JPH01268427A - Abnormal voltage suppressor - Google Patents

Abnormal voltage suppressor

Info

Publication number
JPH01268427A
JPH01268427A JP9486988A JP9486988A JPH01268427A JP H01268427 A JPH01268427 A JP H01268427A JP 9486988 A JP9486988 A JP 9486988A JP 9486988 A JP9486988 A JP 9486988A JP H01268427 A JPH01268427 A JP H01268427A
Authority
JP
Japan
Prior art keywords
voltage
main electrodes
load
discharge
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9486988A
Other languages
Japanese (ja)
Inventor
Akira Morita
森田 公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9486988A priority Critical patent/JPH01268427A/en
Publication of JPH01268427A publication Critical patent/JPH01268427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To improve surge voltage protective capacity by boosting the voltage at a starting electrode arranged closely to a main discharge gap provided across a load to be protected through a booster which is excited by a current flowing through a non-linear resistor connected in parallel with the load. CONSTITUTION:Main electrodes 2, 3 are fixed to lead wires l0, l1 connected to the opposite ends of a load 7 to be protected and the gap between the main electrodes 2, 3 is set to a predetermined value thus forming a discharge gap 1. A single winding booster 5 is connected between 1 starting electrode 4 arranged closely to the main electrodes 2, 3 and the lead wire l0. A non-linear resistor 6 allowing only small current for a voltage lower than a predetermined level and allowing abruptly increased current for a voltage exceeding over the predetermined level is connected between the intermediate terminal of the booster 5 and the lead wire l1. When a surge voltage enters between the lead wires l0 and l1, large current flows through the non-linear resistor 6 to produce a high voltage on the starting electrode 4 thus inducing discharge between the main electrodes 2, 3. Consequently, high surge voltage is discharged through the gap 1 and the load 7 is protected from high voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 近時電子部品あるいは電子装置が産業の多くの方面に使
用されている。この時に留意すべきことのひとつにこれ
ら電子部品や電子装置の対サージ性がある。すなわち、
外部から侵入してくるサージあるいは装置内部での部品
の動作にともなって発生するサージなどに対して破壊し
ないように保護する必要がある。この発明は、これら部
品や装置に過大なサージすなわち異常電圧が印加されな
いように構成される異常電圧抑制装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Fields of Industrial Application] Recently, electronic components or electronic devices have been used in many fields of industry. One thing to keep in mind at this time is the surge resistance of these electronic components and devices. That is,
It is necessary to protect the device from damage due to surges entering from the outside or surges generated due to the operation of components inside the device. The present invention relates to an abnormal voltage suppressing device configured to prevent excessive surges, that is, abnormal voltages from being applied to these parts and devices.

〔従来の技術〕[Conventional technology]

異常電圧を抑制する方法としては、各種の方法。 There are various methods to suppress abnormal voltage.

装置が考案され製作されている。これらは、フィルタ、
非線形抵抗いわゆるバリスタ、放電ギャップあるいはこ
れらの組み合わせたものである。サージのエネルギが大
きい場合には放電ギャップが多用される。第3図に従来
の異常電圧抑制装置の一構成例を示す0図は主電極22
.23を対向配置して放電ギャップ21を構成し、これ
を絶縁保護の対象となる負荷24の両端子間に接続し、
外部から侵入してくる過大なサージ25が負荷に印加さ
れるのを防止する例を示している。しかるに、このよう
に構成された放電ギャップの放電特性は、第4図に示す
ように、放電電圧が主電極間の距離と放電空間に存在す
るガスの圧力との積に依存する特性を有している。この
ため、負荷の耐電圧が図の■、1.よりも小さい場合に
はかかる構成の放電ギャップでは負荷を保護することが
できない、この場合の対策例として第5図に示す方゛法
がある。この方法の原理はつぎの通りである。すなわち
、まず、30にて示す電圧を主電極32.33の間に印
加しておく、このままでは両電極間のギャップは絶縁破
壊することはない、しかし別途に設けた第2の電源36
をスイッチ35を閉じることにより起動電極34に接続
して主電極33と起動電極34との間に破壊を発生させ
、第6図に示すように、符号40で示すアークプラズマ
を形成させる。このプラズマが主電極32.33の間に
広がり主電極間が絶縁破壊して符号41で示すアークプ
ラズマが形成される。ここでスイッチ35は、符号30
が意味するサージ電圧の一部を分圧抵抗などを用いて取
り出し、この電圧によってオン動作する半導体素子と考
えればよい。
A device has been devised and manufactured. These are filters,
Nonlinear resistances are so-called varistors, discharge gaps, or combinations thereof. When the energy of the surge is large, a discharge gap is often used. Figure 3 shows an example of the configuration of a conventional abnormal voltage suppression device. Figure 0 shows the main electrode 22.
.. 23 are arranged facing each other to form a discharge gap 21, which is connected between both terminals of a load 24 to be protected by insulation,
An example is shown in which excessive surge 25 entering from the outside is prevented from being applied to the load. However, as shown in FIG. 4, the discharge characteristics of the discharge gap configured in this way have a characteristic in which the discharge voltage depends on the product of the distance between the main electrodes and the pressure of the gas existing in the discharge space. ing. For this reason, the withstand voltage of the load is 1. in the figure. If the discharge gap is smaller than , the load cannot be protected by the discharge gap having such a configuration.An example of a countermeasure for this case is the method shown in FIG. The principle of this method is as follows. That is, first, a voltage indicated by 30 is applied between the main electrodes 32 and 33. If this continues, the gap between the two electrodes will not cause dielectric breakdown, but if the voltage shown at 30 is applied, the gap between the two electrodes will not cause dielectric breakdown.
is connected to the starting electrode 34 by closing the switch 35, causing a breakdown between the main electrode 33 and the starting electrode 34, and forming an arc plasma indicated by the reference numeral 40, as shown in FIG. This plasma spreads between the main electrodes 32 and 33, causing dielectric breakdown between the main electrodes and forming arc plasma indicated by reference numeral 41. Here, the switch 35 has the symbol 30
A part of the surge voltage that is meant by is taken out using a voltage dividing resistor, etc., and it can be thought of as a semiconductor element that is turned on by this voltage.

放電ギャップをこのように構成することにより、主電極
32.33の間に印加される電圧が主電極のみによる放
電電圧より低い場合でも起動電極に発生するトリガー用
アークプラズマにより、主電極間に放電を発生させるこ
とができる。
By configuring the discharge gap in this way, even if the voltage applied between the main electrodes 32 and 33 is lower than the discharge voltage due to the main electrodes alone, the triggering arc plasma generated at the starting electrode will cause a discharge between the main electrodes. can be generated.

(発明が解決しようとする課題〕 第6図のように構成された異常電圧抑制装置における問
題点は次の通りである。すなわち、このような構成の異
常電圧抑制装置では、第2電源を構成する電池が放電に
より端子電圧が低下し、常に交換時期や寿命などに配慮
する必要があり、実用上不便であるのと、装置の動作信
鯨性が低下するという問題点があった。
(Problems to be Solved by the Invention) The problems with the abnormal voltage suppression device configured as shown in Fig. 6 are as follows.In other words, in the abnormal voltage suppression device configured as described above, the second power source is When the battery is discharged, the terminal voltage decreases, and it is necessary to constantly consider the replacement period and lifespan, which is inconvenient from a practical standpoint, and there are problems in that the reliability of operation of the device decreases.

この発明の目的は、以上の問題点に鑑み、第2電源を用
いることなく主電極のみによる放電電圧よりもはるかに
低い電圧で放電が起こる放電ギャップを備えるとともに
、この放電ギャップの制御が第2電源を用いることなく
、異常電圧抑制装置を構成している非線形抵抗の特性に
従って行われ、結果として被保護対象物に印加される電
圧波高値すなわち装置の保護特性は非線形抵抗によりこ
れを保持しつつ処理可能なサージエネルギの増大された
。しかも非線形抵抗みずからは破壊を生ずることのない
放電信鯨性の高い異常電圧抑制装置を提供することであ
る。
In view of the above problems, an object of the present invention is to provide a discharge gap in which a discharge occurs at a voltage far lower than the discharge voltage generated by only the main electrode without using a second power source, and to control this discharge gap by using a second power source. This is done without using a power source and according to the characteristics of the nonlinear resistance that makes up the abnormal voltage suppression device, and as a result, the voltage peak value applied to the protected object, that is, the protection characteristics of the device, is maintained by the nonlinear resistance. The amount of surge energy that can be handled has been increased. Moreover, it is an object of the present invention to provide an abnormal voltage suppressing device with high discharge resistance, which does not cause damage to the nonlinear resistor itself.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、この発明によれば、絶縁を
サージから保護すべき対象物の両端子間に接続される非
線形抵抗を備えた異常電圧抑制装置において、前記対象
物の両端子間に接続される。
In order to achieve the above object, according to the present invention, in an abnormal voltage suppressing device including a nonlinear resistance connected between both terminals of an object whose insulation is to be protected from surges, Connected.

2つの主電極と1つの起動電極とからなる3電極式放電
ギャップと、出力巻線が前記3111極式放電ギャップ
の主電極の1つと起動電極との間に接続電流を用いて励
磁される昇圧変圧器とを備えし☆ものとする。
A three-electrode discharge gap consisting of two main electrodes and one starting electrode, and a booster in which the output winding is excited using a connecting current between one of the main electrodes of the 3111-pole discharge gap and the starting electrode. It shall be equipped with a transformer.

〔作用〕[Effect]

周知のように、非線形抵抗はその端子間に印加される電
圧値がある値より小さい範囲では通過する電流が極めて
小さく、電圧がこの値を超過すると抵抗が急に低下して
通過する電流が急激に増大する特性を存している。従っ
て、たとえば、非線形抵抗に昇圧変圧器の1次巻m(入
力巻線)を直列に接続して被保護対象物の両端子間に接
続すれば、侵入してくるサージ電圧の波形がある値に到
達するまではこの電圧は非線形抵抗がほとんど負担し、
この値を超えると非線形抵抗の抵抗が急に小さくなり、
1次−1IvAにほぼ全電圧が印加される。
As is well known, when the voltage applied between the terminals of a nonlinear resistor is less than a certain value, the current that passes through it is extremely small, and when the voltage exceeds this value, the resistance suddenly decreases and the current that passes through it suddenly decreases. It has the property of increasing. Therefore, for example, if the primary winding m (input winding) of a step-up transformer is connected in series with a nonlinear resistor and connected between both terminals of the object to be protected, the waveform of the incoming surge voltage will have a certain value. Until reaching , this voltage is mostly borne by the nonlinear resistance,
When this value is exceeded, the resistance of the nonlinear resistor suddenly decreases,
Almost the full voltage is applied to the primary -1IvA.

これにより昇圧変圧器の2次巻線(出力巻&I)に高電
圧が発生し、これが3電極式放電ギャップの主電極の1
つと起動電極との間に印加されてトリガプラズマが形成
され主電極間が放電する。この放電はサージ電圧が波高
値に到達する以前の時点で起こるから、非線形抵抗素子
にはサージ電圧の波高値は印加されず、従って大きいエ
ネルギを吸収する必要もなく、破壊を免れることができ
る。
This generates a high voltage in the secondary winding (output winding & I) of the step-up transformer, which in turn generates a high voltage in the main electrode of the three-electrode discharge gap.
A trigger plasma is formed by applying a voltage between the two main electrodes and the starting electrode, and a discharge occurs between the main electrodes. Since this discharge occurs before the peak value of the surge voltage is reached, the peak value of the surge voltage is not applied to the nonlinear resistance element, and therefore there is no need to absorb large amounts of energy, and it can be avoided from being destroyed.

また、3電極式放電ギャップが処理すべきエネルギは主
電極間に形成されるアークプラズマの熱エネルギである
から、たとえば電極を接点材料で構成し、あるいは電極
寸法を適当に設定することにより適宜に処理可能なエネ
ルギを変えつつ大きいエネルギを処理することが可能で
ある。
In addition, since the energy to be processed by the three-electrode discharge gap is the thermal energy of the arc plasma formed between the main electrodes, it is possible to It is possible to process large amounts of energy while changing the amount of energy that can be processed.

〔実施例〕〔Example〕

第1図に本発明の第1の実施例を示す、単巻変圧器とし
て形成された昇圧変圧器5の出力巻線は3電極式放電ギ
ャップ1の主電極3と起動電極4との間に接続され、人
力巻線は非線形抵抗6と直列に接続されて負ffJ7の
両端子間に接続されている。
FIG. 1 shows a first embodiment of the invention, the output winding of a step-up transformer 5 configured as an autotransformer is located between the main electrode 3 and the starting electrode 4 of the three-electrode discharge gap 1. The human power winding is connected in series with the nonlinear resistor 6 and connected between both terminals of the negative ffJ7.

このように構成された異常電圧抑制装置にサージ電圧が
到来し非線形抵抗6と昇圧変圧器5の入力巻線との直列
回路にかかる電圧がある値に達すると非線形抵抗の抵抗
値が急激に小さくなりほぼその全電圧が入力巻線に印加
される。これにより昇圧変圧器5の出力巻線の両端子間
に高電圧が発生して起動電極4と主電極3との間に印加
され、両電極間にトリガプラズマが発生する。以後はす
でに述べた過程を経て主電極2,3間に主放電が形成さ
れる。この主放電は、サージ電圧波形の波高値よりはる
か以前の時点で起こり、以後非線形抵抗6および負荷7
にかかる電圧はほぼ零となるから、非線形抵抗が吸収す
べきサージエネルギは主放電が形成されるまでの、サー
ジの全エネルギ中の極く一部に過ぎなくなり、非線形抵
抗は破壊を免れることができる。
When a surge voltage arrives at the abnormal voltage suppression device configured in this way and the voltage applied to the series circuit of the nonlinear resistor 6 and the input winding of the step-up transformer 5 reaches a certain value, the resistance value of the nonlinear resistor suddenly decreases. Almost the entire voltage is applied to the input winding. As a result, a high voltage is generated between both terminals of the output winding of the step-up transformer 5 and applied between the starting electrode 4 and the main electrode 3, and trigger plasma is generated between the two electrodes. Thereafter, a main discharge is formed between the main electrodes 2 and 3 through the process already described. This main discharge occurs far before the peak value of the surge voltage waveform, and after that the nonlinear resistor 6 and the load 7
Since the voltage applied to the nonlinear resistor becomes almost zero, the surge energy that the nonlinear resistor must absorb is only a small part of the total energy of the surge until the main discharge is formed, and the nonlinear resistor can avoid destruction. can.

第2図に本発明の第2の実施例を示す、この実施例は非
線形抵抗6にコンデンサC,,C□を直列に接続し、コ
ンデンサC2の端子電圧がある値に達したときにダイオ
ード9を介してサイリスタ8を動作させ、C+、Cmか
らなる直列回路の端子電圧を昇圧変圧器5の入力SVA
に印加するものである。装置をこのように構成すれば、
サージ電圧到来時に非線形抵抗6の抵抗値が急減しはじ
めてからコンデンサCI、CIが所定の動作電圧に充電
されるまでの時間だけ主放電の形成がおくれることにな
るが、この時間は極めて短く、しかも昇圧変圧器の入力
smからみた電源側のインピーダンスがサージ電圧が到
来する線路のサージインピーダンスとコンデンサC+、
CZの直列回路によるインピーダンスとの並列インピー
ダンスとなり、かつコンデンサC+、CIの直列回路に
よるインピーダンスはサージ電圧のような変化のはやい
電圧に対しては小さい値を示すから、起動電極4と主電
極3とが放電したときにトリガプラズマに供給される電
流が増し主電極2.3間の放電がより確実に行われる。
FIG. 2 shows a second embodiment of the present invention. In this embodiment, capacitors C, , C□ are connected in series to a nonlinear resistor 6, and when the terminal voltage of capacitor C2 reaches a certain value, a diode 9 The thyristor 8 is operated through the terminal voltage of the series circuit consisting of C+ and Cm to the input SVA of the step-up transformer 5.
It is applied to If you configure the device like this,
The formation of the main discharge is delayed by the time from when the resistance value of the nonlinear resistor 6 begins to rapidly decrease when the surge voltage arrives until the capacitors CI and CI are charged to the predetermined operating voltage, but this time is extremely short; Moreover, the impedance on the power supply side seen from the input sm of the step-up transformer is the surge impedance of the line where the surge voltage arrives and the capacitor C+,
It becomes a parallel impedance with the impedance due to the series circuit of CZ, and the impedance due to the series circuit of capacitors C+ and CI shows a small value for voltages that change quickly such as surge voltage. When the main electrodes 2 and 3 are discharged, the current supplied to the trigger plasma increases, and the discharge between the main electrodes 2 and 3 is more reliably carried out.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば、絶縁をサージか
ら保護すべき対象物の両端子間に接続される非線形抵抗
を備えた異常電圧抑制装置において、前記対象物の両端
子間に接続される。2つの主電極と1つの起動電極とか
らなる3電極式放電ギャップと、出力SvAが前記3電
極式放電ギャップの主電極の1つと起動電極との間に接
続され入力巻線が前記非線形抵抗を通過するサージ電流
を用いて励磁される昇圧変圧器とを備えしめたので、異
常電圧抑制装置の保護特性を特別の起動電源を用いるこ
となく非線形抵抗によりこれを保持しつつ、装置の処理
可能なサージエネルギを顕著に大ならしめうる。動作信
転性の高い異常電圧抑制装置が可能となる。
As described above, according to the present invention, in an abnormal voltage suppressing device including a nonlinear resistance connected between both terminals of an object whose insulation is to be protected from surges, be done. a three-electrode discharge gap consisting of two main electrodes and one starting electrode, an output SvA is connected between one of the main electrodes of the three-electrode discharge gap and the starting electrode, and an input winding is connected to the nonlinear resistance. Since it is equipped with a step-up transformer that is excited using the passing surge current, the protection characteristics of the abnormal voltage suppression device can be maintained by the nonlinear resistance without using a special starting power source, and the device can be processed easily. Surge energy can be significantly increased. An abnormal voltage suppression device with high operational reliability becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明の第1および第2
の実施例による異常電圧抑制装置の構成を示す回路図、
第3図は従来の異常電圧抑制装置の一構成例を示す回路
図、第4図は第3図に示す異常電圧抑制装置の放電特性
を示す線図、第5図は3電極式放電ギャップの従来の一
起動方法を示す回路図、第6図は3電極式放電ギャップ
の起動原理を示す説明図である。 1 、21.3t:放電ギャップ(3電極式放電ギャッ
プ’) 、2. 3.22.23.32.31主電極、
4゜34:起動118i、5:昇圧変圧器、6:非線形
抵抗、7.24F負荷、25:サージ。 第1図 第3図
1 and 2 are the first and second embodiments of the present invention, respectively.
A circuit diagram showing the configuration of an abnormal voltage suppression device according to an embodiment of
Fig. 3 is a circuit diagram showing a configuration example of a conventional abnormal voltage suppression device, Fig. 4 is a diagram showing the discharge characteristics of the abnormal voltage suppression device shown in Fig. 3, and Fig. 5 is a diagram showing the discharge characteristics of the abnormal voltage suppression device shown in Fig. 3. FIG. 6 is a circuit diagram showing a conventional starting method, and is an explanatory diagram showing the starting principle of a three-electrode discharge gap. 1, 21.3t: Discharge gap (3-electrode discharge gap'), 2. 3.22.23.32.31 Main electrode,
4°34: Startup 118i, 5: Step-up transformer, 6: Nonlinear resistance, 7.24F load, 25: Surge. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1)絶縁をサージから保護すべき対象物の両端子間に接
続される非線形抵抗を備えた異常電圧抑制装置において
、前記対象物の両端子間に接続される、2つの主電極と
1つの起動電極とからなる3電極式放電ギャップと、出
力巻線が前記3電極式放電ギャップの主電極の1つと起
動電極との間に接続され入力巻線が前記非線形抵抗を通
過するサージ電流を用いて励磁される昇圧変圧器とを備
えたことを特徴とする異常電圧抑制装置。
1) In an abnormal voltage suppressor equipped with a non-linear resistance connected between both terminals of an object whose insulation is to be protected from surges, two main electrodes and one activation are connected between both terminals of said object. using a three-electrode discharge gap consisting of an electrode, an output winding connected between one of the main electrodes of the three-electrode discharge gap and a starting electrode, and an input winding passing a surge current through the nonlinear resistor. An abnormal voltage suppression device characterized by comprising a step-up transformer that is excited.
JP9486988A 1988-04-18 1988-04-18 Abnormal voltage suppressor Pending JPH01268427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9486988A JPH01268427A (en) 1988-04-18 1988-04-18 Abnormal voltage suppressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9486988A JPH01268427A (en) 1988-04-18 1988-04-18 Abnormal voltage suppressor

Publications (1)

Publication Number Publication Date
JPH01268427A true JPH01268427A (en) 1989-10-26

Family

ID=14122057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9486988A Pending JPH01268427A (en) 1988-04-18 1988-04-18 Abnormal voltage suppressor

Country Status (1)

Country Link
JP (1) JPH01268427A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077519A2 (en) * 1999-08-17 2001-02-21 Dehn + Söhne Gmbh + Co Kg Method of operating an overvoltage protection device and overvoltage protection device with at least one coarse and one fine protection element
DE10245144B3 (en) * 2002-07-08 2004-01-22 Dehn + Söhne Gmbh + Co. Kg Surge protection arrangement with a spark gap as a coarse protection element
JP2010521794A (en) * 2007-08-28 2010-06-24 サージラボコリア Discharge element having discharge control electrode and control circuit thereof
JP2012217310A (en) * 2011-03-31 2012-11-08 M-System Co Ltd Surge voltage limiting device
JP2015527694A (en) * 2012-07-04 2015-09-17 デーン+シェーネ ゲーエムベーハ+ツェオー.カーゲー Enclosed overvoltage protection device capable of carrying lightning current and limiting energization current and having at least one spark gap

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077519A2 (en) * 1999-08-17 2001-02-21 Dehn + Söhne Gmbh + Co Kg Method of operating an overvoltage protection device and overvoltage protection device with at least one coarse and one fine protection element
EP1077519A3 (en) * 1999-08-17 2004-03-03 Dehn + Söhne Gmbh + Co Kg Method of operating an overvoltage protection device and overvoltage protection device with at least one coarse and one fine protection element
DE10245144B3 (en) * 2002-07-08 2004-01-22 Dehn + Söhne Gmbh + Co. Kg Surge protection arrangement with a spark gap as a coarse protection element
DE10245144C5 (en) * 2002-07-08 2007-10-31 Dehn + Söhne Gmbh + Co. Kg Overvoltage protection arrangement with a spark gap as coarse protection element
JP2010521794A (en) * 2007-08-28 2010-06-24 サージラボコリア Discharge element having discharge control electrode and control circuit thereof
JP2012217310A (en) * 2011-03-31 2012-11-08 M-System Co Ltd Surge voltage limiting device
JP2015527694A (en) * 2012-07-04 2015-09-17 デーン+シェーネ ゲーエムベーハ+ツェオー.カーゲー Enclosed overvoltage protection device capable of carrying lightning current and limiting energization current and having at least one spark gap

Similar Documents

Publication Publication Date Title
US7755873B2 (en) Device for protection against voltage surges with parallel simultaneously triggered spark-gaps
US5995352A (en) Ignition apparatus and method
EA006997B1 (en) Overvoltage protection circuit
US6930871B2 (en) Lightning arrester device for low-voltage network
RU2667895C2 (en) Circuit design of spark gap triggering circuit in overvoltage protection device terminal with asymmetric element
US20220200245A1 (en) Spark gap assembly for overvoltage protection and surge arrester
RU2292615C2 (en) Device for protection from voltage surge
US3660719A (en) Transient suppression system
KR20150059076A (en) Surge Protective Device With Noise Filter
EP2510598B1 (en) Electronic protection circuit and protection device
JPH01268427A (en) Abnormal voltage suppressor
JPS6328230A (en) Device for protecting power line from high transient overvoltage
EP0233907A1 (en) Surge voltage protection arrangements
KR102513076B1 (en) A Surge Protector
CN112970163B (en) Protection circuit for protecting against transient currents, voltages or electrical energy
CN220400335U (en) Controllable arrester that discharges
CN216598392U (en) Overvoltage protection device
RU69333U1 (en) VOLTAGE PROTECTION DEVICE
GB1076679A (en) Improvements in triggered spark gap type surge arrestors for d.c. circuits
JPH07201449A (en) Zinc oxide type arrester
JPH06233453A (en) Lightning surge protective circuit for electronic equipment
JPWO2020160181A5 (en)
JPH05284732A (en) Surge-resistant power circuit
JPS61110985A (en) Surge absorber
JPH01268426A (en) Abnormal voltage suppressor