JPS5829700B2 - Communication safety circuit - Google Patents

Communication safety circuit

Info

Publication number
JPS5829700B2
JPS5829700B2 JP3677678A JP3677678A JPS5829700B2 JP S5829700 B2 JPS5829700 B2 JP S5829700B2 JP 3677678 A JP3677678 A JP 3677678A JP 3677678 A JP3677678 A JP 3677678A JP S5829700 B2 JPS5829700 B2 JP S5829700B2
Authority
JP
Japan
Prior art keywords
voltage
arrester
common mode
mode choke
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3677678A
Other languages
Japanese (ja)
Other versions
JPS54129453A (en
Inventor
恒一 信沢
迪夫 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3677678A priority Critical patent/JPS5829700B2/en
Publication of JPS54129453A publication Critical patent/JPS54129453A/en
Publication of JPS5829700B2 publication Critical patent/JPS5829700B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は通信用保安器の回路構成に関するものである。[Detailed description of the invention] The present invention relates to a circuit configuration of a communication protector.

半導体部品の機能拡大と価格低減のために、電話機、電
話交換機等の通信装置にサージ耐量の小さな半導体集積
回路が大巾に導入されつつある。
In order to expand the functionality and reduce the cost of semiconductor components, semiconductor integrated circuits with low surge resistance are being widely introduced into communication devices such as telephones and telephone exchanges.

これらサージ耐量の小さな半導体集積回路を雷サージか
ら防護するため、従来より種々の保安器が使用されてい
る。
In order to protect these semiconductor integrated circuits with low surge resistance from lightning surges, various protectors have been used.

第1図は従来用いられている保安器の基本的構成を示す
ものである。
FIG. 1 shows the basic configuration of a conventional safety device.

図中、LA、LBは保安器の線路側端子、ZlA、Zl
Bは1次アレスタ、ZSA IZSBはサージ抑制特性
を改善させる直列インピーダンス、Z2A、Z2Bは2
次アレスタそしてSA。
In the figure, LA and LB are the line side terminals of the protector, ZlA and Zl
B is the primary arrester, ZSA IZSB is the series impedance that improves surge suppression characteristics, Z2A and Z2B are 2
Next is the arrester and then the SA.

SBは被保護素子側端子である。SB is a terminal on the protected element side.

第2図は第1図図示の保安器の代表的な回路構成を示す
FIG. 2 shows a typical circuit configuration of the protector shown in FIG.

IA。1Bは線路側端子と地気間に侵入する雷サージの
大部分のエネルギーを吸収し、地気に逃がすガスギャッ
プ式アレスタである。
I.A. 1B is a gas gap type arrester that absorbs most of the energy of lightning surges that enter between the line side terminal and the ground, and releases it to the ground.

しかし、このガスギャップ式アレスタIA。However, this gas gap arrester IA.

1Bだけでは数マイクロセカンドから数十マイクロセカ
ンド程度の放電遅れ時間があるため、例えば直流放電開
始電圧を160■に選定しても放電遅れ時間の間では約
300〜100OVのピーク電圧が線路地気間に残る。
Since 1B alone has a discharge delay time of several microseconds to several tens of microseconds, for example, even if the DC discharge starting voltage is selected as 160V, a peak voltage of about 300 to 100OV will be applied to the line ground during the discharge delay time. remain in between.

一方被保護素子のサージ電圧耐量はたかだか200■以
下であることが多く、従って、サージ電圧の制限特性を
更に低くする必要がある。
On the other hand, the surge voltage withstand capacity of the protected element is often at most 200 µm or less, and therefore it is necessary to further lower the surge voltage limiting characteristics.

この為、挿入する素子が図示の直列インピーダンスZs
および2次アレスタ2A。
For this reason, the inserted element has a series impedance Zs as shown in the figure.
and secondary arrester 2A.

2Bである。It is 2B.

この直列インピーダンスZsは線路のループ信号に対し
ては非常に低いインピーダンスを示すが線路−地気間の
サージ電圧即ち雷サージに対しては高インピーダンスを
示すコモンモードチョークコイルより構成される。
This series impedance Zs is constituted by a common mode choke coil that exhibits a very low impedance against a line loop signal, but a high impedance against a surge voltage between the line and the earth, that is, a lightning surge.

又、2次アレスタ2A 、2Bは酸化亜鉛焼結形等の電
圧非直線性素子であり、電圧電流特性の立上り電圧は被
保護素子のサージ耐量や、線路のループ信号の電圧レベ
ルによって決定される。
In addition, the secondary arresters 2A and 2B are voltage nonlinear elements such as zinc oxide sintered type, and the rising voltage of the voltage-current characteristics is determined by the surge resistance of the protected element and the voltage level of the line loop signal. .

第3図は第2図図示の保安器の等何回路を示す。FIG. 3 shows the circuitry of the protector shown in FIG.

Lはコモンモードチョークコイルのインダクタンス、C
は酸化亜鉛焼結形等の電圧非直線性素子の1個当りの電
極間静電容量、rは概ねコモンモードチョークコイルの
実効抵抗外であり、Swはガスギャップ式アレスタは放
電持続時間の間型極間がほぼ短絡状態であることを意味
するスイッチである。
L is the inductance of the common mode choke coil, C
is the capacitance between the electrodes of a voltage nonlinear element such as a sintered zinc oxide type, r is approximately outside the effective resistance of the common mode choke coil, and Sw is the capacitance between the electrodes of a voltage nonlinear element such as a zinc oxide sintered type, and Sw is the capacitance between the electrodes of a voltage nonlinear element such as a zinc oxide sintered type, This is a switch that means that the mold electrodes are almost in a short-circuited state.

第3図図示回路の回路において、端子L−E間に雷サー
ジを印加した場合を考えると、放電遅れ時間の間はスイ
ッチSwは開放状態であるため入力雷サージはr −L
−Cの直列回路に直接印加されるので、L、Cにそれ
ぞれ電流、電圧の形でエネルギーが蓄積される。
In the circuit shown in Figure 3, if we consider the case where a lightning surge is applied between terminals L and E, the input lightning surge will be r - L because the switch Sw is open during the discharge delay time.
Since it is directly applied to the series circuit of -C, energy is stored in the form of current and voltage in L and C, respectively.

雷サージがガスギャップ式アレスタの放電開始電圧まで
達すると放電状態となり、第3図の等価回路ではスイッ
チSWが閉じた状態に変わる。
When the lightning surge reaches the discharge starting voltage of the gas gap type arrester, it enters a discharge state, and in the equivalent circuit of FIG. 3, the switch SW changes to the closed state.

この時り、Cにはエネルギーが蓄積されたままスイッチ
SWが閉じられるため、L−C共振により出力電圧Eo
の振動がはじまる。
At this time, the switch SW is closed while energy is stored in C, so the output voltage Eo is caused by L-C resonance.
begins to vibrate.

一方、酸化亜鉛焼結形電圧非直線性素子は電圧非直線係
数およびサージ耐量が大きく、かつ、正負のサージに対
し対称の特性を有するため最近サージ吸収素子として特
に使用されることが多いが、電極間静電容量が非常に大
きい特徴をもつ。
On the other hand, zinc oxide sintered voltage nonlinear elements have large voltage nonlinear coefficients and surge resistance, and have symmetrical characteristics with respect to positive and negative surges, so they have recently been particularly used as surge absorption elements. It is characterized by a very large interelectrode capacitance.

−例として外形寸法が15朋の直径の円形平板形で電圧
電流特性の立上り電圧が150Vの素子で約1400P
Fである。
- For example, an element with external dimensions of a circular plate shape with a diameter of 15mm and a rising voltage of 150V in voltage-current characteristics is approximately 1400P.
It is F.

又コモンモードチョークコイルの実効抵抗に代表される
共振ループの実効抵抗分子は線路のループ信号に対して
保安器の挿入損失を低くする必要があることからおおよ
そ10g以下と小さいことが多い。
Furthermore, the effective resistance molecule of the resonant loop, represented by the effective resistance of the common mode choke coil, is often as small as about 10 g or less because it is necessary to lower the insertion loss of the protector with respect to the line loop signal.

この為、ガスキャップ式アレスタの放電開始後の保安器
の出力電圧は大きく長時間振動し実験では200マイク
ロセカンドにも持続する例が観測された。
For this reason, the output voltage of the protector after the start of discharge of the gas cap type arrester fluctuates greatly for a long time, and in experiments, it was observed that the output voltage lasted for as long as 200 microseconds.

この出力電圧の波形例を第4図のイ(実線)に示す。An example of the waveform of this output voltage is shown in A (solid line) in FIG.

第4図において、tlはガスギャップ式アレスタIA、
IBの放電開始時間でありTcはほぼり。
In FIG. 4, tl is gas gap type arrester IA,
This is the discharge start time of IB, and Tc is approximately.

Cの大きさで決ま、る振動の周期である。The period of vibration is determined by the magnitude of C.

このように、従来の保安回路では、出力電圧が長時間振
動状態におちいるため、被保護素子に悪影響を与えるこ
と犬である欠点があった。
As described above, the conventional safety circuit has the disadvantage that the output voltage remains in an oscillating state for a long time, which may adversely affect the protected elements.

勿論、直列インピーダンスZsを抵抗器に置換すれば振
動が生じないが、保安器の挿入損失が大きくなるため用
途がおのずと制限される欠点がある。
Of course, if the series impedance Zs is replaced with a resistor, vibration will not occur, but the insertion loss of the protector increases, which naturally limits its application.

本発明の目的は従来技術の欠点をなくし、出力電圧の振
動をすみやかに収束させかつ、挿入損失の著るしく小さ
な通信用保安回路を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art and to provide a communication safety circuit that quickly converges output voltage oscillations and has significantly low insertion loss.

第3図の等価回路において、L−Cにエネルギーを蓄積
した状態でスイッチSWを閉にした場合、その振動電流
■は次式で与えられる。
In the equivalent circuit of FIG. 3, when the switch SW is closed with energy stored in L-C, the oscillating current {circle around (2)} is given by the following equation.

であり、振動の収束時間は時定数τeに比例する。The convergence time of vibration is proportional to the time constant τe.

即ち等個直列抵抗rが大きい程振動の収束時間は短縮さ
れる。
That is, the larger the equal series resistance r is, the shorter the vibration convergence time is.

本発明は1次アレスタと2次アレスタとの間に直列イン
ピーダンス素子としてコモンモードチョークコイルを挿
入した通信用保安回路において、このコモンモードチョ
ークコイルの少すくトモ一方のコイルに並列にダンピン
グ抵抗を接続することにより等何曲に抵抗を増大させ上
述の欠点を除去したものである。
The present invention is a communication safety circuit in which a common mode choke coil is inserted as a series impedance element between a primary arrester and a secondary arrester, and a damping resistor is connected in parallel to one of the common mode choke coils. By doing so, the resistance is increased to a certain degree and the above-mentioned drawbacks are eliminated.

以下図を用いて本発明による通信用保安回路を詳細に説
明する。
The communication security circuit according to the present invention will be explained in detail below with reference to the drawings.

第5図は本発明による通信用保安回路の一実施例である
FIG. 5 shows an embodiment of the communication security circuit according to the present invention.

図示の如く、線路−地気間には、1次アレスタとして2
極ガスギャップ式アレスタ、IA、IBが、又2次アレ
スタとして酸化亜鉛を主体としてこれに不純物を添加焼
結したものからなる電圧非直線性素子、2A、2Bが使
用され、かつ直列インピーダンス素子として1次アレス
タと2次アレスタの間にコモンモードチョークコイルZ
sが挿入され、更に、このコモンモードチョークコイル
Zsの少なくとも1つのコイルの両端にダンピング抵抗
Rsを接続したものである。
As shown in the figure, two primary arresters are installed between the track and the ground.
Polar gas gap type arresters IA and IB are used as secondary arresters, and voltage non-linear elements 2A and 2B made of zinc oxide as a main ingredient and sintered with impurities added thereto are used as secondary arresters, and as series impedance elements. A common mode choke coil Z is installed between the primary arrester and the secondary arrester.
s is inserted, and a damping resistor Rs is further connected to both ends of at least one coil of this common mode choke coil Zs.

この回路構成において、雷サージを印加した場合の出力
電圧波形例を第4図口(破線)に示す如くなる。
In this circuit configuration, an example of the output voltage waveform when a lightning surge is applied is as shown in FIG. 4 (broken line).

抵抗R8の最適値はコモンモードチョークコイルZ8の
インダクタンスの大きさ等により異なるが、実験例とし
てコモンモードチョークコイルのインダクタンスL =
0.5 rn Hs電圧非直線性素子2A、2Bの電極
間静電容量C=1400PFとした場合、振動の収束時
間は抵抗R8を付加しない場合で220マイクロセカン
ドあったものが抵抗R8=IK、(、/では24マイク
ロセカンドに短縮される。
The optimal value of the resistor R8 varies depending on the inductance size of the common mode choke coil Z8, etc., but as an experimental example, the inductance L = of the common mode choke coil
0.5 rn Hs When the interelectrode capacitance C of the voltage nonlinear elements 2A and 2B is set to 1400PF, the vibration convergence time was 220 microseconds without adding the resistor R8, but the resistor R8 = IK, (, / is shortened to 24 microseconds.

これは抵抗R8の付加より共振回路のエネルギー損失が
増加し、振動の収束時間が早まる為である。
This is because the energy loss of the resonant circuit increases due to the addition of the resistor R8, and the vibration convergence time becomes faster.

又、この場合出力電圧のピーク値の抵抗R8の付加によ
る上昇は認められなかった。
Further, in this case, no increase in the peak value of the output voltage due to the addition of the resistor R8 was observed.

これは雷サージに対しての直列インピータンスの効果も
失なわれないことを示している。
This shows that the effect of series impedance on lightning surges is not lost.

尚、上記効果は線路−地気間に印加した雷サージの減衰
特性にのみ発生するもので、信号ループの減衰特性が抵
抗Rsの付加によって何等影響を受ケないことはコモン
モードチョークコイルの動作原理から明白である。
Note that the above effect occurs only in the attenuation characteristics of the lightning surge applied between the line and the earth, and the fact that the attenuation characteristics of the signal loop are not affected by the addition of the resistor Rs is due to the operation of the common mode choke coil. It is clear in principle.

即ち抵抗R8の付加によるループ信号に対する挿入損失
の増大はない。
That is, there is no increase in insertion loss for the loop signal due to the addition of the resistor R8.

第6図は本発明の他の実施例を示したもので、1次アレ
スタを3極ガスギャップ式アレスタにしても、又、抵抗
R8の付加をコモンモードチョークコイルの両側コイル
にそれぞれ行なっても前述の効果は失なわれない。
FIG. 6 shows another embodiment of the present invention, in which the primary arrester is a three-pole gas gap type arrester, and the resistor R8 is added to both sides of the common mode choke coil. The aforementioned effects are not lost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通信用保安器の基本的構成を示すブロックダイ
アダラム、第2図は従来の通信用保安回路図、第3図は
第2図の等価回路図、第4図は従来の保安回路および本
発明による保安回路の雷サージ印加時の出力電圧波形図
、第5図、第6図はいずれも本発明による通信用保安回
路の一実施例の保安回路図を示す。 LA、LB:線路側端子、SA、SB :被保護側端子
、IA、IB:1次アレスタ、Zs:コモンモードチョ
ークコイル、2A、2B:2次アレスタ、R8:抵抗。
Figure 1 is a block diagram showing the basic configuration of a communication protector, Figure 2 is a conventional communication safety circuit diagram, Figure 3 is an equivalent circuit diagram of Figure 2, and Figure 4 is a conventional safety circuit. FIGS. 5 and 6 are output voltage waveform diagrams of the safety circuit according to the present invention when a lightning surge is applied, and FIGS. 5 and 6 each show a safety circuit diagram of an embodiment of the communication safety circuit according to the present invention. LA, LB: Line side terminals, SA, SB: Protected side terminals, IA, IB: Primary arrester, Zs: Common mode choke coil, 2A, 2B: Secondary arrester, R8: Resistor.

Claims (1)

【特許請求の範囲】[Claims] 11次側のそれぞれの線路と地気間に接続された1次ア
レスタと、2次側のそれぞれの線路と地気間に接続され
た2次アレスタと、1次側端子と2次側端子との間に挿
入されたコモンモードチョークコイルとからなる通信用
保安回路において、コモンモードチョークコイルの少な
くとも一方のコイルに並列に抵抗を接続したことを特徴
とする通信用保安回路。
A primary arrester connected between each line on the primary side and the ground air, a secondary arrester connected between each line on the secondary side and the ground air, and a primary side terminal and a secondary side terminal. 1. A communication security circuit comprising a common mode choke coil inserted between the communication security circuits, wherein a resistor is connected in parallel to at least one of the common mode choke coils.
JP3677678A 1978-03-31 1978-03-31 Communication safety circuit Expired JPS5829700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3677678A JPS5829700B2 (en) 1978-03-31 1978-03-31 Communication safety circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3677678A JPS5829700B2 (en) 1978-03-31 1978-03-31 Communication safety circuit

Publications (2)

Publication Number Publication Date
JPS54129453A JPS54129453A (en) 1979-10-06
JPS5829700B2 true JPS5829700B2 (en) 1983-06-24

Family

ID=12479164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3677678A Expired JPS5829700B2 (en) 1978-03-31 1978-03-31 Communication safety circuit

Country Status (1)

Country Link
JP (1) JPS5829700B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101505A (en) * 2000-09-19 2002-04-05 Nippon Telegraph & Telephone East Corp Switchboard
US6978011B1 (en) * 2001-03-02 2005-12-20 Alcatel Enhanced low pass filter
JP2010226925A (en) * 2009-03-25 2010-10-07 Dx Antenna Co Ltd Protection circuit

Also Published As

Publication number Publication date
JPS54129453A (en) 1979-10-06

Similar Documents

Publication Publication Date Title
US5416663A (en) Arrangement for protecting telecommunications equipment from voltage transients
EP0017337B1 (en) Line protector for a communications circuit
EP1551089B1 (en) Overvoltage protection circuit
JP2006115460A (en) Combined varistor and lc filter device
WO2017032168A1 (en) Protection circuit for interface with oscillation characteristic and method thereof
JPS5829700B2 (en) Communication safety circuit
JPS6328230A (en) Device for protecting power line from high transient overvoltage
JPH0145812B2 (en)
JP4020210B2 (en) Lightning arrester for signal lines
JPH09266052A (en) Surge absorber
US2476843A (en) Contact protection network
JP3348151B2 (en) Surge absorber
JPH01268427A (en) Abnormal voltage suppressor
CN112970163B (en) Protection circuit for protecting against transient currents, voltages or electrical energy
JPS6015404Y2 (en) arrester
JP2741661B2 (en) Surge absorber
JPH0717235Y2 (en) Overvoltage protection element
JP5618817B2 (en) Discharge meter
JPH0595623A (en) Surge protection network system
JPS5937683A (en) Arrester
JPS5820124B2 (en) surge absorber
JPH0562150U (en) Surge protection device for communication lines
SU516147A1 (en) Device for protecting communication lines from the influence of high-voltage power lines
JPS598423Y2 (en) Surge absorption circuit
SU382197A1 (en) DEVICE FOR INCREASING STABILITY