結果を表に示した。 実施例 5 実施例1における水熱処理で水蒸気分圧を5
%、処理温度を700℃、処理時間を3時間にした
以外は実施例1と同じ方法でモルデナイト触媒を
調製し、接触反応を行つた。その結果を表に示し
た。 実施例 6 実施例1における水熱処理で水蒸気分圧を20
%、処理温度を700℃、処理時間を3時間にした
以外は実施例1と同じ方法でモルデナイト触媒を
調製し、接触反応を行つた。その結果を表に示し
た。 比較例 4 実施例1で得た水素イオン交換型前駆体を600
℃、3時間マツフル炉で焼成し、水素イオン交換
型モルデナイトを得た。この触媒を用いて実施例
1と同様の方法で接触反応を行つた。その結果を
表に示した。 実施例 7 実施例5で得た触媒を実施例5と同じ水熱処理
条件で再処理し触媒を調製し、接触反応を行つ
た。その結果を表に示した。 実施例 8 実施例1における水熱処理で水蒸気分圧を45
%、処理温度を660℃、処理時間を4時間にした
以外は実施例1と同じ方法で触媒を調製し、接触
反応を行つた。その結果を表に示した。 実施例 9 実施例1における水熱処理で水蒸気分圧を20
%、処理温度を630℃、処理時間を3時間にした
以外は実施例1と同じ方法で触媒を調製し、接触
反応を行つた。その結果を表に示した。 実施例 10 実施例4における水熱処理で水蒸気分圧を45
%、処理温度を660℃、処理時間を4時間にした
以外は実施例4と同じ方法で触媒を調製し、接触
反応を行つた。その結果を表に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively underpolymerizing isobutene using a high silica mordenite catalyst having a specific amount of solid acid, and more specifically, the present invention relates to a method for selectively underpolymerizing isobutene in a coexisting isobutene-containing hydrocarbon component. The present invention relates to a method of selectively underpolymerizing only. BACKGROUND ART As a method for polymerizing isobutene in a hydrocarbon mixture containing isobutene to form a low polymer,
A method of contacting with a solid acid catalyst such as silica/alumina, zeolite, or cation exchange resin has been known for some time, and is used to remove isobutene from C 4 hydrocarbons. For example, a C4 hydrocarbon mixture is brought into contact with an isomerization catalyst such as palladium, platinum, or nickel to isomerize 1-butene to 2-butene, and then brought into contact with a solid acid catalyst such as activated clay or silica/alumina. , a method of low polymerizing isobutene and separating and removing the resulting low polymer (Japanese Unexamined Patent Application Publication No. 1982-8201),
A method of removing isobutene by contacting it with a crystalline molecular sieve (10× molecular sieve) having an effective pore opening of about 8 Å to about 8.2 Å (Japanese Patent Publication No. 47-42803), synthetic zeolite (ZSM-4) and A method in which isobutene is selectively low-polymerized by contacting the isobutene (Japanese Patent Publication No. 51-29121), and a method in which isobutene is low-polymerized by supplying it to a distillation column filled with a cation exchange resin and is separated and removed from the bottom of the column ( US Patent No.
4215011) etc. are known. However, in either method, the 1-butene contained in the C 4 hydrocarbon mixture is isomerized to 2-butene, so these methods are unsuitable for producing 1-butene that does not contain isobutene. Summary of the Invention The present inventors have conducted studies aimed at developing a catalyst that selectively polymerizes only isobutene and does not exhibit any activity for isomerizing 1-butene to 2-butene. At the same time, by using the catalyst of the present invention, isobutene contained as an impurity in 1-butene is selectively polymerized and separated and removed as a low polymer of isobutene, thereby eliminating the loss of 1-butene. This method succeeded in effectively removing isobutene from 1-butene. That is, in the present invention, hydrogen exchange type or hydrogen exchange type precursor mordenite is hydrothermally treated in the presence of steam, and then brought into contact with an acid. mordenite catalyst with a silica/alumina (molar ratio) of 50 to 200 (hereinafter,
It is sometimes called a solid acid catalyst. ) with a hydrocarbon mixture containing isobutene and 1-butene. Solid Acid Catalyst The solid acid catalyst used in the present invention has a pyridine adsorption amount of 0.05 to 0.25 mmol per 1 g of solid acid catalyst, which can be measured by the pyridine adsorption method, and is a relatively low olefin. When carbon is activated to form carbonium ions, only tertiary carbon can be selectively activated. Silica/alumina ratio with controlled solid acid content is 50
~200 high silica mordenite catalysts selectively polymerize only isobutene and 1-butene to 2-
Shows no activity in isomerization to butenes. High-silica-containing mordenite with controlled solid acid content The high-silica-containing mordenite catalyst with controlled solid acid content used in the present invention is generally a natural or synthetic mordenite having the following unit cells: 4Na 2 O・4Al It is obtained by converting 2 O 3 .4OSiO 2 .24H 2 O into a hydrogen exchange type or hydrogen exchange precursor, followed by hydrothermal treatment at high temperature in the presence of steam, and further aluminum extraction with a strong acid. This hydrothermal reaction involves heat treatment in the presence of water vapor, and the silica/alumina ratio can be adjusted to 50 to 50 by appropriately selecting the water vapor partial pressure and treatment temperature.
200 and the amount of solid acid can be controlled. In order to make the amount of pyridine adsorbed per gram of catalyst of high silica mordenite 0.05 to 0.25 mmol, the water vapor partial pressure during hydrothermal treatment should be 1% to 60%, preferably 5% to 40%, and the treatment temperature should be 600℃~1000
℃, preferably 650°C to 750°C. At temperatures below this range, the amount of solid acid cannot be controlled. In addition, in the absence of steam, only mordenite with a large amount of solid acid can be obtained, and if the partial pressure of steam is greater than this range, reactions other than dealumination are likely to occur, resulting in a significant reduction in the amount of solid acid. Hydrothermal treatment time is 1 to 10 hours, preferably 2 to 5 hours.
Its effects can be fully demonstrated over time. The acid extraction treatment that follows the hydrothermal treatment is performed to remove AlOH 2+ that has been separated from the mordenite skeleton structure by the hydrothermal treatment and is present in the cavities and aluminum atoms that are located in a relatively weak skeleton structure. Acids used in acid extraction include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid; organic acids such as acetic acid, acetic chloride, acetic acid trichloride, citric acid, tartaric acid,
Oxalic acid etc. can be used. Of these, mineral acids such as hydrochloric acid, sulfuric acid and nitric acid are preferably used. Further, when using these acids for extraction treatment, it is preferable to use those with a concentration of 4N or more, preferably 6N or more. The acid extraction treatment is preferably carried out at a temperature range from room temperature to 100°C. Acid extraction-treated mordenite must be calcined under conditions milder than the hydrothermal treatment at 400°C to 700°C, preferably 500°C to 600°C, to stabilize the unstable crystalline state. The thus obtained high silica-containing mordenite with a pyridine adsorption amount of 0.05 to 0.25 mmol per gram of mordenite and a silica/alumina ratio of 50 to 200 can be used as a reaction catalyst in the present invention as it is or after being shaped. can. Pretreatment The high-silica-containing mordenite used as a catalyst in the present invention is characterized by little deterioration in catalytic performance even after long-term use. By contacting the catalyst at a temperature higher than the reaction temperature, the activity of the catalyst can be maintained for a longer period of time. The hydrocarbon used in the pretreatment may be any hydrocarbon, but unsaturated hydrocarbons such as olefins, diolefins, aromatic hydrocarbons, etc. are preferable, and it is particularly advantageous for operation to use a hydrocarbon mixture as a raw material. be. Pretreatment is preferably carried out in a liquid phase or gas phase at a temperature higher than the reaction temperature of the main reaction (catalytic reaction of raw material hydrocarbons) and below 300°C for 10 minutes to 5 hours. Temperature 140-200℃, reaction time
It is preferable to carry out the reaction for 0.5 to 2 hours at a liquid hourly space velocity (LHSV) of 1 to 20 hours. Hydrocarbon mixture The hydrocarbon mixture used in the present invention can be any mixture as long as it contains isobutene and 1-butene. A mixture of C 4 hydrocarbons obtained by pyrolysis of petroleum, a butane-butene fraction obtained by removing butadiene from the C 4 fraction produced as a by-product during the production of ethylene by thermal decomposition of petroleum, or a mixture of hydrocarbons containing n-butane and isobutane. C 4 hydrocarbon mixtures obtained by dehydrogenation of C 4 and the like are advantageously used. These C4 hydrocarbon mixtures are used as is. These hydrocarbons usually include n-butene (1-butene, trans-2-butene, cis-2-butene) and isobutene, as well as n-butane, isobutane, butadiene and trace amounts of C 3 hydrocarbons and
Contains C5 hydrocarbons. The content of each of these components is
Although not particularly limited, when the purpose is to produce high-purity 1-butene, at least 20 mol% of n-
Preference is given to using butenes, hydrocarbon mixtures containing from 0.1 to 50 mol % isobutene. Isobutene polymerization conditions A low polymer of isobutene can be obtained by contacting isobutene with the mordenite catalyst according to the present invention, and the polymerization conditions include gas phase or liquid phase reaction, reaction temperature 20 to 180°C, reaction pressure. Atmospheric pressure ~100
Kg/ cm2 , preferably liquid phase reaction, reaction temperature
The temperature is 60 to 140°C, and the reaction pressure is usually 10 to 50 kg/cm 2 at a pressure that can maintain a liquid phase. In addition, in the case of liquid phase reaction
The LHSV is from 0.01 to 50 h -1 , preferably from 0.1 to 10 h -1 for the raw material. According to the present invention, isobutene contained in the raw material becomes almost completely a dimer, trimer or higher low polymer, but 1-butene is hardly isomerized. The low polymerized isobutene is further separated and removed, but the method is not specified and any known method may be used. By doing this, it is possible to obtain a fraction containing almost no isobutene, but the method for recovering and separating 1-butene and/or 2-butene from this fraction is normally carried out without adopting any specific method. You can do it using the method provided. Effects of the Invention According to the method of the present invention, isomerization of isobutene contained in a raw material hydrocarbon mixture is almost complete without causing almost no isomerization of 1-butene to 2-butene and loss of n-butene. In addition, isobutene can be converted into a dimer, trimer, or higher low polymer that can be easily separated from C4 hydrocarbons, and isobutene can be completely removed by combining the process of removing the low polymer. can. Therefore, high purity 1-butene and/or almost no isobutene can be obtained from the fraction from which the polymer has been removed.
Or 2-butene can be recovered. According to the method of the present invention, it is possible to selectively underpolymerize isobutene without isomerizing 1-butene, and this isobutene underpolymer can be easily separated from 1-butene. It can be used as a method for purifying butene. The drawing shows an example. In FIG. 1, a 1-butene fraction containing isobutene as an impurity is supplied from a pipe 11 to an isobutene polymerization tank 1 filled with a catalyst with a controlled amount of solid acid, and the 1-butene fraction containing isobutene as an impurity is After selectively underpolymerizing the isobutene contained therein, it is extracted from the pipe 12. Further, the isobutene is sent from the pipe 21 to the second stage isobutene polymerization tank 2, which is also filled with a catalyst with a controlled amount of solid acid, and the remaining isobutene is subjected to low polymerization. Then, 1- containing a low polymer of isobutene
The butene fraction is sent to the distillation column 3 through a pipe 31, and by distillation, low polymers of isobutene are extracted from the pipe 33, and high-purity 1-butene containing almost no isobutene is extracted from the pipe 32. Separated and collected. In Figure 1, an example using two isobutene polymerization tanks has been explained, but if the content of isobutene is a trace amount, even one isobutene polymerization tank can suffice for the purpose. Depending on the situation, it is also possible to use three or more. When 2-butene is included in the 1-butene fraction of the raw material, the method for separating 1-butene and 2-butene is as shown in FIG. The operation conditions of the distillation column 3 are set accordingly. Alternatively, a distillation column 3 designed to extract 2-butene from tube 34 as shown in FIG. 2 may be used. Furthermore, in FIG. 1, the mixture of isobutene low polymer and 2-butene extracted from the pipe 33 is
By supplying the distillation column 4 through a tube 41 as shown in the figure, 2-butene can be easily separated from the tube 42 and low polymers of isobutene can be easily separated from the tube 43 by distillation. EXAMPLES Next, the present invention will be specifically explained using examples and comparative examples. However, the present invention is not limited only to the examples. Note that percentages (%) in Examples and Comparative Examples are mol% unless otherwise specified. Example 1 Preparation of catalyst for high silica-containing mordenite 100 g of 1/16 inch pellets of commercially available highly crystalline sodium mordenite (manufactured by Norton, trade name: Zeolon 900Na) were immersed in 500 ml of 1N hydrochloric acid at 80°C.
The mixture was stirred for 1 hour. After completion, the acid solution was removed by the decanting method, and 500 ml of fresh 1N hydrochloric acid was poured into the solution, followed by stirring at 80° C. for 1 hour. After removing the hydrochloric acid solution, the sample was washed with warm water until no chlorine ions were detected. Next, hot air drying was performed at 110°C to obtain a hydrogen ion exchange type mordenite precursor. The obtained hydrogen ion exchange type precursor was heated gradually from room temperature under a water vapor partial pressure of 30% and subjected to hydrothermal treatment at 650° C. for 4 hours. After cooling, use 500ml of 12N hydrochloric acid to 90%
Reflux treatment was performed at ℃ for 6 hours to extract aluminum. After removing the hydrochloric acid solution, the sample was washed with warm water until no chlorine ions were detected, and then dried with hot air at 110°C. After air drying, heat at 650℃ using a Matsufuru furnace.
After firing for a period of time, a high silica-containing mordenite was obtained. The composition and silica/alumina ratio of the obtained mordenite had the values shown in the table. The obtained high silica content type mordenite is
It was ground into 100 meshes and baked at 500°C for 1 hour to remove adsorbed components, and 0.075g was accurately weighed and charged into a reactor. On the other hand, a bubbler containing pyridine was immersed in a water bath maintained at a constant temperature of 15.5°C, and nitrogen was bubbled to adsorb pyridine onto the catalyst packed in the reactor at room temperature. Next, the temperature of the reactor was gradually raised to 300°C under nitrogen flow, and the temperature was maintained at 300°C until the physically adsorbed pyridine was desorbed. After that, gas chromatography confirmed that pyridine desorption was no longer observed, and the reactor was heated at a heating rate of 10°C/min.
The temperature was raised from 300°C to 950°C, and the desorbed pyridine was quantified by gas chromatography. The amount of pyridine released is proportional to the amount of solid acid in mordenite. The results are shown in the table. Catalytic reaction A cylindrical reactor filled with the catalyst obtained above was filled with 26.2% butane, 1.3% isobutene, and 7.5% 1-butene.
%, and a C4 hydrocarbon mixture consisting of 65% 2-butene, the reaction temperature was 80℃, and the reaction pressure was 35Kg/ cm2.
(pressurized with nitrogen gas) and LHSV 3.0 h -1 . The results of analysis of the hydrocarbon mixture at the reactor outlet 16 hours after the start of the reaction are shown in the table. Further, the conversion rate of isobutene was tracked as the reaction time progressed, and the deterioration coefficient α was determined from K=K 0 e 〓 t . Here, K is the isobutene dimerization reaction rate constant at time t, K 0 is the initial reaction rate constant determined by extrapolation, and α is the deterioration coefficient. The results are shown in the table. Comparative Example 1 The hydrogen ion exchange type precursor obtained in Example 1 was calcined at 650° C. for 4 hours using a Matsufuru furnace, and then extracted with hydrochloric acid and calcined in the same manner as in Example 1 to obtain a mordenite catalyst. The pyridine adsorption amount and composition of the catalyst, and the silica/alumina ratio are shown in the table. A catalytic reaction similar to that in Example 1 was carried out using this catalyst, and the results are shown in the table. Comparative Example 2 The water vapor partial pressure was reduced to 100 in the hydrothermal treatment in Example 1.
%, a mordenite catalyst was prepared in the same manner as in Example 1, except that the treatment temperature was 700° C. and the treatment time was 3 hours, and a catalytic reaction was carried out. The results are shown in the table. Comparative Example 3 The water vapor partial pressure was reduced to 65 by the hydrothermal treatment in Example 1.
%, a mordenite catalyst was prepared in the same manner as in Example 1, except that the treatment temperature was 650° C. and the treatment time was 3 hours, and a catalytic reaction was carried out. The results are shown in the table. Example 2 A catalyst was prepared in the same manner as in Example 1, except that nitric acid was used instead of hydrochloric acid in the acid treatment in Example 1, and a catalytic reaction was performed. The results are shown in the table. Example 3 A catalyst was prepared in the same manner as in Example 1 except that sulfuric acid was used instead of hydrochloric acid in the acid treatment in Example 1, and a catalytic reaction was performed. The results are shown in the table. Example 4 Preparation of catalyst 67g of aluminum sulfate and concentrated sulfuric acid in 1500g of pure water
Dissolve 19.7g of sodium chloride and 140g of sodium chloride, add 490g of water glass (No. 3), and dissolve 2.5Na 2 O.
An aqueous reaction mixture was obtained having the composition Al 2 O 3 .23SiO 2 .99H 2 O. After this mixture was aged at room temperature for about 1 hour, it was put into an autoclave, the temperature was rapidly raised, and the temperature was maintained at 180°C for 20 hours. The obtained solid product was cooled to room temperature, filtered, thoroughly washed with water, and then dried at 110°C. A part of the product was calcined in air at 700°C, water was adsorbed at room temperature, and chemical analysis was performed to obtain synthetic mordenite with the following composition. Loss on ignition at 800°C 10.0% by weight SiO 2 79.1 Al 2 O 3 5.96 Na 2 O 3.51 SiO 2 /Al 2 O 3 (molar ratio) 22.6 It was confirmed from the spacing that it had a mordenite crystal structure. 100 g of the obtained synthetic mordenite was treated in exactly the same manner as in Example 1 to obtain highly silica-containing mordenite. The composition and adsorption amount of pyridine were as follows. Composition Loss on ignition at 800℃ 3.2% by weight SiO 2 95.1〃 Al 2 O 3 1.22〃 Na 2 O 0.11〃 SiO 2 /Al 2 O 3 (mole ratio) 133 Pyridine adsorption amount (mmol/g mordenite) Total pyridine adsorption amount 0.108 Contact Reaction A catalytic reaction was carried out in the same manner as in Example 1 using this catalyst. The results are shown in the table. Example 5 The water vapor partial pressure was reduced to 5 by the hydrothermal treatment in Example 1.
%, a mordenite catalyst was prepared in the same manner as in Example 1, except that the treatment temperature was 700° C. and the treatment time was 3 hours, and a catalytic reaction was carried out. The results are shown in the table. Example 6 The water vapor partial pressure was reduced to 20 by the hydrothermal treatment in Example 1.
%, a mordenite catalyst was prepared in the same manner as in Example 1, except that the treatment temperature was 700° C. and the treatment time was 3 hours, and a catalytic reaction was carried out. The results are shown in the table. Comparative Example 4 The hydrogen ion exchange type precursor obtained in Example 1 was
C. for 3 hours in a Matsufuru furnace to obtain hydrogen ion exchange type mordenite. A catalytic reaction was carried out in the same manner as in Example 1 using this catalyst. The results are shown in the table. Example 7 The catalyst obtained in Example 5 was retreated under the same hydrothermal treatment conditions as in Example 5 to prepare a catalyst, and a catalytic reaction was performed. The results are shown in the table. Example 8 The water vapor partial pressure was reduced to 45 by the hydrothermal treatment in Example 1.
A catalyst was prepared in the same manner as in Example 1, except that the treatment temperature was 660° C. and the treatment time was 4 hours, and a catalytic reaction was carried out. The results are shown in the table. Example 9 The water vapor partial pressure was reduced to 20 by the hydrothermal treatment in Example 1.
%, a catalyst was prepared in the same manner as in Example 1, except that the treatment temperature was 630° C. and the treatment time was 3 hours, and a catalytic reaction was carried out. The results are shown in the table. Example 10 The water vapor partial pressure was reduced to 45 by the hydrothermal treatment in Example 4.
%, a catalyst was prepared in the same manner as in Example 4, except that the treatment temperature was 660° C. and the treatment time was 4 hours, and a catalytic reaction was carried out. The results are shown in the table. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明触媒を用いる手法を工業的に行
う際の一概略工程図であり、第2図及び第3図は
本発明の方法により処理された後の各成分の分離
方法の工程図である。 1及び2……イソブテン重合槽、3及び4……
蒸留搭。
Figure 1 is a schematic process diagram for industrially carrying out the method using the catalyst of the present invention, and Figures 2 and 3 are process diagrams of a method for separating each component after being treated by the method of the present invention. It is. 1 and 2...isobutene polymerization tank, 3 and 4...
Distillation tower.

Claims (1)

【特許請求の範囲】[Claims] 1 水素交換型あるいは水素交換型前駆体モルデ
ナイトを水蒸気存在下で水熱処理を行い、次いで
酸と接触させることにより得られ、ピリジン吸着
量が触媒1g当り0.05〜0.25ミリモルの固体酸量
を有し、かつシリカ/アルミナ(モル比)が50〜
200のモルデナイト触媒を、イソブテン及び1−
ブテンを含有する炭化水素混合物と接触させるこ
とからなる該炭化水素混合物中のイソブテンの低
重合方法。
1 obtained by hydrothermally treating hydrogen exchange type or hydrogen exchange type precursor mordenite in the presence of steam and then contacting it with an acid, the amount of pyridine adsorbed is 0.05 to 0.25 mmol of solid acid per 1 g of catalyst, And silica/alumina (molar ratio) is 50~
200 mordenite catalyst with isobutene and 1-
A process for the underpolymerization of isobutene in a hydrocarbon mixture containing butene, the process comprising contacting the mixture with said hydrocarbon mixture.
JP57047316A 1982-03-23 1982-03-26 Low polymerization of isobutene Granted JPS58164523A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57047316A JPS58164523A (en) 1982-03-26 1982-03-26 Low polymerization of isobutene
US06/476,015 US4454367A (en) 1982-03-23 1983-03-15 Process for the low polymerization of isobutene
EP83301545A EP0090569B1 (en) 1982-03-23 1983-03-18 A process for the low polymerization of isobutene
DE8383301545T DE3361755D1 (en) 1982-03-23 1983-03-18 A process for the low polymerization of isobutene
CA000424240A CA1196029A (en) 1982-03-23 1983-03-23 Process for the low polymerization of isobutene
US06/597,821 US4513166A (en) 1982-03-23 1984-04-06 Process for the low polymerization of isobutene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57047316A JPS58164523A (en) 1982-03-26 1982-03-26 Low polymerization of isobutene

Publications (2)

Publication Number Publication Date
JPS58164523A JPS58164523A (en) 1983-09-29
JPS6254406B2 true JPS6254406B2 (en) 1987-11-14

Family

ID=12771878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57047316A Granted JPS58164523A (en) 1982-03-23 1982-03-26 Low polymerization of isobutene

Country Status (1)

Country Link
JP (1) JPS58164523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109942U (en) * 1989-02-17 1990-09-03

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117761U (en) * 1983-10-24 1984-08-08 タキゲン製造株式会社 Internal unlocking device for latch devices such as freezers
GB9930402D0 (en) * 1999-12-23 2000-02-16 Exxon Chemical Patents Inc Selective removal of isobutene from C4 olefinic feedstocks
JP2006205726A (en) * 2004-12-28 2006-08-10 Nagayo Shimokawa Ornament and display unit
EP2098498A1 (en) * 2008-03-04 2009-09-09 ExxonMobil Chemical Patents Inc. Selective oligomerization of isobutene
US8999013B2 (en) * 2011-11-01 2015-04-07 Saudi Arabian Oil Company Method for contemporaneously dimerizing and hydrating a feed having butene

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108023A (en) * 1980-12-26 1982-07-05 Toa Nenryo Kogyo Kk Oligomerization catalyst for isobutene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108023A (en) * 1980-12-26 1982-07-05 Toa Nenryo Kogyo Kk Oligomerization catalyst for isobutene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109942U (en) * 1989-02-17 1990-09-03

Also Published As

Publication number Publication date
JPS58164523A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
CA2713172C (en) Dehydration of alcohols in the presence of an inert component
KR101227221B1 (en) Process to make olefins from ethanol
JP2656124B2 (en) Liquid phase alkylation and transalkylation method using beta zeolite
US4062905A (en) Manufacture of light olefins
Corma et al. Zeolite beta as a catalyst for alkylation of isobutane with 2-butene. Influence of synthesis conditions and process variables
US20110137096A1 (en) Process to Make Olefins from Ethanol
JPH0455174B2 (en)
US3812199A (en) Disproportionation of paraffin hydrocarbons
JPH0673382A (en) Method for converting hydrocarbon
JPH08127546A (en) Production of lower olefin and monocyclic aromatic hydrocarbon
EP0090569B1 (en) A process for the low polymerization of isobutene
US5107047A (en) Zeolite MCM-22 catalysts for olefin isomerization
EP2108637A1 (en) Process to make olefins from ethanol.
JPS6254406B2 (en)
US2361613A (en) Isomerization of hydrocarbons
JP6446033B2 (en) Process for producing unsaturated hydrocarbons
US4048248A (en) Process and catalyst for the conversion of aromatic hydrocarbons
US3104270A (en) Hydrocarbon polymerization catalyst
JPH06287151A (en) Isomerization of dimethylnaphthalene
JPH04226926A (en) Method for preparation of alkylbenzene using catalyst based on dealuminized zeolite y
EP2108635A1 (en) Process to make olefins from ethanol
JPS59227830A (en) Oligomerization of isobutene
JPS6346730B2 (en)
JPH042576B2 (en)
JPS5915695B2 (en) Process for treating aromatic hydrocarbon conversion catalysts