JPS5829637B2 - Superconducting multi-terminal device - Google Patents

Superconducting multi-terminal device

Info

Publication number
JPS5829637B2
JPS5829637B2 JP54086437A JP8643779A JPS5829637B2 JP S5829637 B2 JPS5829637 B2 JP S5829637B2 JP 54086437 A JP54086437 A JP 54086437A JP 8643779 A JP8643779 A JP 8643779A JP S5829637 B2 JPS5829637 B2 JP S5829637B2
Authority
JP
Japan
Prior art keywords
superconducting
electrodes
control electrode
semiconductor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54086437A
Other languages
Japanese (ja)
Other versions
JPS5610985A (en
Inventor
佳延 杉山
致和 鷹野
照栄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP54086437A priority Critical patent/JPS5829637B2/en
Publication of JPS5610985A publication Critical patent/JPS5610985A/en
Publication of JPS5829637B2 publication Critical patent/JPS5829637B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Description

【発明の詳細な説明】 この発明は、電気的、光学的信号で直接トンネル電流の
制御ができるようにした超電導多端子素子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting multi-terminal element in which tunneling current can be directly controlled by electrical and optical signals.

ジョセフソン接合素子に代表される超電導素子は、10
A程度の厚みの絶縁層を通過するトンオル電流の特性を
利用する二端子素子をその基本穣戒とし、トンネル電流
の制御は接合の近傍を流れる第三の電流の誘起する磁界
を用いて間接的に行っているため、構造が複雑であり、
非線形部へのバイアスが難しいこと等の欠点があった。
A superconducting device represented by a Josephson junction device has 10
Its basic precept is a two-terminal device that utilizes the characteristics of tunnel current passing through an insulating layer with a thickness of about A, and the tunnel current is controlled indirectly using the magnetic field induced by a third current flowing near the junction. The structure is complicated because it goes to
There were drawbacks such as difficulty in applying bias to the nonlinear part.

これをさらに図面について説明する。This will be further explained with reference to the drawings.

第1図は現在一般に用いられているジョセフソン素子の
基本的構造を示すものである。
FIG. 1 shows the basic structure of a Josephson element commonly used at present.

この図にち・いて、1は基板、2,3は超電導電極、4
は前記両超電導電極2,3間に存在する絶縁膜で、通常
酸化膜ないし窒化膜が用いられ、厚さはIOA程度以下
である。
In this figure, 1 is the substrate, 2 and 3 are superconducting electrodes, and 4
is an insulating film existing between the two superconducting electrodes 2 and 3, which is usually an oxide film or a nitride film, and has a thickness of about IOA or less.

5は絶縁層で、超電導電極2゜3の表面に形成され、さ
らにその上に常電導金属からなる制御電極6が設けられ
る。
An insulating layer 5 is formed on the surface of the superconducting electrode 2.3, and a control electrode 6 made of a normal conducting metal is further provided thereon.

このような構成の従来のジョセフソン素子は、前述のと
釦り絶縁膜40トンネル効果を起すのに必要な厚さはI
OA程度以下であり、膜面のピンホール、ヒロック等の
平坦度に起因する特性の劣化が制作上の欠点となること
が多い。
In the conventional Josephson element having such a configuration, the thickness necessary to cause the tunnel effect of the above-mentioned insulating film 40 is I.
It is below the level of OA, and deterioration of characteristics due to flatness such as pinholes and hillocks on the film surface often becomes a drawback in production.

渣た、この型のジョセフソン素子をスイッチングに用い
る場合は、さらに絶縁層5を介して設けた電流路、すな
わち、制御電極6を必要とし、との制御電極6に流れる
電流の誘起する磁界により、接合面のスイッチングを行
うため複雑な構造になっているうえ、ヒステリシスルー
プを用いたオン、オフがその動作の基本となっている。
When this type of Josephson element is used for switching, it is necessary to further provide a current path through the insulating layer 5, that is, a control electrode 6, and the magnetic field induced by the current flowing through the control electrode 6 , has a complex structure due to the switching of the bonding surface, and its operation is based on turning on and off using a hysteresis loop.

この発明は、上記従来のジョセフソン素子の構造上、動
作上の欠点を解決した新規な超電導多端子素子を提供す
るもので、従来の絶縁層の代りに単結晶ないし多結晶、
あるいはアモルファス状の半導体薄膜、または半金属薄
膜を使用獣 これら半導体薄膜または半金属薄膜に電気
的、光学的信号を直接印加することにより超電導電極間
の位相結合状態を外部信号により変化させて、トンネル
電流の制御を行わしめることを特徴とするものである。
The present invention provides a novel superconducting multi-terminal device that solves the structural and operational drawbacks of the conventional Josephson device, and instead of the conventional insulating layer, single crystal or polycrystalline
Alternatively, an amorphous semiconductor thin film or semimetallic thin film can be used. By directly applying electrical or optical signals to these semiconductor thin films or semimetallic thin films, the phase coupling state between the superconducting electrodes can be changed by an external signal. It is characterized by controlling the current.

以下この発明について説明する。第2図〜第8図はいず
れもこの発明の実施例を示すものである。
This invention will be explained below. FIGS. 2 to 8 all show embodiments of the present invention.

第2図に釦いて、1は基板で、使用する超電導物質の超
電導転位温度以下の温度領域で絶縁性となる半導体ない
しガラス、誘電体結晶等が用いられる。
Referring to FIG. 2, reference numeral 1 denotes a substrate, which is made of a semiconductor, glass, dielectric crystal, or the like that becomes insulating in a temperature range below the superconducting transition temperature of the superconducting material used.

この基板1上に同温度領域で超電導性を示す材質で一対
の超電導電極2,3を作り、この両者間に結晶またはア
モルファス状の半導体ないし半金属よりなる制御電極7
を設ける。
A pair of superconducting electrodes 2 and 3 are made of a material that exhibits superconductivity in the same temperature range on this substrate 1, and a control electrode 7 made of a crystalline or amorphous semiconductor or semimetal is formed between them.
will be established.

超電導電極2.30間隔はコヒレント長の数倍以下とし
、この間隔内に前記第3の半導体オたは半金属からなる
制御電極7が位置する。
The distance between the superconducting electrodes 2 and 3 is several times the coherence length or less, and the third control electrode 7 made of a semiconductor or metalloid is located within this distance.

制御電極7の一部に超電導物質、常電導金属を挿入する
ことも可能であるが、この場合も両超電導電極2,3と
は半導体または半金属を介して結合するとと\する。
It is also possible to insert a superconducting substance or a normal conducting metal into a part of the control electrode 7, but in this case as well, it is assumed that both the superconducting electrodes 2 and 3 are connected via a semiconductor or a semimetal.

次に上記実施例の動作原理を説明する。Next, the operating principle of the above embodiment will be explained.

従来の絶縁膜4(第1図)にかえて用いられた制御電極
7ば、半導体薄膜捷たは半金属薄膜を用いたので、これ
らの材質中をトンネル電流によって通過する電子対(ク
ーパ一対)のコヒレント長は、絶縁膜の場合にくらべて
長くなる。
Since the control electrode 7 used instead of the conventional insulating film 4 (FIG. 1) is a semiconductor thin film or a semi-metallic thin film, electron pairs (Cooper pair) passing through these materials by tunnel current. The coherent length of is longer than that of an insulating film.

そこで、超電導電極2.3間に設けられた前記物質から
なる制御電極7の厚さをコヒレント長の数倍程度以下、
具体的には数百A以下とし、超電導電極2,3の一方と
制御電極Tとの間に形成されるショートキー電極の幅及
び高さを制御電極7の印加電圧によって制御し、制御電
極7から超電導電極2,3に電流を注入し、2,3間の
超電導結合状態を変化させることによって超電導電極2
,3間に流れる電子対に基づくトンネル電流を制御する
Therefore, the thickness of the control electrode 7 made of the above-mentioned material provided between the superconducting electrodes 2 and 3 is set to several times the coherent length or less.
Specifically, the voltage is several hundred A or less, and the width and height of the short key electrode formed between one of the superconducting electrodes 2 and 3 and the control electrode T are controlled by the voltage applied to the control electrode 7. By injecting a current into the superconducting electrodes 2 and 3 from the
, 3 controls the tunnel current based on the electron pairs flowing between them.

この実施例はエピタキシャル成長半導体基板等を用いて
製作する場合に便利な構成で、半導体部分をエツチング
によって残して使うと共に、半導体部分に直接電界等を
印加して制御電極とする。
This embodiment has a convenient configuration when manufacturing using an epitaxially grown semiconductor substrate or the like, and uses the semiconductor portion left by etching and uses it as a control electrode by applying an electric field or the like directly to the semiconductor portion.

第3図〜第8図はこの発明の他の構成例をそれぞれ示す
ものである。
FIGS. 3 to 8 show other configuration examples of the present invention, respectively.

第3図は半導体ないし半金属を超電導電極2゜3の蒸着
後に成長ないし蒸着させる工程によって制御電極7を製
作するものである。
In FIG. 3, the control electrode 7 is manufactured by a process of growing or depositing a semiconductor or metalloid after the superconducting electrode 2.3 is deposited.

、第4図は第2図と1司−の工程により製作するもので
、制御電極7の上に超電導金属または常電導金属からな
る制御電極8を設けた点に特徴があり、制御電極8の介
在によって超電導電極2,30間隔が広くてよいとと\
、スイッチングの切れがよくなることの特長がある。
, FIG. 4 is manufactured by the process shown in FIG. I hope that the gap between the superconducting electrodes 2 and 30 will be wider due to the intervention.
, it has the advantage of improved switching sharpness.

第5図は超電導電極2,3および制御電極8の超電導体
蒸着後、半導体または半金属を成長ないし蒸着し制御電
極7とするもので、制御信号は制御電極8に印加して用
いる。
In FIG. 5, after the superconducting electrodes 2, 3 and the control electrode 8 are vapor-deposited, a semiconductor or semi-metal is grown or vapor-deposited to form the control electrode 7, and a control signal is applied to the control electrode 8 for use.

特性は第4図の実施例と同様である。The characteristics are similar to the embodiment shown in FIG.

第6図は第3図と同様の製作工程で作られ、さらに超電
導体の蒸着により制御電極8を形成する。
The device shown in FIG. 6 is manufactured using the same manufacturing process as that shown in FIG. 3, and the control electrode 8 is further formed by vapor deposition of a superconductor.

この場合、超電導電極2,3の間隔はコヒレント長程度
でなくてもよく、超電導電極2と制御電極8の間、釦よ
び制御電極8と超電導電極30間の半導体ないし半金属
膜厚がコヒレント長程度であればよい。
In this case, the distance between the superconducting electrodes 2 and 3 does not have to be about the coherent length, and the thickness of the semiconductor or semi-metal film between the superconducting electrode 2 and the control electrode 8 and between the button and the control electrode 8 and the superconducting electrode 30 is the coherent length. It is sufficient as long as it is of a certain extent.

第7図は半導体または半金属膜からなる制御電極7の膜
厚がコヒレント長程度であればよく、微細エツチングに
よるバタン形成をしないですむため、製作が最も簡単で
ある点に特長がある。
FIG. 7 has the advantage that the control electrode 7 made of a semiconductor or semi-metallic film only needs to have a film thickness on the order of the coherent length, and that it is the simplest to manufacture because it does not require the formation of bumps by fine etching.

第8図は前記第2図〜第7図の実施例の基本平面図であ
る。
FIG. 8 is a basic plan view of the embodiment shown in FIGS. 2 to 7.

第9図は第2図〜第7図のような断面構造を有し、第8
図のような基本平面構造を有する超電導多端子素子の動
作特性図であり、横軸は出力電流■、縦軸は電圧Vを示
す。
Figure 9 has a cross-sectional structure as shown in Figures 2 to 7, and
1 is an operating characteristic diagram of a superconducting multi-terminal element having a basic planar structure as shown in the figure, in which the horizontal axis shows the output current (■) and the vertical axis shows the voltage V.

超電導体電極2,3間の電流・電圧特性は第9図実線で
表わされるようなジョセフソン素子特性を示す。
The current/voltage characteristics between the superconductor electrodes 2 and 3 exhibit Josephson device characteristics as shown by the solid line in FIG.

モード■はジョセフソントンネリング状態、モード■は
ジェーバートンネリング状態である。
Mode ■ is a Josephson tunneling state, and mode ■ is a Javerton tunneling state.

制御電極7に、モード■の場合は電極を構成する半導体
重たは半金属と超電導体間の障壁高さに相当する渣での
電圧0〜1■の直流電圧■7 を、モード■の場合は素
子の大きさによって定するO〜1mAの直流電流■7を
、各々、制御電極7−!たは8に印加すると、制御電極
7渣たは8に重畳されたRF信号により、各々第9図の
点線のように直流特性が変化し、それに従って超電導体
電極2,3間に各々RF出力■23またはI23 が
得られて信号の増幅等を得ることになる。
In the case of mode ■, a DC voltage ■7 of voltage 0 to 1■ at the residue corresponding to the barrier height between the semiconductor heavy metal or metalloid and the superconductor constituting the electrode is applied to the control electrode 7, and in the case of mode ■ is a direct current (7) of 0 to 1 mA determined depending on the size of the element, respectively, to the control electrodes 7-! When applied to the superconductor electrodes 2 and 8, the RF signal superimposed on the control electrodes 7 and 8 causes the DC characteristics to change as shown by the dotted lines in FIG. (2)23 or I23 is obtained, resulting in signal amplification, etc.

RF大入力大きい場合には、各々零電圧から数mV程度
1での有限電圧状態、乃至零電流から数mA程度捷での
有限電流状態のスイッチングを行うことができる。
When the RF input is large, switching can be performed in a finite voltage state from zero voltage to about several mV or a finite current state from zero current to about several mA.

このようにして、素子のモード11たは■の非線型モー
ドを用いて3端子特性を得ることができる。
In this way, three-terminal characteristics can be obtained using mode 11 or the nonlinear mode (2) of the element.

な釦、上記の実施例はRF信号の印加によりトンネル電
流の制御を行ったが、RF信号の代わりに光信号により
トンネル電流の制御を行うこともできる。
In the above embodiment, the tunnel current was controlled by applying an RF signal, but the tunnel current can also be controlled by an optical signal instead of the RF signal.

すなわち、光信号を直接制御電極7,8の一部を構成す
る半導体または半金属部分へ空間伝ばん、光ファイバー
入射、光導波路等のうち、いずれか一つを用いて導入す
ればよい。
That is, the optical signal may be directly introduced into the semiconductor or semi-metallic portion constituting a part of the control electrodes 7, 8 using any one of spatial propagation, optical fiber input, optical waveguide, etc.

渣た、この発明に用いる半導体としては、(Sn、Be
、Mgドープ)GaAs、InSb、Pb5nTe、C
dHgTe、B1Sb等の狭ノくンド半導体を、半金属
としては、Bi、Te等を用いる。
The semiconductors used in the present invention include (Sn, Be
, Mg-doped) GaAs, InSb, Pb5nTe, C
A narrow-width semiconductor such as dHgTe or B1Sb is used, and Bi, Te or the like is used as the semimetal.

いずれも超電導体と接触する部分の厚さが、超電導体の
コヒレント長程度であればよく、具体的には0.1μm
以下でよい。
In either case, the thickness of the part in contact with the superconductor only needs to be about the coherent length of the superconductor, specifically 0.1 μm.
The following is fine.

この発明の超電導多端子素子は、従来の電界効果トラン
ジスタに較べて、電極対として超電導電極を用いている
こと、超電導電極の電子対のトンネリングの制御を行う
量子素子であること、超電導電極間隔はコヒレント長の
数倍程度以下で数100A以下であること、卦よび極低
温で用いるものであること、等の点で特徴がある。
The superconducting multi-terminal device of the present invention differs from conventional field effect transistors in that it uses superconducting electrodes as electrode pairs, that it is a quantum device that controls tunneling of electron pairs in the superconducting electrodes, and that the distance between the superconducting electrodes is It is characterized in that it is several times the coherent length or less, several hundred A or less, and that it can be used at extremely low temperatures.

以上詳細に説明したように、この発明は超電導薄膜トン
ネル素子に3いて、超電導電極間を隔てる物質に半導体
重たは半金属を用いて制御電極としたものであり、素子
構成物質の超電導性を利用するものであるため、超電導
電極構成物質の超電導転移温度以下で使用し、微小信号
を制御電極に印加することで制御ができるので、信号の
検出、ミキシング、増幅等のアナログ動作ができるとと
もに、超高速スイッチング等のディジタル動作にも適用
できる。
As explained in detail above, the present invention is a superconducting thin film tunnel device in which a semiconductor heavy metal or semi-metal is used as a control electrode for the substance separating the superconducting electrodes, and the superconductivity of the device constituent material is improved. Since it is used at a temperature below the superconducting transition temperature of the superconducting electrode constituent material, it can be controlled by applying a minute signal to the control electrode, so it can perform analog operations such as signal detection, mixing, and amplification. It can also be applied to digital operations such as ultra-high-speed switching.

特に、検出、ミキシング、増幅器としては、サブミリ波
から光波長領域の波長帯にむいて、低バイアス高感度で
コヒレント動作ができる。
In particular, as a detection, mixing, and amplifier, it can perform coherent operation with low bias and high sensitivity in the wavelength range from submillimeter waves to optical wavelengths.

また、ディジタル動作としては、従来のジョセフソン論
理回路と比較して電界制御型であるため、集積回路との
互換性が高く、低電力動作が期待でき、かつ非線形部へ
のバイアスが容易である等の優れた利点を有する。
In addition, compared to conventional Josephson logic circuits, the digital operation is electric field controlled, so it is highly compatible with integrated circuits, can be expected to operate at low power, and can easily bias the nonlinear part. It has excellent advantages such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のジョセフソン素子の基本的構造を示す断
面図、第2図乃至第8図はいずれもこの発明の実施例を
示す断面図、第9図は第2図〜第8図の実施例の動作特
性図である。 図中、1は基板、2,3は超電導電極、7,8は制御電
極である。
FIG. 1 is a sectional view showing the basic structure of a conventional Josephson element, FIGS. 2 to 8 are sectional views showing embodiments of the present invention, and FIG. FIG. 3 is an operational characteristic diagram of an example. In the figure, 1 is a substrate, 2 and 3 are superconducting electrodes, and 7 and 8 are control electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に設けた少なくとも2個の超電導電極間に、
半導体薄膜さたは半金属薄膜よりなる1個以上の第3の
制御電極を設け、該制御電極に加える制御信号により超
電導電極間を流れるトンネル電流を制御することを特徴
とする超電導多端子素子。
1 Between at least two superconducting electrodes provided on the substrate,
A superconducting multi-terminal element comprising one or more third control electrodes made of a semiconductor thin film or a semi-metallic thin film, and controlling a tunnel current flowing between the superconducting electrodes by a control signal applied to the control electrodes.
JP54086437A 1979-07-10 1979-07-10 Superconducting multi-terminal device Expired JPS5829637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54086437A JPS5829637B2 (en) 1979-07-10 1979-07-10 Superconducting multi-terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54086437A JPS5829637B2 (en) 1979-07-10 1979-07-10 Superconducting multi-terminal device

Publications (2)

Publication Number Publication Date
JPS5610985A JPS5610985A (en) 1981-02-03
JPS5829637B2 true JPS5829637B2 (en) 1983-06-23

Family

ID=13886885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54086437A Expired JPS5829637B2 (en) 1979-07-10 1979-07-10 Superconducting multi-terminal device

Country Status (1)

Country Link
JP (1) JPS5829637B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2515751B2 (en) * 1986-08-13 1996-07-10 株式会社日立製作所 Superconducting transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390882A (en) * 1977-01-21 1978-08-10 Nippon Telegr & Teleph Corp <Ntt> Supercurrent tunneling element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390882A (en) * 1977-01-21 1978-08-10 Nippon Telegr & Teleph Corp <Ntt> Supercurrent tunneling element

Also Published As

Publication number Publication date
JPS5610985A (en) 1981-02-03

Similar Documents

Publication Publication Date Title
US4589001A (en) Quasiparticle injection control type superconducting device
JPH0834321B2 (en) Method of manufacturing superconducting field effect transistor having inverted MISFET structure
JPS5829637B2 (en) Superconducting multi-terminal device
JP2986819B2 (en) Superconducting device
JP2867956B2 (en) Superconducting transistor
Irie et al. Fabrication of DC SQUIDs based on Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub y/intrinsic Josephson junctions
JPH01101676A (en) Superconducting transistor
JP3026482B2 (en) Superconducting element, method of manufacturing and operating method
JPS63280473A (en) Switching element
JP2734366B2 (en) Sampling circuit using single electron charging effect
JP2654567B2 (en) Operation method of superconducting element
JP3221037B2 (en) Current modulator
JP2680960B2 (en) Superconducting field effect device and method of manufacturing the same
JP2614940B2 (en) Superconducting element and fabrication method
JPH04332180A (en) Josephson element
JP2641976B2 (en) Superconducting element and fabrication method
JP3232642B2 (en) Current modulator
KR100267974B1 (en) method for fabricating josephson junction device operating on high temperature
JP2868286B2 (en) Superconducting element and circuit element having the same
JPS62213179A (en) Josephson junction element
JPH04206667A (en) Superconducting element
JP3212141B2 (en) Superconducting element
JPH04206666A (en) Superconducting element
JPH0249481A (en) Oxide josephson junction device
JPS6262077B2 (en)