JPS5828985A - Condenser - Google Patents

Condenser

Info

Publication number
JPS5828985A
JPS5828985A JP12777281A JP12777281A JPS5828985A JP S5828985 A JPS5828985 A JP S5828985A JP 12777281 A JP12777281 A JP 12777281A JP 12777281 A JP12777281 A JP 12777281A JP S5828985 A JPS5828985 A JP S5828985A
Authority
JP
Japan
Prior art keywords
condenser
steam
bypass steam
turbine
tube bundles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12777281A
Other languages
Japanese (ja)
Other versions
JPS5930993B2 (en
Inventor
Toyoyuki Mukoya
向谷 豊幸
Yoshikuni Oshima
大島 義邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12777281A priority Critical patent/JPS5930993B2/en
Publication of JPS5828985A publication Critical patent/JPS5828985A/en
Publication of JPS5930993B2 publication Critical patent/JPS5930993B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium

Abstract

PURPOSE:To enable to condense a large amount of by-passing steam by a structure wherein turbine by-passing steam draw-in tubes, on the walls of which a large number of orifices with horizontal blowing-off direction are provided, are horizontally provided above tube bundles in the surface contact type condenser for steam turbine driven power plant. CONSTITUTION:The by-passing steam draw-in tubes 40 are arranged above the cooling tube bundles 13 parallel to the cooling tube bundles and the orifices 42 are nearly horizontally bored on the tube walls 40. Owing to the structure as mentioned above, steam is jetted toward the directions as indicated by the arrows A and B. Consequently, because the steam is not jetted directly against the cooling tube bundles 13, no impact plate or the like is necessary. Furthermore, because the by-passing steam draw-in tubes 40 cover the entire longitudinal length of the condenser, the local pressure rise can be prevented and consequently the fear of break-down of the condenser can be eliminated. In such a manner as mentioned above, a large amount of by-passing steam can be cooled and condensed with a simple structure without making the condenser larger.

Description

【発明の詳細な説明】 本発明は蒸気タービン発電プラントに用いられる狭面接
触式の復水器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a narrow contact type condenser used in a steam turbine power plant.

発電プラント用蒸気タービンの表面接触式復水器には、
従来から通常運転時にタービンから排出される蒸気の他
に一ボイツ起動時にタービン1?(イパスした蒸気も導
入して冷却し凝縮させる手段が設けられている。
Surface contact condensers for steam turbines for power plants include:
Conventionally, in addition to the steam discharged from the turbine during normal operation, there is also one steam discharged from the turbine when starting up. (Means are provided to also introduce the passed steam to cool and condense it.

近年、石炭専焼ボイラの採用、及び、変圧運転−?特殊
運転の適用などにニジ、復水器に導入されるタービンバ
イパス蒸気の量が大幅に増加しククあり、時には通常運
転時のタービン排気量の2倍を越える量のタービンバイ
I(ス蒸気が導入さnる。
In recent years, the adoption of coal-fired boilers and variable pressure operation-? For special operation applications, the amount of turbine bypass steam introduced into the condenser increases significantly, and in some cases, the amount of turbine bypass steam introduced into the condenser is more than twice the turbine displacement during normal operation. Introduced.

この究め、多量のバイパス蒸気をいかに効果的に処理し
得る構造にするかということが復水器に関する重要な技
術的課題になっている。
An important technical issue regarding condensers is how to develop a structure that can effectively process a large amount of bypass steam.

第1図は従来一般に用いられている復水器を断面した正
面図、第2図は同側面図である。復水器の外殻は上部胴
11と下部胴lOとによって形成され、下部胴1”0内
には多数の冷却管12.12よりなる冷却管群13が設
けらnている。第1図においては冷却管12を3本のみ
例示し、第2図においては多数の冷却管12t−ダブル
I・ツチングで表わしである。18.18は氷室である
。タービンからの排気fil、1は第1図に示すように
上部胴li!経て下部胴10内を流下し、冷却水管12
円の冷却水と熱交換して凝縮し、復水となって下部胴1
0円のホットウェル14に溜まる。ホットウェル14内
の復水はホットウェル出口15から排出され、上部胴1
1内に設けられた低圧ヒータ16’に経てボイラに給水
されて再使用される。
FIG. 1 is a cross-sectional front view of a conventionally commonly used condenser, and FIG. 2 is a side view of the same. The outer shell of the condenser is formed by an upper shell 11 and a lower shell 10, in which a cooling pipe group 13 consisting of a number of cooling pipes 12, 12 is provided. In Fig. 2, only three cooling pipes 12 are shown as an example, and in Fig. 2, a large number of cooling pipes 12t--double I-tube are shown.18.18 is an ice chamber.The exhaust fil from the turbine, 1 is the first As shown in the figure, the water flows down through the upper shell li! into the lower shell 10, and the cooling water pipe 12
It exchanges heat with the circular cooling water and condenses, becoming condensate and flowing into the lower shell 1.
It accumulates in Hotwell 14 with 0 yen. The condensate in the hot well 14 is discharged from the hot well outlet 15 and is transferred to the upper shell 1.
Water is supplied to the boiler through a low-pressure heater 16' provided in the boiler and reused.

一方、ボイラ起動系統からのタービンバイパス蒸気3は
バイパス蒸気導入管20から導入され、第2図に示すよ
うに噴射蒸気流4として上部胴11内に噴出し、冷却管
12内の冷却水と熱交換して凝縮する。。上記のバイパ
ス蒸気導入管の斜視図を第3図に示し、その横断面図を
第4図に示す。
On the other hand, turbine bypass steam 3 from the boiler startup system is introduced from the bypass steam introduction pipe 20, and is jetted into the upper shell 11 as an injection steam flow 4 as shown in FIG. Replace and condense. . A perspective view of the above bypass steam introduction pipe is shown in FIG. 3, and a cross-sectional view thereof is shown in FIG. 4.

バイパス蒸気導入管20の上面および下面に多数のオリ
アイス孔22が穿たれ、これらのオリフィス孔22に対
向離間して、導入管2oの外周に近接した位置に衝撃板
21.21が設置されている。こnは、オリフィス孔2
2から噴出しt蒸気量が直接的に隣接部材に衝突してこ
れ全損傷せしめることを防止するためのプセテクタであ
る。
A large number of orifice holes 22 are bored in the upper and lower surfaces of the bypass steam introduction pipe 20, and a shock plate 21.21 is installed at a position close to the outer periphery of the introduction pipe 2o, facing and spaced apart from these orifice holes 22. . This is orifice hole 2
This is a pre-protector for preventing the amount of steam ejected from 2 from directly colliding with adjacent members and damaging them completely.

第1図及び第2図に示されているように1上部胴11の
内部には、通常、低圧ヒータ16及び抽気管17.17
’が配置されておシーその上、前述の導入管20及び衝
撃板21t−設けるので上部胴11の内部にはスペース
の余裕が無い。
As shown in FIGS. 1 and 2, a low pressure heater 16 and a bleed pipe 17,
In addition, since the above-mentioned introduction pipe 20 and shock plate 21t are provided, there is not enough space inside the upper body 11.

従って、たとえば第1図の従来装置のように上部胴11
の左端部に導入管20t−設けてバイパス蒸気を導入し
交際、バイパス蒸気量が多い場合は上部胴11の左端部
に噴出したバイパス蒸気が復水器内全体に均一に分散せ
ず、噴出個所付近の圧力が局部的に上昇してタービン発
電プラントの緊急停止を必要とする状態を誘発したり、
噴出個所近傍の部材を損傷させたりする虜れがある。
Therefore, for example, as in the conventional device shown in FIG.
An inlet pipe 20t is provided at the left end of the upper shell 11 to introduce bypass steam. If the amount of bypass steam is large, the bypass steam spouted at the left end of the upper shell 11 will not be uniformly dispersed throughout the condenser, causing Local pressure increases in the vicinity may induce conditions that require an emergency shutdown of the turbine power plant, or
There is a tendency to damage components near the eruption point.

上述のような従来形復水器の不具合を解消し、多量のバ
イパス蒸気の導入を可能ならしめるため種々の改善対策
が考えられているが、それぞれ次に述べるような欠点を
有している。
Various improvement measures have been considered in order to eliminate the above-mentioned problems with conventional condensers and make it possible to introduce a large amount of bypass steam, but each of them has the following drawbacks.

復水器内全体にバイパス蒸気を均一に分布ざぜるため1
第5図及び第6図に示すように多数の導入管20.20
’i配設することが考えら詐る。この場合の導入管20
.20も第3図、第4図に示した導入管20と同様に、
噴出蒸気の邪魔板として該導入管の外周に近接した位置
に衝撃板21゜21に設置し、冷却管群13、低圧ヒー
タ16及び抽気管17等の隣接部材を保護する必要があ
る。
In order to uniformly distribute the bypass steam throughout the condenser, 1.
A large number of inlet pipes 20, 20 as shown in FIGS. 5 and 6
'i can't even think of setting it up. Introductory pipe 20 in this case
.. 20 as well as the introduction pipe 20 shown in FIGS. 3 and 4,
It is necessary to install an impact plate 21° 21 close to the outer periphery of the introduction pipe as a baffle plate for the ejected steam to protect adjacent members such as the cooling pipe group 13, the low pressure heater 16, and the bleed pipe 17.

その結果、復水器の内部構造や配管系統が複雑になるの
みでなく一タービン排気lの流路の障害となって通常運
転時における復水器性能の低下を招くという欠点がある
ので実用性に乏しい。また1実用面において復水器は通
常タービン架台の柱脚間に設置遮れるので、多数のバイ
パス蒸気導入管20.201−設けるのに必要な外部配
管管する空間的余裕か無いという点でも実用化が困難で
ある。
As a result, this not only complicates the internal structure and piping system of the condenser, but also obstructs the flow path of the turbine exhaust gas, resulting in a decrease in condenser performance during normal operation. Poor. In addition, in practical terms, since the condenser is usually installed between the columns of the turbine mount and is shielded, there is no space for the external piping necessary to install a large number of bypass steam introduction pipes. It is difficult to

第7図及び第8図は上記と異る改良形復水器を示す。こ
れは冷却管12.12によって形成される冷却管群13
の下方、ホットウェル14の上部にタービンバイパス蒸
気導入管20.20が配設されている。25は上記の導
入管20の母管である。このような復水器は多量のバイ
パス蒸気の処理を必要とするタービン発電プラントで実
用されているが、 1、冷却管群13の損傷を防止する几め冷却管保護装置
23?設けねばならない。上記の保護装置23は、通常
、多数の邪魔板を組合わぜて構成石れる。
7 and 8 show an improved condenser different from the one described above. This is a cooling pipe group 13 formed by cooling pipes 12.12.
A turbine bypass steam introduction pipe 20.20 is disposed below the hot well 14 and above the hot well 14. 25 is a main pipe of the introduction pipe 20 described above. Such condensers are put into practical use in turbine power plants that require processing of large amounts of bypass steam. Must be established. The protection device 23 described above is usually constructed by combining a number of baffle plates.

論、上記の保護装置23’i設けること等の影響により
復水器が大形となる。実際問題としてこの形式の復水器
は導入管20の管径の約3倍に相当する寸法だけ全高寸
法が増加する。
However, the condenser becomes larger due to the provision of the above-mentioned protection device 23'i. As a practical matter, the overall height of this type of condenser increases by an amount corresponding to approximately three times the diameter of the inlet pipe 20.

111、ホットウェル14の復水面にバイパス蒸気が吹
きつけられると激しく波立つので、こf′Lを防止する
手段を付加しなければならない。
111. If the bypass steam is blown onto the condensate surface of the hot well 14, it will cause violent waves, so it is necessary to add a means to prevent this f'L.

1v、冷却管群13は、本来下降蒸気流を冷却して凝縮
させるように設計されているので、この冷却管群13に
下方からバイパス蒸気吹き上げても高い効率で熱交換を
行わせることが困難である。
1v, since the cooling pipe group 13 is originally designed to cool and condense the descending steam flow, it is difficult to make the cooling pipe group 13 perform heat exchange with high efficiency even if the bypass steam is blown up from below. It is.

以上のような欠点がある。There are drawbacks as mentioned above.

本発明は以上の事情に鑑みて為さn1復水器本来の目的
である通常運転時のタ、−ビン排気の冷却凝縮性能を阻
害する虞れなく、復水器の全体的寸法の増2Xlを最少
限に抑え、その上外部配管を複雑化させる虞れ無しに、
簡単な構成で多量のバイパス蒸気を冷却凝縮せしめ得る
復水器を提供しようとするものである。
The present invention has been made in view of the above circumstances, and has been devised to increase the overall size of the condenser by increasing the overall size of the condenser without the risk of impairing the cooling and condensing performance of the exhaust gas during normal operation, which is the original purpose of the condenser. without the risk of complicating external piping.
The object of the present invention is to provide a condenser that can cool and condense a large amount of bypass steam with a simple configuration.

上記の目的を達成するため、本発明は、表面接触式復水
器において、冷却管群ごとに、その上方に、骸冷却管群
と平行にタービンバイパス蒸気導入管を配設し、かつ上
記バイパス蒸気導入管の管壁にほぼ水平方向のオリフィ
ス孔を穿つことにょシ上記のバイパス蒸気導入管の外周
に近接した衝撃板の設置を省略し得べくなし几ることt
−特徴とする。
In order to achieve the above object, the present invention provides a surface contact condenser in which a turbine bypass steam introduction pipe is disposed above each cooling pipe group in parallel with the skeleton cooling pipe group, and By drilling a substantially horizontal orifice hole in the wall of the steam introduction pipe, it is possible to omit the above-mentioned installation of a shock plate close to the outer periphery of the bypass steam introduction pipe.
-Characteristics.

次に1本発明の一実施例上第9図および第1O図につい
て説明する。
Next, one embodiment of the present invention will be described with reference to FIG. 9 and FIG. 1O.

第1vAに示した従来形の復水器と同一の図面参照番号
を付し次下部胴1G、冷却管12、冷却管群13、ホッ
トウェル14、低圧ヒータ16、及び抽気管17.17
’ 扛従来形復水器におけると同様の構f!L部材であ
る。
The same drawing reference numbers as the conventional condenser shown in No. 1vA are given below: lower shell 1G, cooling pipe 12, cooling pipe group 13, hot well 14, low pressure heater 16, and bleed pipe 17.17.
'Same structure as in a conventional condenser! It is an L member.

本発明に係る復水器においては、冷却管群13゜13の
上方にバイパス蒸気導入管40.40t−設ける。
In the condenser according to the present invention, 40.40 tons of bypass steam introduction pipes are provided above the cooling pipe group 13°13.

本例においては2組の冷却管群13.13が設けられて
いるので、バイパス蒸気導入管4oの本数も2本とし、
それぞれ冷却管群13.13の上方に、冷却管群13.
13と平行をなすように上部胴11に固定する。
In this example, since two sets of cooling pipe groups 13.13 are provided, the number of bypass steam introduction pipes 4o is also two.
Above the cooling pipe groups 13.13, respectively, the cooling pipe groups 13.13.
It is fixed to the upper body 11 so as to be parallel to 13.

上述のごとく九本発明に係るバイパス蒸気導入管は、冷
却管群に対応させて冷却管群ごとに、その上方に、その
長手方向に配設する。その長さ線任意に設定し得るが、
本例のように復水器のほぼ全長にわたって設けることが
望ましい。
As described above, the nine bypass steam introduction pipes according to the present invention are disposed above and in the longitudinal direction of each cooling pipe group in correspondence with the cooling pipe group. The length line can be set arbitrarily, but
It is desirable to provide it over almost the entire length of the condenser as in this example.

前記のバイパス蒸気導入管40の管壁に、はぼ水平方向
の多数のオリフィス孔42,42′t−穿つ。
A large number of substantially horizontal orifice holes 42, 42' are bored in the wall of the bypass steam introduction pipe 40.

これにより、バイパス蒸気は矢印ム、Bのように側方に
向けて噴出する。
As a result, the bypass steam is ejected laterally as indicated by arrow B.

矢印A、Aのように隣接するバイパス蒸気導入管に向け
て噴出した蒸気流は双方の管の中央部で互いに衝突して
スピードを失い、中央流路30を流下しつつ冷却管群1
3.13によって冷却され、凝縮する。
The steam flows ejected toward the adjacent bypass steam introduction pipes as shown by arrows A and A collide with each other at the center of both pipes, lose speed, and flow down the central flow path 30 until they reach the cooling pipe group 1.
3.13 to be cooled and condensed.

矢印B、Hのように上部胴11の側壁に向けて噴出し尺
蒸気流は該側壁に衝突してスピードを失い、両側流路3
1.31を流下しつつ冷却管群13.13によって冷却
場れて凝縮する。上記の上部胴11の側壁は板厚の厚い
丈夫な部材であるから蒸気流の衝突を受けることによっ
て別設の問題を生じる虞れが無い。
As shown by arrows B and H, the steam flow jets toward the side wall of the upper shell 11 and collides with the side wall, loses speed, and flows through the flow channels 3 on both sides.
1.31, it is cooled and condensed by the cooling pipe group 13.13. Since the side wall of the upper shell 11 is a thick and durable member, there is no risk of separate installation problems due to collision with steam flow.

上述の構成から容易に理解できるように、はぼ水平に穿
たれたオリアイス孔42から噴出する蒸気流は、その下
方にある冷却管群13.13に向けて直接的に吹きつけ
られないので、衝撃板などのプロチク−を設けなくても
冷却管群13に損傷を生じさぜる虞れが無い。
As can be easily understood from the above-described configuration, the vapor flow ejected from the almost horizontal orifice hole 42 cannot be blown directly toward the cooling pipe group 13.13 located below. There is no risk of damage to the cooling tube group 13 even if a protection device such as a shock plate is not provided.

同じ理由で、バイパス蒸蝋導入管40の上方に位置する
低圧ヒータ16や抽気管17も、衝撃板などのプロテク
タを必要としない。
For the same reason, the low pressure heater 16 and the bleed pipe 17 located above the bypass steamed wax introduction pipe 40 also do not require a protector such as a shock plate.

前記のバイパス蒸気導入管40は復水器の長手方向にほ
ぼ全長にわたって設けであるので、ノ(イパス蒸気の導
入による局部的昇圧の几めに上部胴11内の復水器部材
を破損せしめる虞れが−い。
Since the bypass steam introduction pipe 40 is provided over almost the entire length in the longitudinal direction of the condenser, there is no risk of damaging the condenser members in the upper shell 11 due to the local pressure increase caused by the introduction of bypass steam. It's ugly.

第9図に示すように、パイ/<ス蒸気導入管40が低圧
ζ−メタ16に接近している区域C1Cにはオリフィス
孔42を背光ない工うにすれd、低圧ヒータ等のII接
部材の保Stはいっそう完全となる。
As shown in FIG. 9, an orifice hole 42 is installed in the area C1C where the pi/<s steam introduction pipe 40 approaches the low pressure ζ-metal 16 so as not to have a backlight. The protection St becomes more complete.

上述のように、本発明に係るパイ/<ス蒸気導入管40
には衝撃板などの隣接部材保繰手段を備える必要が無い
ので、構成が簡単で製造コストが安い上に、復水器の全
体的な寸法を殊更に大きくする必l!を生じない。出願
人が実機について試験し次結果、本発明の適用による復
水器の高さの増加は上記のバイパス蒸気導入管の外径寸
法とほぼ同寸に抑え得ることが確認された。
As mentioned above, the steam introduction pipe 40 according to the present invention
Since there is no need to provide adjoining member retaining means such as impact plates, the construction is simple and manufacturing costs are low, and the overall dimensions of the condenser do not need to be particularly large! does not occur. The applicant conducted tests on an actual machine, and as a result, it was confirmed that the increase in the height of the condenser by applying the present invention can be suppressed to approximately the same size as the outer diameter of the bypass steam introduction pipe.

ま几、第9図から容易に理解されるように、本実施例に
おけるバイパス蒸気導入管40は上部胴11の端面の片
側に突出しているだけであるから、こnK接続すべき外
部配管を設ける究めに大きい周辺空間を必要とすること
が無か。
As can be easily understood from FIG. 9, the bypass steam introduction pipe 40 in this embodiment only protrudes from one side of the end face of the upper shell 11, so it is necessary to provide external piping to be connected to this. Is there really no need for a large surrounding space?

更に、前述の構造機能から明らかなように、本発明に係
るバイパス蒸気導入管40から噴出したバイパス蒸気は
下降流動しつつ冷却管群13によって冷却される。即ち
、導入されたバイパス蒸気社通常作動時におけるタービ
ン排気lと同じ方向(下降方向)に流動しつつ冷却管群
13によって冷却される構成である。このため冷却管群
13は通常作動時のタービン排気も、バイパス蒸気導入
時のバイパス蒸気も、共に効率よく冷却し得るように設
計製作することによって矛盾を生じない。
Further, as is clear from the above-mentioned structural function, the bypass steam ejected from the bypass steam introduction pipe 40 according to the present invention is cooled by the cooling pipe group 13 while flowing downward. That is, the bypass steam turbine is cooled by the cooling pipe group 13 while flowing in the same direction (downward direction) as the turbine exhaust gas l during normal operation. Therefore, by designing and manufacturing the cooling pipe group 13 so that it can efficiently cool both the turbine exhaust during normal operation and the bypass steam when bypass steam is introduced, no contradiction occurs.

そして、本発明に係るバイパス蒸気導入管は衝撃板を併
鰻していないので、これを冷却管群の上方の空間に設け
てもタービン排気の流動に別設の障害を及ぼす虞れが無
い。
Further, since the bypass steam introduction pipe according to the present invention does not include an impact plate, even if it is provided in the space above the cooling pipe group, there is no risk of causing a separate obstacle to the flow of the turbine exhaust gas.

以上説明したように、本発明は、タービンバイパス蒸気
が導入される狭面接触式の復水器において、冷却管群ご
とに、その上方に、該冷却管群と平行にタービンバイパ
ス蒸気導入管を配設し、かつ、上記タービンバイパス蒸
気導入管の管壁にほぼ水平方向のオリアイス孔を穿つこ
とによシ、上記のバイパス蒸気導入管の外周に近接した
衝撃板の設置を省略し得るようにして、復水器の通常運
転時のタービン排気の冷却凝縮性能を阻害する虞れ無く
、復水器の全体的寸法の増加を最小限に抑え、その上復
水器の周辺に大きい余裕空間を必要、とぜず、簡単な構
成で多量のバイパス蒸気を効率よく冷却し凝縮させるこ
とができる。
As explained above, the present invention provides a narrow surface contact type condenser into which turbine bypass steam is introduced, in which a turbine bypass steam introduction pipe is installed above each cooling pipe group in parallel with the cooling pipe group. and by drilling a substantially horizontal orifice hole in the pipe wall of the turbine bypass steam introduction pipe, it is possible to omit the installation of an impact plate close to the outer periphery of the bypass steam introduction pipe. In this way, the increase in the overall dimensions of the condenser can be minimized without the risk of impeding the cooling and condensing performance of the turbine exhaust during normal operation of the condenser, and moreover, a large free space can be created around the condenser. A large amount of bypass steam can be efficiently cooled and condensed with a simple configuration without the need for boiling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第8図は従来形の復水器を示し、第1図は概
要的な断面正面図、第2図は同側面図、第3図はバイパ
ス蒸気導入管の斜視図、第4図は同横断面図、第5図は
前記と異る復水器の概要的な断面正面図、第6図は同側
面図、第7図は更に異る復水器の概要的な断面正面図、
第8図は同側面図である。第9図及び第10図は本発明
の一実施ガに係る復水器を示し、第9図は概要的な断面
正面図、第10図は同側面図である。 10・・・復水器下部胴、11・・・同上部胴、12・
・・冷却管、13・・・冷却管群、20.40・・・パ
イ/くス蒸気導入管、21・・・衝撃板、22.42・
・・オリフィス孔。 代理人 弁理士 秋本正実 ”@lI21 62121 審 3 図 ¥、4.図 i S 口 第 6 口 jり 第 7 図 ′v 8 図
Figures 1 to 8 show a conventional condenser; Figure 1 is a schematic cross-sectional front view, Figure 2 is a side view of the same, Figure 3 is a perspective view of a bypass steam introduction pipe, and Figure 4 is a perspective view of a bypass steam introduction pipe. The figure is a cross-sectional view of the same, Figure 5 is a schematic cross-sectional front view of a condenser different from the above, Figure 6 is a side view of the same, and Figure 7 is a schematic cross-sectional front view of a still different condenser. figure,
FIG. 8 is a side view of the same. 9 and 10 show a condenser according to one embodiment of the present invention, with FIG. 9 being a schematic cross-sectional front view and FIG. 10 being a side view of the same. 10... condenser lower shell, 11... upper shell, 12.
... Cooling pipe, 13 ... Cooling pipe group, 20.40 ... Pi/kus steam introduction pipe, 21 ... Shock plate, 22.42.
...Orifice hole. Agent Patent Attorney Masami Akimoto”@lI21 62121 Trial 3 Figure ¥, 4. Figure i S Mouth 6 Mouth 7 Figure 'v 8 Figure

Claims (1)

【特許請求の範囲】[Claims] 1、タービンバイパス蒸気が導入される表面接触“式の
復水器において、冷却管群ごとにその上方に、該冷却管
群と平行にタービンバイパス蒸気導入管を配設し、かつ
、上記タービンバイパス蒸気導入管の管壁には埋水平方
向のオリアイス孔を穿つことt−特徴とする復水器。
1. In a surface contact type condenser into which turbine bypass steam is introduced, a turbine bypass steam introduction pipe is arranged above each cooling pipe group in parallel with the cooling pipe group, and A condenser characterized by having buried horizontal orifice holes in the wall of the steam introduction pipe.
JP12777281A 1981-08-17 1981-08-17 condenser Expired JPS5930993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12777281A JPS5930993B2 (en) 1981-08-17 1981-08-17 condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12777281A JPS5930993B2 (en) 1981-08-17 1981-08-17 condenser

Publications (2)

Publication Number Publication Date
JPS5828985A true JPS5828985A (en) 1983-02-21
JPS5930993B2 JPS5930993B2 (en) 1984-07-30

Family

ID=14968308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12777281A Expired JPS5930993B2 (en) 1981-08-17 1981-08-17 condenser

Country Status (1)

Country Link
JP (1) JPS5930993B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175878U (en) * 1983-05-04 1984-11-24 三菱重工業株式会社 condenser
JPS6086771U (en) * 1983-11-18 1985-06-14 三菱重工業株式会社 condenser
US9591783B2 (en) 2014-11-12 2017-03-07 Fujitsu Limited Electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145493A (en) * 1987-12-02 1989-06-07 Taiheiyo Tokushu Chuzo Kk Universal pipe joint
JP6221168B2 (en) * 2013-03-27 2017-11-01 三菱日立パワーシステムズ株式会社 Condenser and steam turbine plant equipped with the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175878U (en) * 1983-05-04 1984-11-24 三菱重工業株式会社 condenser
JPS6086771U (en) * 1983-11-18 1985-06-14 三菱重工業株式会社 condenser
US9591783B2 (en) 2014-11-12 2017-03-07 Fujitsu Limited Electronic device

Also Published As

Publication number Publication date
JPS5930993B2 (en) 1984-07-30

Similar Documents

Publication Publication Date Title
US6289850B1 (en) Exhaust heat recovery boiler
KR101714946B1 (en) Condenser and steam-turbine plant provided therewith
JPH0593501A (en) Heat exchanger
US4165783A (en) Heat exchanger for two vapor media
JPS5828985A (en) Condenser
US3472315A (en) Protective device for condenser tubes
CN106288322B (en) Longitudinal-grazing-free heat exchange superheat section structure for reducing diameter of low-pressure heater equipment
KR101398101B1 (en) Multiple stage steam dump decompression
RU2702346C2 (en) Steam discharge device for nuclear power plant
JP3590661B2 (en) Condenser
US6481208B1 (en) External steam dump
JP3262431B2 (en) Condenser
JP2020122628A (en) Condenser
JPS6017693A (en) Condenser
KR102307564B1 (en) Containment cooling system having improved cooling performance
JPS58178186A (en) Condenser
JPS6119912B2 (en)
JPH0498089A (en) Condenser
JPH058244U (en) Steam plant condenser
RU2198346C2 (en) Ultrahigh pressure mixing heat exchanger for preheating feed water at atomic power station
JP6294844B2 (en) Moisture separator
CN205480934U (en) Horizontal high pressure feed water heater of deoxidization
RU2489644C1 (en) Steam and water heater
JP2003240453A (en) Heat exchanger
JPS58178187A (en) Condenser